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ABSTRACT

A novel semianalytical technique is proposed for the libration
point formation design. It is based on the use of Lindstedt-
Poincaré series that approximate the center manifold in the
vicinity of the libration point. Any performance factor can
be constructed by symbolically manipulating the series. For
a number of typical formation-keeping objectives, the opti-
mal design parameters are first obtained analytically in a low-
order approximation and then exploited as an initial guess in
the numerical optimization procedure for the 15th-order ap-
proximation model. The proposed technique is robust, con-
structive, and versatile: while avoiding the necessity of nu-
merical integration in the highly unstable dynamical environ-
ment, we effectively use the full hierarchy of center manifold
approximations. The numerical optimization for the high-
order approximation model is still low-dimensional and al-
leviated by a good initial guess obtained from low-order ap-
proximation models.

Index Terms— Formation flying, libration point, Nelder-
Mead algorithm, Lissajous orbit, Lindstedt-Poincaré series

1. INTRODUCTION

Recent advances in a whole range of small satellite tech-
nologies open the road to extensive deep space exploration.
Among the promising destinations of near-future missions
are the L1 and L2 libration points of the Sun-Earth and Earth-
Moon systems. The low cost of micro- and nanospacecraft,
along with their limited mass, volume, and energy capa-
bilities, makes it natural to distribute the scientific payload
across several spacecraft flying in a formation. Furthermore,
it is the space-distributed measurements that are required
in such applications as space weather forecasting, magneto-
spheric studies, space interferometry, empirical validation of
fundamental physical theories, etc.

In contrast to the case of near-Earth formations, the design
of a libration point formation is a much more difficult and less
studied procedure. The primary obstacle is the unstable and
highly nonlinear dynamics in the vicinity of the collinear li-
bration points. The first works dated back at the beginning
of the 2000s aimed at designing a continuous or impulsive
control law that ensures keeping the predefined formation ge-
ometry [1–7]. The idea of concurrent numerical optimization

of both formation configuration and control parameters has
also been suggested [8]. At the same time, the general trend
of maximally exploiting the natural dynamics was then ob-
served, starting with the study of Howell and Marchand [9]
who introduced the concept of the natural formation, a for-
mation that keeps favorable geometry under no control (i.e.,
in purely ballistic motion). The efforts to explicitly describe
and visualize the set of best (slowest-degrading) initial config-
urations for a two-spacecraft formation resulted in the notions
of zero relative radial acceleration (ZRRA) [10] and zero rel-
ative acceleration and velocity (ZRAV) regions [11, 12]. All
the criteria based on the relative acceleration are, however,
indirect and approximate: the two spacecraft are assumed to
move in close orbits with synchronized velocities. Moreover,
the above notions become useless for the design of non-rigid
formations with relative distances changing in a prescribed
way. Even the problem of rigid formation design with three
or more spacecraft is tractable only numerically. For exam-
ple, in the recent works of Ferrari and Lavagna [13, 14], the
genetic algorithm is utilized for global optimization.

In the current research, a novel semianalytical technique is
proposed for the libration point formation design. Its founda-
tion is the use of Lindstedt-Poincaré (LP) series that approxi-
mate the center manifold in the vicinity of the libration point.
The relative motion can be described explicitly by subtracting
two LP series. In the resulting series, there are just four design
parameters, and non-gradient optimization methods, such as
the Nelder-Mead simplex algorithm, sucessfully solve the op-
timal design problem. Furthermore, we can gain some insight
from low-order LP approximations. Corresponding analyti-
cal estimates can be used as an initial guess in the iterative
numerical optimization procedure. For complex performance
metrics, these estimates appear to be crucial for the procedure
to converge.

The paper is organized as follows. In Section 2, some ba-
sic information is provided about the dynamics in the vicinity
of collinear libration points and the LP approximation of the
relevant center manifold. Then, we introduce several perfor-
mance metrics that are usually used for libration point forma-
tions. Section 4 contains the brief description of the Nelder-
Mead optimization method. Analytical estimates from the lin-
ear approximation derived in Section 5, are exploited as an
initial guess in the numerical optimization procedure of Sec-
tion 6. The results are then adapted to the ephemeris model.



2. CENTRAL MANIFOLD DYNAMICS IN THE
VICINITY OF COLLINEAR LIBRATION POINTS

2.1. Circular Restricted Three-Body Problem

In the circular restricted three-body problem (CR3BP), two
celestial bodies move in circular orbits around their barycen-
ter. The position of a spacecraft of negligible mass is usually
described in the rotating barycentric reference frame, with the
X-axis connecting the bodies and the Z-axis being directed
along the orbital angular momentum. The equations of space-
craft motion have the following nondimensional form

Ẍ − 2Ẏ = UX

Ÿ + 2Ẋ = UY

Z̈ = UZ

(1)

where

U(X,Y, Z) =
X2 + Y 2

2
+

1− µ
R1

+
µ

R2

is the effective potential, UX , UY and UZ are the partial
derivatives of U with respect to the position variables, and
µ = m2/(m1+m2) is the mass parameter of the system. The
distances to the celestial bodies are given by the equalities

R1 =
√

(X + µ)2 + Y 2 + Z2

R2 =
√

(X − 1 + µ)2 + Y 2 + Z2

The system (1) has five equilibrium points called libration
or Lagrangian points. Three of them lying on the X-axis, are
named collinear. Usually denoted by L1, L2, and L3, these
points are proved to be unstable. In the Sun-Earth system, the
coordinates of the L1 and L2 points are as follows:

XL1 = 0.9899871, XL2 = 1.0100740

It is the latter point that we will focus on in this study.

2.2. Linearization About the Collinear Libration Point

Before linearizing the equations of motion about the L1 or L2

libration point, it is convenient to make a change of variables

x =
X −XL

D
, y =

Y

D
, z =

Z

D

where XL is the X-coordinate of the libration point (L1 or
L2), and D = |XL− 1 +µ| is the distance from this libration
point to the smaller celestial body. Then, the evolution of the
position and velocity vectors r = (x, y, z)T , ṙ = (ẋ, ẏ, ż)T is
described in the linear approximation by the differential equa-
tions [

ṙ

r̈

]
=

[
O3×3 I3×3

U −2Ω

][
r

ṙ

]
(2)

Here O3×3 and I3×3 are respectively the zero matrix and the
indentity matrix of 3× 3 size,

Ω =

 0 −1 0

1 0 0

0 0 0


and U is the matrix of second-order partial derivatives of the
effective potential estimated in the libration point:

U =

 1 + 2µ̄ 0 0

0 1− µ̄ 0

0 0 −µ̄


where

µ̄ =
µ

|XL − 1 + µ|3
+

1− µ
|XL + µ|3

The matrix of the system (2) has a pair of real eigenvalues
and two pairs of imaginary eigenvalues. They have a form of
±iωp and ±iωv . The phase space is thus of a saddle × center
× center type. Quasi-periodic Lissajous orbits from the four-
dimensional central manifold can be represented as

x = α cos (ωpt+ φ1)

y = −κα sin (ωpt+ φ1)

z = β cos (ωvt+ φ2)

(3)

The constants α and β play a role of the in-plane and out-of-
plane amplitudes; φ1 and φ2 are the arbitrary phases, and

κ =
ω2
p + 2ω2

v + 1

2ωp

In the Sun-Earth system, the planar and vertical frequencies
ωp and ωv are respectively equal to 2.0864519 and 2.0152089
for the L1 point; for the L2 point, their values are 2.0570158
and 1.9850765.

2.3. Lindstedt-Poincaré Series

The LP series expansion explicitly parameterizes—up to the
user-specified degree of accuracy—the invariant tori the cen-
ter manifold is foliated by. In particular, the manifolds con-
sisting of periodic and quasi-periodic libration point orbits
can be approximated by the LP series.

The general expressions of order n for the Lissajous orbits
have the following complex exponential form [15]:

x =
∑

xijkm αiβ jγ k
1 γ

m
2

y =
√
−1

∑
yijkm αiβ jγ k

1 γ
m
2

z =
∑

zijkm αiβ jγ k
1 γ

m
2

(4)



Here γi = exp
[√
−1 (ωit+ φi)

]
, and the summation is per-

formed over the indices satisfying the conditions I = { i, j ≥
0, |k| ≤ i, |m| ≤ j, 1 ≤ i + j ≤ n}. The frequencies ω1

and ω2 are also expanded:

ω1 = ωp +
∑

dij α
iβ j

ω2 = ωv +
∑

fij α
iβ j

(5)

The indices in Eq. (5) are summed over the positive even
numbers. The LP series for halo orbits, three-dimensional pe-
riodic orbits branching from the family of planar orbits, can
be found in [16]. The expressions resemble Eq. (4), except
for the fact that a single frequency ω = ω1 = ω2 appears and
the additional condition for such a resonance is required to be
satisfied. We further concentrate on the family of Lissajous
orbits, though the methodology proposed can also be applied
to halo orbit formations and corresponding LP series.

The larger the Lissajous orbit, the more distant it is from
the libration point. As a result, the LP series of higher order
are required to approximate the center manifold with the same
precision. In Fig. 1 adapted from the famous monograph [17],
the limit values of in-plane and out-of-plane amplitudes are
shown for which the LP series of 5th, 15th, and 35th order
give an error not larger than 10−6 non-dimensional units (one
unit for the Sun-Earth system is about 1.5 mln km) at the in-
terval of π time units.

Fig. 1: LP series approximation order required for Lissajous
orbits of different in-plane and out-of-plane amplitudes [17]

3. REFERENCE ORBIT AND FORMATION
PERFORMANCE METRICS

In this research, the Lissajous orbit around the Sun-Earth L2

point with α = 110, 000 km and β = 90, 000 km is used as
the reference orbit. Such dimensions are close to those of the

orbit of the Gaia space telescope succesfully launched in 2013
[18]. The three-dimensional view and the yz-projection of the
reference orbit in the linear approximation are demonstrated
in Fig. 2. As Fig. 1 reveals, the 15th order of series is enough
to approximate the reference orbit accurately. The corrected
3D-view and the yz-projection are given by Fig. 3.

(a) 3D view

(b) yz-projection

Fig. 2: Reference orbit in the linear approximation

The values of the planar frequency ω1 obtained from the
15th-order LP approximation of Lissajous orbits with the in-
plane and out-of-plane amplitudes up to 150,000 km are de-
picted in Fig. 4. The same plot for the vertical frequency ω2

is represented by Fig. 5. Though the relative change of each
frequency is rather small, their difference can decrease up to
one third (see Fig. 6). For example, for the reference orbit, the
difference between ω1 = 2.0490816 and ω2 = 1.9865984 is
0.0624832, 13% less than ωp − ωv = 0.0719393. This fact
will be further used to improve some analytical estimates.



(a) 3D view

(b) yz-projection

Fig. 3: Reference orbit in the 15th-order LP approximation

The reference orbit approximated by the LP series expan-
sion of any order is described by four parameters: two ampli-
tudes α, β and two phases φ1, φ2. Assuming the first space-
craft in a two-spacecraft formation moves along the reference
orbit, the relative position vector

∆r = r2 − r1 =

x2 − x1y2 − y1
z2 − z1

 ≡
∆x

∆y

∆z


can be readily expanded in LP series by subtracting the series
for the components of r2 and r1. The resulting LP expansions
for ∆x, ∆y, and ∆z can be parameterized by two differential
amplitudes ∆α, ∆β and two differential phases ∆φ1, ∆φ2.

To measure the performance of a formation, some scalar
performance metric is usually introduced. If the relative dis-
tance is of primary interest in the mission, it is convenient to

target the required interval of values for the squared distance

∆r2 = ∆x2 + ∆y2 + ∆z2

The relevant LP series can be derived symbolically or, in case
of the linear approximation, even by hand (see Section 5).

When a projection of the relative trajectory onto the plane
with the unit normal vector n = (nx, ny, nz)

T is tracked, the
following metric can be used:

∆r2 − (∆r · n)
2

=
(
1− n2x

)
∆x2 +

(
1− n2y

)
∆y2+

+
(
1− n2z

)
∆z2 − 2nxny∆x∆y − 2nynz∆y∆z−

−2nxnz∆x∆z

If the projection plane is fixed in the rotating reference frame,
n is a constant vector. For an inertially fixed plane, the normal
vector is a function of time:

n =

nx0 cos t+ ny0 sin t

ny0 cos t− nx0 sin t

nz


This situation is typical for space interferometry missions.

Fig. 4: Planar frequency of Lissajous orbits as a function of
the in-plane and out-of-plane amplitudes

A more complex metric is required if two spacecraft are to
be aligned along a given direction specified by the unit vector
n. The straightforward candidate is the squared cosine of the
angle between the relative position vector ∆r and n:

cos2 γ =
(∆r · n)

2

∆r2

For formations of three and more spacecraft, performance
metrics can be constructed in a similar fashion based on pair-
wise relative distances. With adding one more spacecraft, the



number of design variables increases by 4. What is important,
it does not depend on the order of LP series approximation.

Another critical advantage of the proposed approach is the
ability to compute the performance metric without the neces-
sity of numerical integration in the highly unstable dynamical
environment. It is also better to avoid the derivative computa-
tions due to the highly irregular search space. Along with the
relatively small number of optimized variables, this all speaks
in favor of derivative-free numerical optimization techniques.

Fig. 5: Vertical frequency of Lissajous orbits as a function of
the in-plane and out-of-plane amplitudes

Fig. 6: Difference between the planar and vertical frequencies
for Lissajous orbits with different amplitudes

4. NELDER-MEAD OPTIMIZATION ALGORITHM

One of the popular non-gradient methods for solving uncon-
strained optimization problems is the Nelder-Mead simplex

method (do not confuse with the simplex method for linear
programming problems). The idea behind the method is first
to initialize a simplex with n+1 vertices in the n-dimensional
phase space and then to modify the simplex with the opera-
tions of reflection, expansion, contraction, and shrinkage, de-
pending on the objective function values at the vertices. The
algorithm is simple and easily programmable. Its description
can be found in the paper of Lagarias et al. [19]. This classi-
cal algorithm is implemented in the FMINSEARCH routine,
a part of the Matlab Optimization Toolbox.

In cases when the problem is initially constrained, penalty
functions are added to the objective function. For example, if
we want to target some value c of the relative distance so that
c (1− ε1) ≤ ∆r ≤ c (1 + ε2) at a specific time interval, the
following objective function can be exploited:

J = (〈∆r〉 − c)2 + k1 max (0, c (1− ε1)−m) +

+ k2 max (0,M − c (1 + ε2))
(6)

In this expression, 〈∆r〉 is the average value of
√

∆r2 over a
given time interval, m = min

√
∆r2, M = max

√
∆r2, k1

and k2 are some large penalty weight coefficients.
In practice, the Nelder-Mead method often performs well

even for irregular, non-smooth, and noised objective functions
or objective functions with dense local minima in a vicinity
of one global minimum. However, when the dimension of the
phase space is high, convergence to a local minimum could
take much time; so, it is usually recommended to use the clas-
sical Nelder-Mead algorithm only for small-scale problems.
Nonetheless, large-scale modifications of the algorithm also
exist [20, 21]. These parallel versions can be effectively used
in high-performance computing systems.

5. ANALYTICAL ESTIMATES BASED ON
THE LINEAR APPROXIMATION

It is of vital importance to properly initialize almost any op-
timization algorithm. The role of an initial guess grows with
the increase of computational complexity of the problem (for
instance, when the number of optimized variables is large). It
appears that a good initial guess and performance metric esti-
mates in the problem of libration point formation design can
be obtained from the linear approximation.

In a two-spacecraft formation, the relative position vector
∆r satisfies the same linearized equations of motion (2) as do
the position vectors of both spacecraft. Thus, the solution can
be written in the same form as Eq. (3):

∆x = Ax cos (ωpt+ θ1)

∆y = −κAx sin (ωpt+ θ1)

∆z = Az cos (ωvt+ θ2)



The transformation formulas between the relative amplitudes
and phases Ax, Az , θ1, θ2 and the above mentioned differen-
tial parameters ∆α, ∆β, ∆φ1, ∆φ2 are derived in Appendix.

In the linear approximation, the squared relative distance
is expressed as

∆r2 =
A2

x

(
κ2 + 1

)
+A2

z

2
+
A2

z

2
cos (2ωvt+ 2θ2)−

−
A2

x

(
κ2 − 1

)
2

cos (2ωpt+ 2θ1)

It exhibits beating around the mean value

c2 =
A2

x

(
κ2 + 1

)
+A2

z

2

with the beat frequency δ = ωp − ωv (see Fig. 7).

Fig. 7: Squared relative distance beating behavior

It follows from the beating theory that the upper and lower
envelopes for the sum of two harmonics

a cos (ωt+ ϕ) + b cos ((ω + ∆ω) t+ ϕ+ ∆ϕ)

are determined by the functions

±
√
a2 + b2 + 2ab cos (∆ω · t+ ∆ϕ)

with the plus sign corresponding to the upper envelope. In our
notation,

a =
A2

z

2
, b = −

A2
x

(
κ2 − 1

)
2

, ∆ω = 2δ, ∆ϕ = −2∆θ

where ∆θ = θ2 − θ1. So, the upper envelope has a form of√
A4

x (κ2 − 1)
2

4
+
A4

z

4
− A2

xA
2
z (κ2 − 1)

2
cos (2δt− 2∆θ)

For long time intervals, the extrema of the upper and lower
envelopes representing the maximum and minimum values of
∆r2 significantly deviate from the mean value c2. Indeed, the
relative deviation

max |∆r2 − c2|
c2

=
A2

z +A2
x

(
κ2 − 1

)
A2

z +A2
x (κ2 + 1)

has a minimum of

χ =
κ2 − 1

κ2 + 1
≈ 0.82

when Az = 0. The distance between the spacecraft oscillates
from

√
0.18 c2 ≈ 0.42 c to

√
1.82 c2 ≈ 1.35 c in this case.

Such variations would almost always be unacceptable in a real
mission. However, it is important for us to observe that, if the
harmonics interfere destructively, a time interval exists during
which the squared relative distance values are confined within
a strip of arbitrarily small width 2ε centered at c2. The larger
the width, the longer this interval. To maximize its length for
a given ε, we need to select the amplitudes Ax and Az so that
the distance between the adjacent roots of the equation√
A4

x (κ2 − 1)
2

4
+
A4

z

4
− A2

xA
2
z (κ2 − 1)

2
cos (2δt− 2∆θ) = c2ε

with respect to t is maximum. Returning to the short notation
in terms of a and b, this equation can be rearranged as

cos (2δt− 2∆θ) =
c4ε2 − a2 − b2

2ab

Taking into account the mean value constraint

a− b/χ = c2

yields

cos (2δt− 2∆θ) =
c4ε2 − a2 − χ2

(
a− c2

)2
2χa (a− c2)

The maximum distance between the roots is attained when the
right-hand side is minimum. Dividing both the numerator and
the denominator by c4 and introducing the notation

ξ = 1− a

c2
, ξ ∈ [0, 1]

we obtain the equivalent function to be minimized:

η (ξ) =
(1− ξ)2 + χ2ξ2 − ε2

2χξ (1− ξ)

The graphs of its natural logarithm for some ε values are plot-
ted in Fig. 8 near the minimum point. This point

ξmin =
1− ε2 −

√
(1− ε2) (χ2 − ε2)

1− χ2



does not depend on ε and can therefore be estimated with the
assumption ε = 0:

ξmin ≈
1

1 + χ
≈ 0.55

It results in the relationship

a = −b =
κ2 − 1

2κ2
c2

or, in terms of the amplitudes,

Ax =
c

κ
, Az =

c

κ

√
κ2 − 1 (7)

The upper envelope curve is now determined by the function

c2

κ2
(
κ2 − 1

)
| sin (δt−∆θ) |

To start with a favorable destructive interference interval (see
Fig. 9), it is required to tune the relative phase difference ∆θ.
Up to an integer multiple of π,

|∆θ| = arcsin

(
εκ2

κ2 − 1

)
(8)

Then, the squared distance remains close enough (i.e., within
the 2ε-strip) to the mean value over the interval [0, T ] where

T =
2 |∆θ|
δ

(9)

Fig. 8: ln η as a function of ξ in the [0.4, 0.7] interval

The formulas (7-9) can be exploited as an initial guess in a
numerical optimization procedure in case we aim at designing
a two-spacecraft formation with the target relative distance c.
The Nelder-Mead method can then be applied to the objective
function (6) with ε1 = 1−

√
1− ε, ε2 =

√
1 + ε−1. One of

the phases, θ1 or θ2, can be initialized arbitrarily. For small ε
values, the relative distance is symmetrically constrained near
the mean value c by the bounds c (1− ε/2) and c (1 + ε/2).

(a) 15-year interval

(b) First half-year interval enlarged

Fig. 9: Behavior of the squared relative distance analytically
optimized for c = 100 km, ε = 0.1

In case of other formation performance metrics, analytical
estimates can also often be derived in a similar fashion.

It turns out to be surprisingly simple to analytically obtain
an initial guess in the case of a three-spacecraft formation that
is supposed to move as an equilateral triangle. After repeating
the above analysis for all the three pairs of spacecraft, we can
straightforwadly deduce that both the relative amplitudes Ax,
Az and the phase difference |∆θ| (up to an integer multiple of
2π) should be equal in these pairs. Indeed, they obey the same



relationships (7)-(8), with c being the desired side length of an
equilateral triangle. This leads to the expressions

x2 − x1 = Ax cos (ωpt+ θ1)

y2 − y1 = −κAx sin (ωpt+ θ1)

z2 − z1 = Az cos (ωvt+ θ2)

and

x3 − x2 = Ax cos (ωpt+ θ3)

y3 − y2 = −κAx sin (ωpt+ θ3)

z3 − z2 = Az cos (ωvt+ θ4)

as well as

x3 − x1 = Ax cos (ωpt+ θ5)

y3 − y1 = −κAx sin (ωpt+ θ5)

z3 − z1 = Az cos (ωvt+ θ6)

where |θ2− θ1| = |θ4− θ3| = |θ6− θ5| ≡ |∆θ| (mod π). At
the same time, since x3 − x1 = (x3 − x2) + (x2 − x1) and
z3 − z1 = (z3 − z2) + (z2 − z1), the equalities

|θ3 − θ1| =
2π

3
(mod 2π)

|θ4 − θ2| =
2π

3
(mod 2π)

should hold. For example, one can take

θ3 = θ1 +
2π

3

θ4 = θ2 +
2π

3

Then

θ5 = θ1 +
π

3

θ6 = θ2 +
π

3

Along with the equalities

θ2 − θ1 = θ4 − θ3 = θ6 − θ5 = arcsin

(
εκ2

κ2 − 1

)
and Eq. (7), these relations allow us to complete the design of
an equilateral triangle formation.

6. NUMERICAL OPTIMIZATION AND
ADAPTATION TO THE EPHEMERIS MODEL

The derived analytical estimates can be exploited as an initial
guess for the Nelder-Mead optimization procedure in a high-
order LP approximation model. As justified in Section 3, the

15th order of the LP series expansion is quite accurate for the
reference Lissajous orbit selected. The termination tolerances
of Matlab’s FMINSEARCH routine for the objective function
and the vector of optimized variables have been set to 1e− 8.

In the relative distance-based performance metric (6) with
c = 6.6845871 ·10−7 (the non-dimensional equivalent of 100
km), the penalty weight coefficients k1 and k2 both equal 107.
The analytical estimate (9) for the time a formation naturally
keeps acceptable performance is used as the length of the op-
timization interval.

The numerical optimization in the 15th-order approxima-
tion model is followed by the adaptation of resulting absolute
spacecraft trajectories to the high-fidelity model incorporating
the gravitational attraction of the Sun and all the planets up to
Saturn, as well as the solar radiation pressure force (the area-
to-mass-ratio of 0.01 m2/kg is assumed for all spacecraft). In
all the examples below, the initial date of Jan 1, 2020 is used.
It requires just 3-8 multiple-shooting iterations to converge.

The evolution of the relative distance for a two-spacecraft
formation in several models of motion is compactly shown in
Fig. 10. The upper and lower bounds ε1 = 1−

√
1− ε, ε2 =√

1 + ε− 1 with ε = 0.1 are indicated by dashed lines. In the
15th-order approximation model, the analytical guess slightly
violates the bounds, which is then successfully eliminated by
the numerical optimization. The subsequent adaptation to the
ephemeris model has almost no influence on the performance.

For a three-spacecraft formation designed to move in the
equilateral triangle configuration, each relative distance curve
in Fig. 10 is replaced by the triplet of pairwise distance curves.
These four triplets are depicted separately in Figs. 11-14. The
optimized initial configuration ensures that during half a year
of natural motion all the pairwise relative distances are within
the ±5% band centered at the desired value of 100 km. Other
observations are also similar to those for a two-spacecraft for-
mation.

It is worth underlining that the presence of an analytically
derived initial guess is often crucial. For instance, in the case
of a two-spacecraft formation, the number of iterations for the
Nelder-Mead method to converge more than quadruples if the
trivial initial guess of zero differential amplitudes is used (i.e.,
spacecraft orbits are initially considered identical). Moreover,
for a three-spacecraft formation, such a guess does not lead to
convergence at all.

In higher orders of approximation, the difference between
the planar and vertical frequencies is known to be less than in
the linear approximation. Thus, the conservative estimate (9)
can usually be refined by substituting ω2 − ω1 in the denomi-
nator instead of δ = ωp−ωv . The analytical guess sometimes
appears excellent even for longer intervals. For example, it is
managed to optimize the half-year formation design of Fig. 10
over the one-year interval (Fig. 15). In some cases, however,
it is necessary to relax the ε tolerance when proceeding to the
numerical optimization. For sophisticated performance met-
rics, natural constraints on ε can exist in high-fidelity models.



Fig. 10: Relative distance behavior for a two-spacecraft formation in different models of motion

Fig. 11: Optimal solution to the problem of linearized relative
motion in an almost equilateral formation

7. CONCLUSIONS

The proposed semianalytical technique based on the powerful
tool of Lindstedt-Poincaré series has appeared to be an effec-
tive approach to the rather complicated problem of designing
libration point formations with various performance metrics.
The series of any order are readily parameterized by just four
design parameters, which opens the road to such non-gradient
optimization techniques as the classical Nelder-Mead simplex
algorithm. Numerical integration is thus totally avoided.

The analysis of low-order expressions for the performance
metric makes it often possible to obtain an initial guess for the
numerical optimization procedure. This drastically speeds up
the convergence or is even its prerequisite.

Fig. 12: Optimal solution to the problem of linearized relative
motion in an almost equilateral triangle formation substituted
to the 15th-order LP approximation model

The explicit analytical derivations have been presented for
the relative distance-based performance metric in the cases of
two-spacecraft and three-spacecraft formations. The optimal
design is found so that the relative distance variations for half
a year are no greater than 5-6% in the 15th-order approxima-
tion model and the ephemeris model. The same stability level
proved to be achievable for the one-year ballistic flight.
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Fig. 13: Numerically optimized relative motion in an almost
equilateral triangle formation based on the initial guess from
the linearized model of motion

9. REFERENCES

[1] P. Gurfil and N.J. Casdin, “Dynamics and Control
of Spacecraft Formation Flying in Three-Body Trajec-
tories,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, Montreal, Canada, August 6-
9, 2001, 11 p.

[2] N.H. Hamilton, D. Folta, and R. Carpenter, “Formation
Flying Satellite Control Around the L2 Sun-Earth Li-
bration Point,” in AIAA/AAS Astrodynamics Specialist
Conference and Exhibit, Monterey, CA, USA, August
5-8, 2002, 11 p.

[3] D.J. Scheeres, F.Y. Hsiao, and N.X. Vinh, “Stabiliz-
ing Motion Relative to an Unstable Orbit: Applications
to Spacecraft Formation Flight,” Journal of Guidance,
Control, and Dynamics, vol. 26, no. 1, pp. 62–73, 2003.

[4] F.Y. Hsiao and D.J. Scheeres, “Design of Spacecraft
Formation Orbits Relative to a Stabilized Trajectory,”
Journal of Guidance, Control, and Dynamics, vol. 28,
no. 4, pp. 782–794, 2005.

[5] B.G. Marchand and K.C. Howell, “Control Strategies
for Formation Flight in the Vicinity of the Libration
Points,” Journal of Guidance, Control, and Dynamics,
vol. 28, no. 6, pp. 1210–1219, 2005.

[6] B.G. Marchand and S.A. Stanton, “Actuator Con-
strained Optimal Formation Keeping Near the Libration
Points,” Journal of the Astronautical Sciences, vol. 57,
no. 3, pp. 607–632, 2009.

Fig. 14: Adaptation of the solution numerically optimized in
the 15th-order approximation model to the ephemeris model

[7] E. Serpelloni, M. Maggiore, and C.J. Damaren, “Con-
trol of Spacecraft Formations Around the Libration
Points Using Electric Motors with One Bit of Resolu-
tion,” Journal of the Astronautical Sciences, vol. 61, no.
4, pp. 367–390, 2014.

[8] S.I. Infeld, S.B. Josselyn, W. Murray, and I.M. Ross,
“Design and Control of Libration Point Spacecraft For-
mations,” Journal of Guidance, Control, and Dynamics,
vol. 30, no. 4, pp. 899–909, 2007.

[9] B.G. Marchand and K.C. Howell, “Natural and Non-
Natural Spacecraft Formations Near the L1 and L2 Li-
bration Points in the Sun-Earth/Moon Ephemeris Sys-
tem,” Dynamical Systems: an International Journal,
Special Issue on Mechanics and Space Mission Design,
vol. 20, no. 1, pp. 149–173, 2005.
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10. APPENDIX – TRANSFORMATION BETWEEN
RELATIVE AND DIFFERENTIAL PARAMETERS

OF LINEARIZED RELATIVE MOTION

The orbit of the first spacecraft is described by the expressions

x1 = α cos (ωpt+ φ1)

y1 = −κα sin (ωpt+ φ1)

z1 = β cos (ωvt+ φ2) ,

For the orbit of the second spacecraft, we have

x2 = (α+ ∆α) cos (ωpt+ φ1 + ∆φ1)

y2 = −κ (α+ ∆α) sin (ωpt+ φ1 + ∆φ1)

z2 = (β + ∆β) cos (ωvt+ φ2 + ∆φ2)

Since the relative position vector ∆r satisfies the same linear
equations, its components can be written as follows:

∆x = Ax cos (ωpt+ θ1)

∆y = −κAx sin (ωpt+ θ1)

∆z = Az cos (ωvt+ θ2)

The relation between Ax, Az , θ1, θ2 and ∆α, ∆β, ∆φ1, ∆φ2
can be easily derived from the equations ∆x = x2−x1, ∆y =
y2−y1, ∆z = z2−z1. The solution is given by the following
relationships:

∆φ1 = arctan (Ax sin (θ1 − φ1) , Ax cos (θ1 − φ1) + α)

∆φ2 = arctan (Az sin (θ2 − φ2) , Az cos (θ2 − φ2) + β)

∆α = −α+ α cos ∆φ1 +Ax cos (θ1 − φ1 −∆φ1)

∆β = −β + β cos ∆φ2 +Az cos (θ2 − φ2 −∆φ2)


