7th International Conference on Astrodynamics Tools and Techniques (7th ICATT)

Oberpfaffenhofen, Germany, November 6-9, 2018

Semianalytical Design of Libration Point Formations

Sergey Trofimov

PhD, Researcher Space Systems Dynamics Department Keldysh Institute of Applied Mathematics

Maksim Shirobokov, Michael Koptev Keldysh Institute of Applied Mathematics

Design of libration point formations

Two points of view on the design of a libration point FF:

• <u>the optimal control problem</u>

The reference relative motion is defined by hand; the control just ensures its tracking.

• the natural motion search problem

Natural trajectories are sought that best fit mission requirements. The control ensures tracking and, if needed, refinement of the natural motion found.

Circular restricted three-body problem

In the Sun-Earth system: $X_{L1} = 0.9899871, X_{L2} = 1.0100740$

3/31

Linearized dynamics in the vicinity of collinear libration points

New non-dimensional coordinates near the L1/L2 point:

$$x = \frac{X - X_L}{D}, \quad y = \frac{Y}{D}, \quad z = \frac{Z}{D}$$

 $D = |X_L - 1 + \mu|$ is a distance from L1/L2 to the smaller primary

Linearized dynamics in the vicinity of collinear libration points

New non-dimensional coordinates near the L1/L2 point:

$$x = \frac{X - X_L}{D}, \quad y = \frac{Y}{D}, \quad z = \frac{Z}{D}$$

 $D = |X_L - 1 + \mu|$ is a distance from L1/L2 to the smaller primary

Solution to linearized equations:

$$x = \alpha \cos (\omega_p t + \phi_1)$$

$$y = -\kappa \alpha \sin (\omega_p t + \phi_1)$$

$$\kappa = \frac{\omega_p^2 + 2\omega_v^2 + 1}{2\omega_p}$$

$$z = \beta \cos (\omega_v t + \phi_2)$$

Linearized dynamics in the vicinity of collinear libration points

New non-dimensional coordinates near the L1/L2 point:

$$x = \frac{X - X_L}{D}, \quad y = \frac{Y}{D}, \quad z = \frac{Z}{D}$$

 $D = |X_L - 1 + \mu|$ is a distance from L1/L2 to the smaller primary

Solution to linearized equations:

$x = \alpha \cos\left(\omega_p t + \phi_1\right)$		Planar	Vertical
$y = -\kappa\alpha\sin\left(\omega_p t + \phi_1\right)$	Sun-Earth L1	2.0864519	2.0152089
$z = \beta \cos\left(\omega_v t + \phi_2\right)$	Sun-Earth L2	2.0570158	1.9850765

Lindstedt-Poincaré series

- Lindstedt-Poincaré series approximate the central manifold
- For (quasi-)periodic libration point orbits, two small parameters introduced are the in-plane and out-ofplane amplitudes
- Any invariant torus of (quasi-)periodic trajectories is parameterized by two amplitudes and two phases
- In this study, all the numerical examples are for Sun-Earth L2 Lissajous orbits

Complex form of Lindstedt-Poincaré series for Lissajous orbits

$$x = \sum x_{ijkm} \,\alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$y = \sqrt{-1} \sum y_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$z = \sum z_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$\gamma_i = \exp\left[\sqrt{-1}\left(\omega_i t + \phi_i\right)\right]$$

Complex form of Lindstedt-Poincaré series for Lissajous orbits

$$x = \sum x_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$y = \sqrt{-1} \sum y_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$z = \sum z_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$\omega_1 = \omega_p + \sum d_{ij} \, \alpha^i \beta^j$$

$$\omega_2 = \omega_v + \sum f_{ij} \, \alpha^i \beta^j$$

$$\gamma_i = \exp\left[\sqrt{-1}\left(\omega_i t + \phi_i\right)\right]$$

Complex form of Lindstedt-Poincaré series for Lissajous orbits

$$x = \sum x_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$y = \sqrt{-1} \sum y_{ijkm} \,\alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$z = \sum z_{ijkm} \, \alpha^i \beta^j \gamma_1^k \gamma_2^m$$

$$\omega_1 = \omega_p + \sum d_{ij} \, \alpha^i \beta^j$$

$$\omega_2 = \omega_v + \sum f_{ij} \, \alpha^i \beta^j$$

$$\gamma_i = \exp\left[\sqrt{-1}\left(\omega_i t + \phi_i\right)\right]$$

The procedure of calculating the coefficients and the tables of coefficients for the Sun-Earth L1 and L2 points are presented in the Volume III of the famous monograph by Gómez et al.

Differential and relative parameters for the description of relative motion

The relative position vector $\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$ meets the same linearized equations, so we can write

$$\Delta x = A_x \cos(\omega_p t + \theta_1)$$
$$\Delta y = -\kappa A_x \sin(\omega_p t + \theta_1)$$
$$\Delta z = A_z \cos(\omega_v t + \theta_2)$$

Differential and relative parameters for the description of relative motion

The relative position vector $\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$ meets the same linearized equations, so we can write

$$\Delta x = A_x \cos \left(\omega_p t + \theta_1\right)$$
$$\Delta y = -\kappa A_x \sin \left(\omega_p t + \theta_1\right)$$
$$\Delta z = A_z \cos \left(\omega_v t + \theta_2\right)$$

Two sets of variables can be used for describing the relative motion in the linear approximation:

- differential amplitudes and phases $\Delta \alpha$, $\Delta \beta$, $\Delta \phi_1$, $\Delta \phi_2$
- relative amplitudes and phases $A_x, A_z, \theta_1, \theta_2$

Required order of approximation

Upon integrating the equations of motion at π time units, the error shall not exceed 10^{-6} distance units

8/31

Adapted from W.S. Koon et al. *Dynamical Systems, the Three-Body Problem and Space Mission Design,* Springer-Verlag, 2008

Required order of approximation

Adapted from W.S. Koon et al. *Dynamical Systems, the Three-Body Problem and Space Mission Design,* Springer-Verlag, 2008 Upon integrating the equations of motion at π time units, the error shall not exceed 10^{-6} distance units

Reference orbit (linear approximation)

Reference orbit (15th-order LP series)

• Relative distance $\Delta r^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$

Should keep the relative distance constant

• Relative distance $\Delta r^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$

Should keep the relative distance constant

• Projected relative distance $\Delta r^2 - \left(\Delta {f r} \cdot {f n}
ight)^2$

Should keep the projected relative distance constant
 (the relative trajectory is a projected circular orbit)

• Relative distance $\Delta r^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$

Should keep the relative distance constant

- Projected relative distance $\Delta r^2 \left(\Delta \mathbf{r} \cdot \mathbf{n}\right)^2$
 - Should keep the projected relative distance constant
 (the relative trajectory is a projected circular orbit)
- Angle between the relative position vector and a given vector

$$\cos^2 \gamma = \frac{\left(\Delta \mathbf{r} \cdot \mathbf{n}\right)^2}{\Delta r^2}$$

Should be aligned along some direction

• Any formation performance metric can be expressed by symbolically manipulating the LP series

- Any formation performance metric can be expressed by symbolically manipulating the LP series
- Just four variables are to be optimized no matter the LP series of what order of approximation we exploit

- Any formation performance metric can be expressed by symbolically manipulating the LP series
- Just four variables are to be optimized no matter the LP series of what order of approximation we exploit
- No numerical integration is required for calculating the objective function. It is very important in the highly unstable dynamical environment.

- Any formation performance metric can be expressed by symbolically manipulating the LP series
- Just four variables are to be optimized no matter the LP series of what order of approximation we exploit
- No numerical integration is required for calculating the objective function. It is very important in the highly unstable dynamical environment.
- An initial guess can often be obtained analytically from the linear approximation. The hierarchy of models with increasing approximation order can be leveraged.

Nelder-Mead simplex algorithm

One of the most popular derivative-free optimization methods

Nelder-Mead simplex algorithm

- One of the most popular derivative-free optimization methods
- The objective function is evaluated at the vertices of a simplex in the search space
- Based on the objective function values, this simplex is modified (reflected, expanded, contracted, shrunk)

Nelder-Mead simplex algorithm

- One of the most popular derivative-free optimization methods
- The objective function is evaluated at the vertices of a simplex in the search space
- Based on the objective function values, this simplex is modified (reflected, expanded, contracted, shrunk)
- Implemented in Matlab (fminsearch)
- Works exceptionally well in a low-dimension search space

• Constraints can be incorporated in the objective function as penalty terms. For example, if we target some interval for the relative distance $c(1 - \varepsilon_1) \leq \Delta r \leq c(1 + \varepsilon_2)$ for some time period, we can define the following function:

• Constraints can be incorporated in the objective function as penalty terms. For example, if we target some interval for the relative distance $c(1 - \varepsilon_1) \leq \Delta r \leq c(1 + \varepsilon_2)$ for some time period, we can define the following function:

$$J = \left(\left\langle \Delta r \right\rangle - c \right)^2$$

• Constraints can be incorporated in the objective function as penalty terms. For example, if we target some interval for the relative distance $c(1 - \varepsilon_1) \leq \Delta r \leq c(1 + \varepsilon_2)$ for some time period, we can define the following function:

$$J = \left(\left\langle \Delta r \right\rangle - c\right)^2$$
$$+ k_1 \max\left(0, c\left(1 - \varepsilon_1\right) - m\right) + k_2 \max\left(0, M - c\left(1 + \varepsilon_2\right)\right)$$

• Constraints can be incorporated in the objective function as penalty terms. For example, if we target some interval for the relative distance $c(1 - \varepsilon_1) \leq \Delta r \leq c(1 + \varepsilon_2)$ for some time period, we can define the following function:

$$J = \left(\left\langle \Delta r \right\rangle - c \right)^2$$

$$+ k_1 \max(0, c(1 - \varepsilon_1) - m) + k_2 \max(0, M - c(1 + \varepsilon_2))$$

Here the angle brackets denote the average value over a time period of interest, k_1 and k_2 are some large penalty weight coefficients, $m = \min \sqrt{\Delta r^2}$, $M = \max \sqrt{\Delta r^2}$

Performance metric #1: (squared) relative distance

 $\Delta r^2 = \Delta x^2 + \Delta y^2 + \Delta z^2$

$$\frac{A_x^2\left(\kappa^2+1\right)+A_z^2}{2}$$

15/31

Beating with the beat frequency $\,\delta=\omega_p-\omega_v$

No solution for long time periods exist!

Minimum variation in the squared relative distance is more than 80%

No solution for long time periods exist!

Minimum variation in the squared relative distance is more than 80%

Ut is unacceptable for most of real applications

No solution for long time periods exist!

Minimum variation in the squared relative distance is more than 80%

It is unacceptable for most of real applications

The performance can be good for a shorter interval if phasing is correct

Analytically optimized solution

17/31

Analytically optimized solution

Performance: from the analytical guess to ephemeris trajectories

Performance optimized over the extended time interval (with the same initial guess)

Performance metric #2: projected relative distance

$$\Delta r^2 - \left(\Delta \mathbf{r} \cdot \mathbf{n}\right)^2$$

Generally more difficult to analyze, but in some cases it is as simple as for the previous performance metric.

Performance metric #2: projected relative distance

$$\Delta r^2 - (\Delta \mathbf{r} \cdot \mathbf{n})^2$$
 $\mathbf{n} = [1, 0, 0]$
sun vector

Performance: from the analytical guess to ephemeris trajectories

Relative trajectory projected onto the plane orthogonal to the sun vector

The same initial guess works well for the 20% longer time interval

Equilateral triangle formation design

- In the case of an equilateral triangle formation, three intersatellite distances are to be maintained equal to a specified value
- From the linear approximation analysis: the relative amplitudes in each pair should be equal to

$$A_x = \frac{c}{\kappa}, \quad A_z = c$$

the corresponding phases should be shifted by $\pm \pi/3$

Analytical solution obtained in the linear approximation

Analytical solution substituted in the 15th-order approximation

Solution numerically optimized based on the analytical initial guess

Numerically optimized solution adapted to the ephemeris model

Analytical initial guess is often critical!

Number of iterations for the Nelder-Mead algorithm to converge

	Smart initial guess	Zero initial guess
2 s/c, metric #1, predicted time	15	67
2 s/c, metric #1, extended time	23	74
2 s/c, metric #2, predicted time	5	39
3 s/c, metric #1, predicted time	92	Not converged

 Lindstedt-Poincaré series allows parameterizing the relative motion by a quite small number of variables for any order of approximation

- Lindstedt-Poincaré series allows parameterizing the relative motion by a quite small number of variables for any order of approximation
- Formation performance metrics are calculated w/o numerical integration of highly unstable trajectories

- Lindstedt-Poincaré series allows parameterizing the relative motion by a quite small number of variables for any order of approximation
- Formation performance metrics are calculated w/o numerical integration of highly unstable trajectories
- Nelder-Mead simplex algorithm is appropriate, and it usually converges

- Lindstedt-Poincaré series allows parameterizing the relative motion by a quite small number of variables for any order of approximation
- Formation performance metrics are calculated w/o numerical integration of highly unstable trajectories
- Nelder-Mead simplex algorithm is appropriate, and it usually converges
- Analytical initial guess from the linear approximation is very helpful to ensure fast and regular convergence

Acknowledgments

Russian Science Foundation (RSF) Grant 17-71-10242

Thank you for your attention

Planar frequency behavior

Vertical frequency behavior

Frequency difference behavior

$$\Delta r^{2} = \frac{A_{x}^{2} \left(\kappa^{2} + 1\right) + A_{z}^{2}}{2} + \frac{A_{z}^{2}}{2} \cos\left(2\omega_{v}t + 2\theta_{2}\right) - \frac{A_{x}^{2} \left(\kappa^{2} - 1\right)}{2} \cos\left(2\omega_{p}t + 2\theta_{1}\right)$$

The upper envelope of this beating curve is as follows:

$$\sqrt{\frac{A_x^4 \left(\kappa^2 - 1\right)^2}{4} + \frac{A_z^4}{4} - \frac{A_x^2 A_z^2 \left(\kappa^2 - 1\right)}{2} \cos\left(2\delta t - 2\Delta\theta\right)}$$

We need to maximize the distance between the adjacent roots of the equation

$$\sqrt{\frac{A_x^4 (\kappa^2 - 1)^2}{4} + \frac{A_z^4}{4}} - \frac{A_x^2 A_z^2 (\kappa^2 - 1)}{2} \cos \left(2\delta t - 2\Delta\theta\right) = c^2 \varepsilon$$
s.t.

$$c^{2} = \frac{A_{x}^{2} \left(\kappa^{2} + 1\right) + A_{z}^{2}}{2}$$

Rearranging yields

$$\cos\left(2\delta t - 2\Delta\theta\right) = \frac{c^4\varepsilon^2 - a^2 - b^2}{2ab}$$

s.t.
$$a-b/\chi=c^2$$

where

$$a = \frac{A_z^2}{2} \quad b = -\frac{A_x^2 \left(\kappa^2 - 1\right)}{2} \quad \chi = \frac{\kappa^2 - 1}{\kappa^2 + 1} \approx 0.82$$

Obviously, the right-hand side should be minimized.
Equivalently,

$$\eta\left(\xi\right) = \frac{\left(1-\xi\right)^2 + \chi^2 \xi^2 - \varepsilon^2}{2\chi\xi\left(1-\xi\right)} \longrightarrow \min$$

where

$$\xi = 1 - \frac{a}{c^2}, \ \xi \in [0, 1]$$

The minimum is attained at the point

$$\xi_{\min} = \frac{1 - \varepsilon^2 - \sqrt{(1 - \varepsilon^2)(\chi^2 - \varepsilon^2)}}{1 - \chi^2}$$

which weakly depends on ${m arepsilon}$

$$\xi_{\min} \approx \frac{1}{1+\chi} \approx 0.55$$

As a result, we have

$$A_x = \frac{c}{\kappa}, \quad A_z = \frac{c}{\kappa}\sqrt{\kappa^2 - 1}$$
$$|\Delta\theta| = \arcsin\left(\frac{\varepsilon\kappa^2}{\kappa^2 - 1}\right)$$

and the natural flight duration estimate

$$T = \frac{2\left|\Delta\theta\right|}{\delta}$$