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Dynamics place in mission design 
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Dynamical aspects in a mission 

Why bother 
about AOCS 
among other 
subsystems? 

AOCS easily 
consume third of 
space and energy 
budget available 

• Dynamical problems (both 
angular and orbital) seem 
negligible in overall 
mission structure.  

• Maybe buy popular 
solutions? 

• Maybe spend more effort 
on AOCS? 

• Free some mission 
resources for  
improvement of other 
subsystems and payload. 
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Swift comparison 

Buy AOCS 

• Fast 

• Reliable 

• Expensive 

Develop architecture, 
build/buy components 

• Slow 

• Initially prone to faults 

• Initially expensive 
(education) 

• Optimized for a mission 

• Long-term investment in 
skilled personnel and 
overall group expertise 

• Interesting! 
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Analytical vs. numerical 
• Numerical analysis 

+ Comprehensive satellite and environment models 

+ Exceptional accuracy 

± Time consuming, rewarded with a long lasting tool 

– Unique result 

• Analytical solution 

+ General result, satellite behavior prediction 

± Time consuming, rewarded with a tool and publications 

– Simplified and restricted satellite and environmental models 

– Bad accuracy 

– Higher qualification necessary 
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Example 1. Mission design speedup 
Analytical analysis benefits 

Example of dynamics analysis that can speed up AOCS 
hardware fitting 

• Detumbling angular velocity with magnetorquers 

• Restriction on detumbling time is imposed (Sun 
acquisition, antenna pointing) 

• Magnetorquers parameters are derived to satisfy this 
restriction 

• Two approaches: 

– Numerical analysis 

– Analytical solution 
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Dynamics simplification steps 

• Convenient equations of motion 

• Osculating variables 

• Simple, but authentic environment models 

• Averaged geomagnetic field 

• Assumptions and analysis method 

• Multiple time scales for detumbling 

• Solution in explicit form 

• Different parameters influence on satellite behavior 
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Convenient equations of motion 

• Common Euler equations: 

 
 

• Osculating variables: 
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Environment models 

• Empirical IGRF 

• Inclined dipole 

 

 

 

• Averaged 
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Assumptions and analysis method 

• Fast initial rotation 

– Multiple time scales method 

– Angular momentum changes slowly 

– Satellite attitude changes rapidly 

• Evolution of angular momentum obtained by 
averaging the equations of motion  
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Solution in explicit form: spherical 
satellite damping 
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Simple parameters adjustment 

Numerical simulation – verification, more accurate 
result after parameters are roughly adjusted 
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Adjustable – magnetorquers 
Given or slightly adjustable: 

satellite inertia, orbit inclination 
and height, initial conditions 

time velocity 

Detumbling time restriction 

? 

Transient motion 
Multiple scales 

method 

Arbitrary motion 
Numerical 

analysis 

Steady-state motion 
Poincare method 



Example 2. Earth monitoring analysis 
Numerical analysis benefits 

• 100 kg, 0.7 m cube, 4.6 m solar panel + SAR 
(JAXA SDS-4 satellite redesigned for a SAR at 620 
km SSO) 

• 550 km circular orbit, 60° inclination 

• SAR/camera is always facing down 

• Satellite with GPS, reaction wheels (Lyapunov 
control), precise attitude determination 

• FOV half angle 30°/ 20° corresponds to SAR 
working up to 650/590 km (covered area differs 
by 2.6 times) 
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Earth monitoring software 

• Satellite dynamics is processed after the simulation 

• Payload has a conical field of view 

• Earth is divided into a grid by a one degree step, 
WGS84 ellipsoid 

• Area of interest is a convex envelope of a set of 
points (mainland coast, Azores, Madeira) 

• Each point inside the envelope has the same 
“importance” weight 

• Critical horizon angle for a “good” data is defined as 
10 degrees (or SAR/camera maximum range may be 
used) 
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Critical horizon angle 
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Portuguese waters coverage 
example 
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Payload closer to the glancing 
situation 
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SAR closer to the glancing situation 
SAR range is limited 
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Attitude convergence example 
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Portuguese waters coverage 
example. Payload facing almost 

down 
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Portuguese waters coverage results 

• 30° FOV, J2 perturbation, facing down, 6 months 

– Minimum coverage per point 2089, maximum coverage 
2756, average 2411, revisit time 4.6 hours 

• 22.5° FOV, J2 perturbation, facing down, 6 months 

– Minimum coverage per point 971, maximum coverage 
1257, average 1105, coverage is about 2.2 times less, 
revisit time 5.3 hours 

• 30° FOV, J2 and GOST atmosphere (no maintenance) 

– Minimum coverage per point 1942, maximum coverage 
2675, average 2360, revisit time 4.54 hours, orbit decay 
41 km 
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Orbital decay 

• Approximate value of the atmospheric drag 
provides the necessary continuous thrust to prevent 
orbital decay 

• Thrust is approximately 21 (best situation), 75 
(average), 130 (worst case – panels always facing 
the flow) millinewtons 

– A bit large, classic is 10-30 mN for 100 kg LEO 

– Russian SPD-100 83 mN, 1.35 kW, up to 9k hours 

• This is very approximate due to different solar 
activity and attitude strategy 

• Decay is rather slow, may be discarded 
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Inclination change 

• Why not use the same engine for the inclination 
change? 

• Constant thrust normal to the orbital plane changes 
inclination by 28° in half a year 

• Coverage characteristics are a lot worse for the 
polar orbit (30° FOV, 90° inclination): 

– Minimum coverage per point 1693, maximum coverage 
2060, average 1879, revisit time 6.95 hours 

• Sun synchronous orbit provides better power 
balance 
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Important questions 
• Satellite launch orbit and its alterations 

– Nominal insertion orbit is essential 

– Freedom in inclinations and altitudes provides some room for 
optimization 

– Upper stage booster availability and capabilities are necessary 

• Flight program 

– Camera facing down above the region of interest 

– Panels facing Sun for a given period during each orbit 

– Minimizing drag at all other times 

– Maneuvering for better Earth monitoring and/or engine test 

– Any other specific payload requirements? 

• SAR field of view and/or range, attitude 

Covilha, Sept 26-28, 2018 
11th International workshop  

"Spaceflight dynamics and control" 
24 



Conclusion 

• AOCS subsystem can reap huge benefits for 
the whole mission 

• Dynamical analysis can (and must) be 
performed fast and in advance, with only basic 
mission layout 

• Have good specialists at hand 
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