Результаты публичной защиты

Соискатель: Широбоков Максим Геннадьевич

Диссертация: «Баллистико-навигационные аспекты миссий малых космических аппаратов к Луне и точкам либрации».

На заседании 23 мая 2017 г. присутствуют 19 членов совета, из них 11 специалистов по профилю рассматриваемой диссертации:

CA3OHOB B.B.	д.фм.н.	01.02.01
ГОРБУНОВ-ПОСАДОВ М.М.	д.фм.н.	05.13.11
БОНДАРЕВ А.Е.	к.фм.н.	05.13.11
БОРОВИН Г.К.	д.фм.н.	01.02.01
ВАШКОВЬЯК М.А.	д.фм.н.	01.02.01
ВОЛОБОЙ А.Г.	д.фм.н.	05.13.11
ГОЛУБЕВ Ю.Ф.	д.фм.н.	01.02.01
ИВАШКИН В.В.	д.фм.н.	01.02.01
КРЮКОВ В.А.	д.фм.н.	05.13.11
КУГУШЕВ Е.И.	д.фм.н.	01.02.01
ЛАЗУТИН Ю.М.	д.фм.н.	05.13.11
ЛАЦИС А.О.	д.фм.н.	05.13.11
МИРЕР С.А.	д.фм.н.	01.02.01
ОВЧИННИКОВ М.Ю.	д.фм.н.	01.02.01
ПАВЛОВСКИЙ В.Е.	д.фм.н.	05.13.11
ПОЛИЛОВА Т.А.	д.фм.н.	05.13.11
САРЫЧЕВ В.А.	д.фм.н.	01.02.01
СИДОРЕНКО В.В.	д.фм.н.	01.02.01
ТУЧИН А.Г.	д.фм.н.	01.02.01

Диссертационный совет отмечает, что на основании выполненных соискателем исследований были разработаны эффективные алгоритмы проектирования и анализа траекторий малых космических аппаратов в дальнем космосе с учетом характерных для них массогабаритных и энергетических ограничений.

Теоретическая значимость работы состоит в том, что работа открывает новые динамические возможности для вывода малых аппаратов за пределы околоземных орбит и перемещения в системах Земля-Луна и Солнце-Земля.

Разработанные автором диссертации методики были применены к важным **практическим задачам**: 1) построению спиральных траекторий к лунным точкам либрации, 2) перелетам между окололунными орбитами и гало-орбитами вокруг лунных точек либрации, а также 3) спасению миссии вокруг точек либрации системы Земля-Луна и Солнце-Земля. Эти результаты могут быть применены на этапе предварительного анализа миссий с МКА в дальнем космосе. Наиболее значимые результаты работы, определяющие **научную новизну**, состоят в следующем:

- Впервые был проведен анализ спиральных траекторий перелета с околоземных орбит на гало-орбиты вокруг точки L1 системы Земля-Луна для различных цепочек лунных резонансов. Данная методика позволила также создать автоматизированную процедуру построения подобных траекторий, которая требует лишь небольшого участия разработчика миссии и подходит практически для любых околоземных орбит, любых целевых орбит вокруг точек либрации и любых типов аппаратов.
- Впервые было построено множество стабилизируемых малой тягой орбит при сходе с гало-орбит вокруг лунных точек либрации L1 и L2. Результаты показали, что в случае достаточно высоких гало-орбит для обоих рассмотренных классов аппаратов (в классе мини и нано) доступны околополярные окололунные орбиты.
- Впервые поставлена и решена задача оценки преимуществ смены номинальной орбиты в случае нештатной задержки коррекции. Расчеты были проведены в разных системах трех тел (Земля-Луна и Солнце-Земля), для различных точек либрации (L1 и L2), и при различных типах номинальных орбит (гало-орбиты и квазигало-орбиты).

Достоверность результатов работы обусловлена использованием классических моделей и методов теоретической механики и механики космического полета, теории управления, теории динамических систем.

Разработанные алгоритмы управления верифицированы численным моделированием динамики орбитального движения МКА.

Все представленные в диссертации результаты получены лично автором. К личному вкладу соискателя также относятся программная реализация описанных методов и алгоритмов, апробация работы на конференциях и семинарах, подготовка текстов публикаций.

На заседании 23 мая 2017 года диссертационный совет принял решение присудить Широбокову Максиму Геннадьевичу ученую степень кандидата физико-математических наук. При проведении тайного голосования диссертационный совет в количестве 19 человек, из них 11 докторов наук по специальности рассматриваемой диссертации, участвовавших в заседании, из 24 человек, входящих в состав совета, проголосовали: «за» присуждение учёной степени — 19, «против» присуждения учёной степени — нет, недействительных бюллетеней — нет.

Ученый секретарь диссертационного совета Д 002.024.01 кандидат физ.-мат. наук Бондарев Александр Евгеньевич