10th International Workshop and Advanced School "Spaceflight Dynamics and Control"

March 16-18, 2016, University of Beira Interior, Covilhã, Portugal

Overview of control approaches and algorithms for distributed space systems

Danil Ivanov, Sergey Shestakov

Keldysh Institute for Applied Mathematics, Moscow, Russia

Content

- Introduction
- Distributed space systems control approaches
- Fuelless satellite formation flying control and algorithms
- Conclusion

What is distributed system?

- A space system consisting of multiple space elements that can communicate, coordinate and interact in order to achieve a common goal.
 - Concurrency of elements
 - Tolerance for failure of individual systems
 - Scalability and flexibility in design and deployment of system

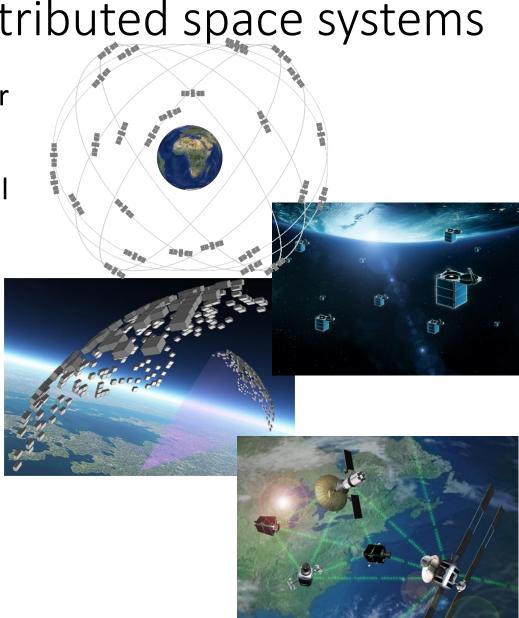
Definitions for distributed space systems

 Constellation: similar trajectories without control for relative position; coordination from a control center.

 Formation: closed-loop control on-board in order to preserve topology in the group and to control relative distances

 Cluster: distributed heterogeneous system of satellites to achieve in cooperation a joint objective.

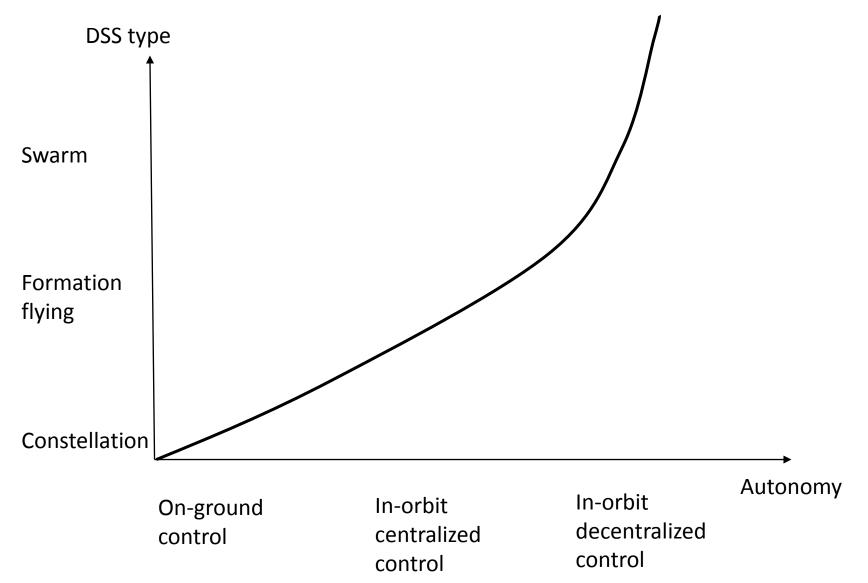
 Swarm: a group of similar (homogenous) vehicles cooperating to achieve a joint goal without fixed positions; Each member determines and controls relative positions in relations to others.



Main parameters of distributed SS

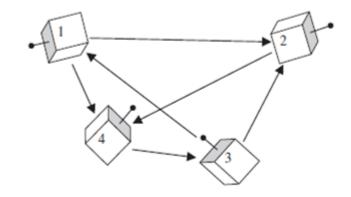
- A number of satellites
- A degree of autonomy
- Communication links between satellites
- Relative trajectory types

Autonomy in relative control



Communication

- The communication is information exchange or just measuring of relative pose
- There could be directed or mutual communication
- If det(A)≠0, the formation is decentralized
- If det(A)=0, the formation is of leader-follower type, communication is cycled



$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Natural distributed systems

School of fishes

Swarm of bees

Flock of birds

Herd of animals

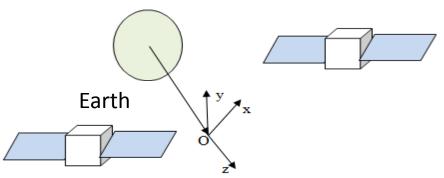
Satellite formation flying features

- A small number of satellites
- Centralized control:
 - Mother-daughter relationship: mother knows the best for her children and command them
 - Leader-follower relationship: leader moves everywhere it wants, the followers pursue it
- Communication with all the group members
- Motion along predefined trajectories

Equations of relative motion: linear model, near circular orbit

On the first stage of control algorithms investigation Clohessy-Wiltshire model is used:

$$\begin{cases} \ddot{x} + 2\omega \dot{z} = 0\\ \ddot{y} + \omega^2 y = 0\\ \ddot{z} - 2\omega \dot{x} - 3\omega^2 z = 0 \end{cases}$$



Solution is:

$$\begin{cases} x = -3C_1\omega t + 2C_2\cos\omega t - 2C_3\sin\omega t + C_4 \\ y = C_5\sin\omega t + C_6\cos\omega t \\ z = 2C_1 + C_2\sin\omega t + C_3\cos\omega t \end{cases}$$

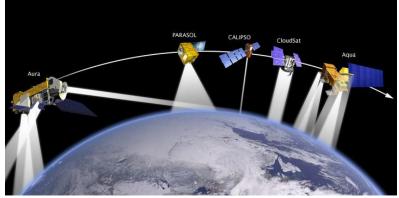
Scheme of motion

$$-3C_1\omega t$$
 - Relative drift

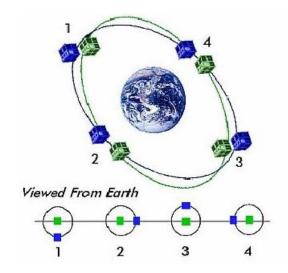
Formation flying specific relative trajectories

- Train formation
- Relative circular orbit
- Projected circular orbit
- Docking trajectories

KIKU-7 mission



A-train formation flying



CanSat4&5 mission

Satellite swarm features

- A large number of satellites
- Decentralized control
- Communication with limited number of group member
- Motion along occasional trajectories:
 - Random but bounded relative trajectories

Swarm control objectives

- Collision avoidance
 - When the relative distance d_{ij} is less then fixed threshold R_{av} the collision maneuver is performed
- Alignment
 - The satellites tent to align to its neighbors $R_{av} < d_{ij} < R_{al}$
- Attraction
 - Each satellite try to be closer to far members $R_{al} < d_{ij} < R_{att}$

Artificial potential control approach

Collision avoidance

$$U_{ij}^{rep} = -C_{rep}e^{-rac{d_{ij}}{R_{rep}}}$$

Alignment

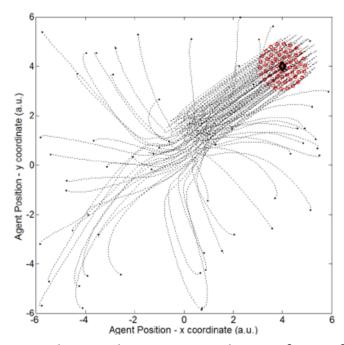
$$\mathbf{d}_{i} = \sum_{j,j
eq i} C_{al} \left(\mathbf{v}_{ij} \cdot \mathbf{r}_{ij} \right) e^{-rac{d_{ij}}{R_{al}}} \mathbf{r}_{ij}$$

Attraction

$$U_{ij}^{at} = -C_{at}e^{-\frac{d_{ij}}{R_{at}}}$$

Equations of motion

$$m_i \mathbf{r}_i = -\nabla_i U(\mathbf{r}_i) + \mathbf{d}_i$$



M. Sabatini, G. B. Palmerini and P. Gasbarri. Control Laws for Defective Swarming Systems// Advances in the Astronautical Sciences, Second IAA DyCoss'2014, V. 153. p. 132-153.

Linear quadratic regulator application

Collision avoidance

$$\mathbf{u}^{rep} = \sum_{j,j \neq i} \mathbf{u}_{ij}^{rep}, when \ d_{ij} < R_{rep}$$

• Alignment

$$\mathbf{u}_{i}^{al} = \sum_{i, j \neq i} \mathbf{u}_{ij}^{al}$$
, when $R_{al} < d_{ij} < R_{at}$,

$$\mathbf{x}_{i}^{d} = \left[-\frac{\dot{y}}{2\omega_{0}} \ 0 \ 0 \ 0 \ 0 \ 0 \right]$$

Attraction

$$\mathbf{u}^{rep} = \sum_{i, j \neq i} \mathbf{u}_{ij}^{rep}, when \ d_{ij} < R_{rep}$$

Equations of motion

$$\dot{\mathbf{x}}_i = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i,$$

Feedback control is

$$\mathbf{u}_{i} = -\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{P} \mathbf{e}_{i},$$

where
$$\mathbf{e}_i = \mathbf{x}_i - \mathbf{x}_i^d$$
,

matrix Pis the solution

of Riccati equation

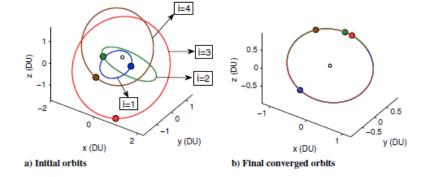
$$\mathbf{Q} - \mathbf{P} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P} + \mathbf{P} \mathbf{A} + \mathbf{A}^T \mathbf{P} = 0.$$

M. Sabatini, G. B. Palmerini. Collective control of spacecraft swarms for space exploration// Celest Mech Dyn Astr (2009) 105:229–244

Swarm consensus control

- Convergence to a common orbital plane
 - The error function:

$$\xi_i = \sum_{i=1}^n a_{ij} (1 - \mathbf{n}_i^T \mathbf{n}_j)$$



Thakur D., Hernandez S., Akella M.R. Spacecraft swarm finite-thrust cooperative control for common orbit convergence // J. Guid. Control. Dyn. 2015. Vol. 38, № 3. P. 478-487.

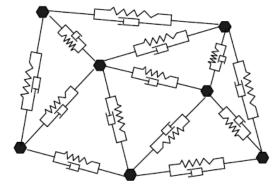
- Attitude synchronization
 - Non-linear control law:

Non-linear control law:
$$\tau_i = \boldsymbol{\omega}_i^{\times} \boldsymbol{J}_i \boldsymbol{\omega}_i + \boldsymbol{J}_i \left(-\boldsymbol{Q}_i^{-1} \dot{\boldsymbol{Q}}_i \boldsymbol{\omega}_i - \boldsymbol{Q}_i^{-1} k_1 \right) \times \left\{ (\boldsymbol{Q}_i \boldsymbol{\omega}_i)^p + k_2^p \left[\sum_{j \in N_i} a_{ij} (\boldsymbol{q}_i - \boldsymbol{q}_j) + b_i (\boldsymbol{q}_i - \boldsymbol{q}_d) \right] \right\}^{2/p-1}$$

Zhou J., Hu Q., Friswell M.I. Decentralized Finite Time Attitude Synchronization Control of Satellite Formation Flying // J. Guid. Control. Dyn. 2013. Vol. 36, № 1. P. 185–195.

Virtual structure control approach

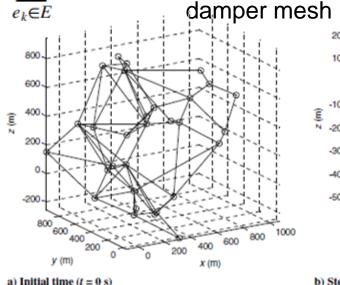
- Imitation the satellite system by a solid structure model
- Control law

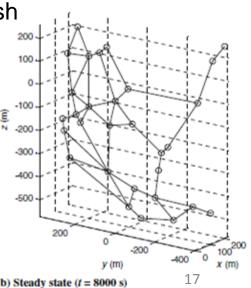


$$\boldsymbol{u}_i = -\sum_{e_k \in E} k_s d_{ik} (\boldsymbol{p}_k - \boldsymbol{p}_k^d) - \sum_{e_k \in E} k_d d_{ik} \dot{\boldsymbol{p}}_k$$

Point masses connected by a spring-

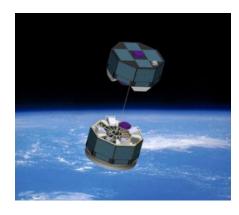
Chen Q. et al. Virtual Spring-Damper Mesh-Based Formation Control for Spacecraft Swarms in Potential Fields // J. Guid. Control. Dyn. 2015. Vol. 38, № 3. P. 539– 546.





Fuelless FF Control Concepts

- Tethered systems
- Aerodynamic drag
- Electro-magnetic interaction
- Solar pressure
- Momentum exchange



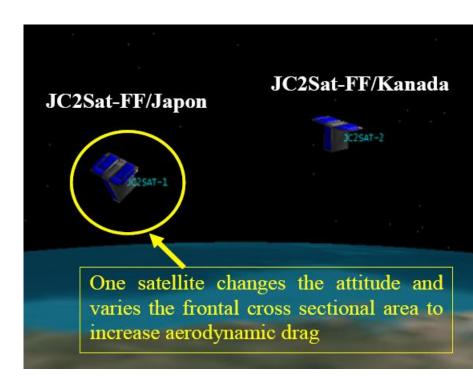
Aerodynamic drug based control

o Features:

- Low Earth Orbit
- Satellites with variable cross section area

O Shortcomings:

- Short lifetime
- Reaction wheel saturation during attitude control



JC2Sat Mission

LQR-based control algorithm

Aerodynamic drug force

$$\mathbf{f}_{i} = -\frac{1}{m} \rho V^{2} S\{(1-\varepsilon)(\mathbf{e}_{V}, \mathbf{n}_{i})\mathbf{e}_{V} + 2\varepsilon(\mathbf{e}_{V}, \mathbf{n}_{i})^{2} \mathbf{n}_{i} + (1-\varepsilon) \frac{\upsilon}{V}(\mathbf{e}_{V}, \mathbf{n}_{i})\mathbf{n}_{i}\}^{*},$$

 $\mathbf{n} = (\cos \alpha \cos \beta; \sin \beta; \sin \alpha \cos \beta).$

Linear-quadratic regulator

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u,$$

Minimising cost function

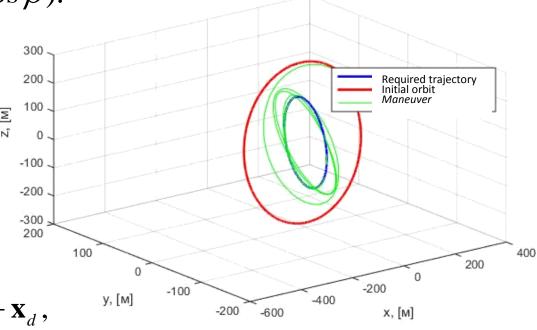
$$J = \int_{\tau}^{\infty} (\mathbf{e}^T \mathbf{Q} \mathbf{e} + \mathbf{u}^T \mathbf{R} \mathbf{u}) dt,$$

Feedback control is

$$\mathbf{u} = -\mathbf{R}^{-1}\mathbf{b}^T\mathbf{Pe}$$
, where $\mathbf{e} = \mathbf{x} - \mathbf{x}_d$,

matrix P is the solution of Riccati equation

$$\mathbf{Q} - \mathbf{P} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P} + \mathbf{P} \mathbf{A} + \mathbf{A}^T \mathbf{P} = 0.$$



Relative trajectories during the maneuver

Electro-magnetic interaction based control

Magnetic interaction

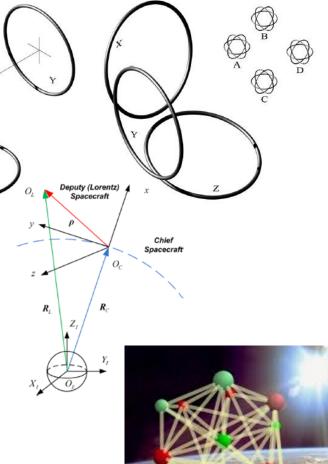
Youngquist R.C., Nurge M.A., Starr S.O. Alternating magnetic field forces for satellite formation flying // Acta Astronaut. Elsevier, 2013. Vol. 84. P. 197–205.

Lorenz force of charged satellite

Peck M.A. et al. Spacecrat Formation Flying Using Lorentz Forces // J. Br. Interplanet. Soc. 2007. Vol. 60. P. 263–267.

Coulomb force interaction

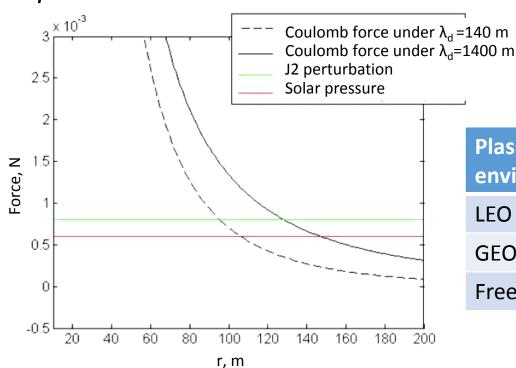
Schaub H. et al. Challenges and Prospects of Coulomb Spacecraft Formation Control of the Astronautical Sciences // J. Astronaut. Sci. 2004. Vol. 52. P. 169–193.

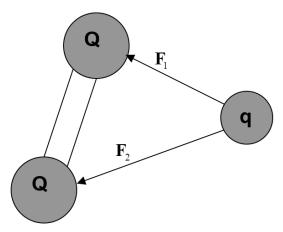


Coulomb force based control algorithm

o Features:

- The charging device is required
- Small relative distances
- Charges are eliminating by plasma





$$\mathbf{f}_{12} = k_c \, \frac{\mathbf{r}_{12}}{r_{12}^3} q_1 q_2 e^{-\frac{r_{12}}{\lambda_d}}$$

Plasma environment	λ _{d min,} m	λ _{d max,} m
LEO	0.02	0.4
GEO	142	1496
Free space	7.4	24

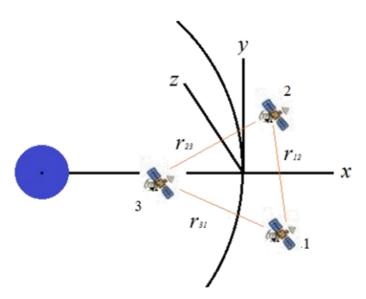
Equations of motion for three satellites

In the orbital reference frame

$$\ddot{\mathbf{r}}_{1} + 2\boldsymbol{\omega} \times \dot{\mathbf{r}}_{1} + 3\boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}_{1} = \frac{1}{m_{1}} \frac{\mathbf{r}_{12}}{r_{12}} \cdot \frac{\alpha_{3}}{r_{12}^{2}} - \frac{1}{m_{1}} \frac{\mathbf{r}_{31}}{r_{31}} \cdot \frac{\alpha_{2}}{r_{31}^{2}}$$

$$\ddot{\mathbf{r}}_{2} + 2\boldsymbol{\omega} \times \dot{\mathbf{r}}_{2} + 3\boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}_{2} = -\frac{1}{m_{2}} \frac{\mathbf{r}_{12}}{r_{12}} \cdot \frac{\alpha_{3}}{r_{12}^{2}} + \frac{1}{m_{2}} \frac{\mathbf{r}_{23}}{r_{23}} \cdot \frac{\alpha_{1}}{r_{23}^{2}}$$

$$\ddot{\mathbf{r}}_{3} + 2\boldsymbol{\omega} \times \dot{\mathbf{r}}_{3} + 3\boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}_{3} = \frac{1}{m_{3}} \frac{\mathbf{r}_{31}}{r_{31}} \cdot \frac{\alpha_{2}}{r_{31}^{2}} - \frac{1}{m_{3}} \frac{\mathbf{r}_{23}}{r_{23}} \cdot \frac{\alpha_{1}}{r_{23}^{2}}$$



where

$$\alpha_i(\mathbf{r}_{jk},\dot{\mathbf{r}}_{jk}) = k_c q_j(\mathbf{r}_{jk},\dot{\mathbf{r}}_{jk}) q_k(\mathbf{r}_{jk},\dot{\mathbf{r}}_{jk}),$$

Sliding-mode control

Lyapunov-candidate function

$$V = \frac{1}{2}\dot{r}_{12}^2 + \frac{1}{2}\dot{r}_{23}^2 + \frac{1}{2}\dot{r}_{31}^2 + \frac{1}{2}k_1(r_{12} - a_1)^2 + \frac{1}{2}k_2(r_{23} - a_2)^2 + \frac{1}{2}k_3(r_{31} - a_3)^2,$$

Its derivative

$$\dot{V} = \dot{r}_{12}(\ddot{r}_{12} + k_1(r_{12} - a_1)) + \dot{r}_{23}(\ddot{r}_{23} + k_2(r_{23} - a_2)) + \dot{r}_{31}(\ddot{r}_{31} + k_3(r_{31} - a_3)).$$

For negative sign should be:

$$\ddot{r}_{12}(\alpha_3) + g_1\dot{r}_{12} + k_1(r_{12} - a_1) = 0,$$

$$\ddot{r}_{23}(\alpha_1) + g_2\dot{r}_{23} + k_2(r_{23} - a_2) = 0,$$

$$\ddot{r}_{31}(\alpha_2) + g_3\dot{r}_{31} + k_3(r_{31} - a_3) = 0.$$

Control algorithm

The solution of equations is:

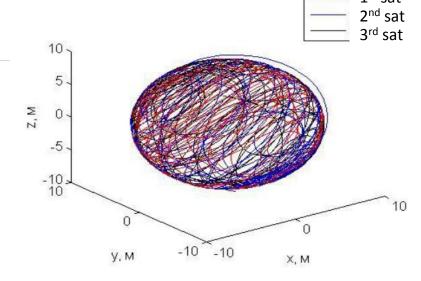
$$\boldsymbol{\alpha} = \boldsymbol{A}^{-1} \cdot \boldsymbol{b},$$

- It could not be always performed by the charges.
- So, trying to minimize the function

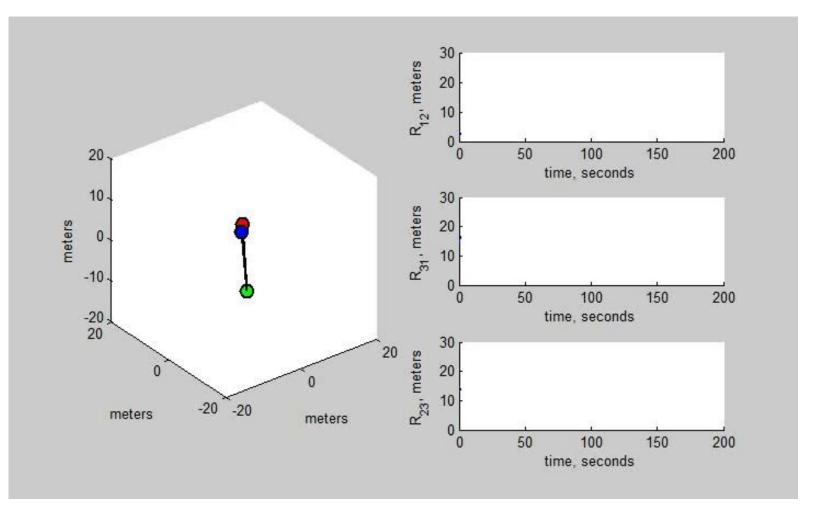
$$\Phi = (q_1q_2 - \alpha_3)^2 + (q_2q_3 - \alpha_1)^2 + (q_1q_3 - \alpha_2)^2 \rightarrow \min$$

Get four solutions:

$$\begin{pmatrix} 0 \\ \pm \sqrt{-\frac{\alpha_1 \alpha_2}{\alpha_3}} \\ \mp \sqrt{-\frac{\alpha_3 \alpha_1}{\alpha_2}} \end{pmatrix}, \begin{pmatrix} \pm \sqrt{-\frac{\alpha_1 \alpha_2}{\alpha_3}} \\ 0 \\ \mp \sqrt{-\frac{\alpha_3 \alpha_2}{\alpha_1}} \end{pmatrix}, \begin{pmatrix} \pm \sqrt{\frac{\alpha_3 \alpha_2}{\alpha_2}} \\ \mp \sqrt{-\frac{\alpha_3 \alpha_2}{\alpha_1}} \\ 0 \end{pmatrix}, \begin{pmatrix} \pm \sqrt{\frac{\alpha_3 \alpha_2}{\alpha_1}} \\ \pm \sqrt{\frac{\alpha_3 \alpha_1}{\alpha_2}} \\ \pm \sqrt{\frac{\alpha_1 \alpha_2}{\alpha_2}} \\ \pm \sqrt{\frac{\alpha_1 \alpha_2}{\alpha_3}} \end{pmatrix}$$



Algorithm simulation



Solar radiation pressure based control

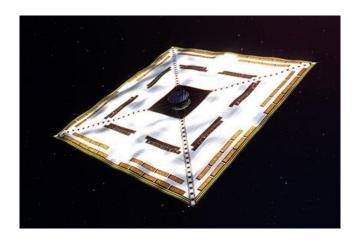
Solar sail with fixed orientation

Smirnov G.V., Ovchinnikov M.Y., Guerman A.D. Use of solar radiation pressure to maintain a spatial satellite formation // Acta Astronaut. 2007. Vol. 61, № 7-8. P. 724–728.



Solar sail with variable reflection

Mori O. et al. First Solar Power Sail Demonstration by IKAROS // Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Japan. 2010. Vol. 8, № ists27. P. To_4_25 − To 4 31.

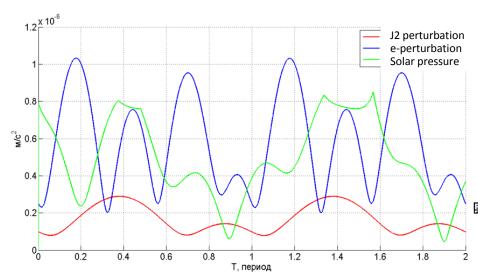


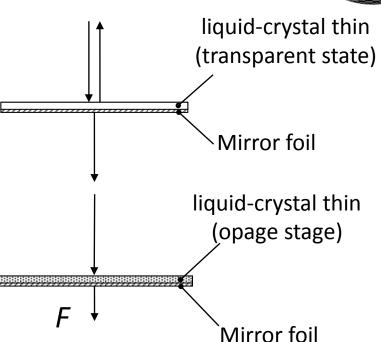
Solar radiation pressure based control

We consider:

- Spherical satellites
- Variable reflection on "pixel" surface

Nearcircular orbits





PD-controller-based control algorithm

Motion equations:

$$\label{eq:delta_phi} \begin{cases} \dot{\boldsymbol{\rho}} = \mathbf{v}, \\ \dot{\mathbf{v}} = \mathbf{f}(\boldsymbol{\rho}, \mathbf{v}) + \mathbf{u}. \end{cases}$$

• PD-regulator:

$$\mathbf{u} = -k_{\rho}(\mathbf{\rho} - \mathbf{\rho}_{ref}) - k_{v}(\mathbf{v} - \mathbf{v}_{ref}) + \dot{\mathbf{v}}_{ref} - \mathbf{f}$$

where

$$k_{\rho}$$
, $k_{\nu} = \text{const} > 0$, choosen that $k_{\nu} = \frac{k_{\rho}^2}{4}$;

Solar pressure model

• The solar pressure force:

$$\mathbf{F} = -P_c \left(\int_{S^+} (1-k)(\mathbf{s}, \mathbf{n}) \mathbf{s} dS + 2 \int_{S^+} k \mathbf{n}(\mathbf{s}, \mathbf{n})^2 dS \right)$$

The reflection function:

$$k(\varphi, \theta) = g(\varphi) \cdot h(\theta),$$

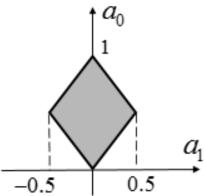
where

$$g(\varphi) = a_1 \cos(\varphi + \alpha) + a_0, \ h(\theta) = \frac{1}{2} + \frac{1}{2} \sin 4\theta.$$

 a_0, a_1, α – Variable control parameters

Restrictions are: $0 \le k \le 1$.

$$0 < (a_1 \cos(\varphi + \alpha) + a_0) \left(\frac{1}{2} + \frac{1}{2} \sin 4\theta\right) \le 1$$
$$0 \le a_1 \cos(\varphi + \alpha) + a_0 \le 1$$



Numerical example

$$F_1 = -\frac{\pi^2}{32} R_d^2 P_c a_1 \cos \alpha,$$

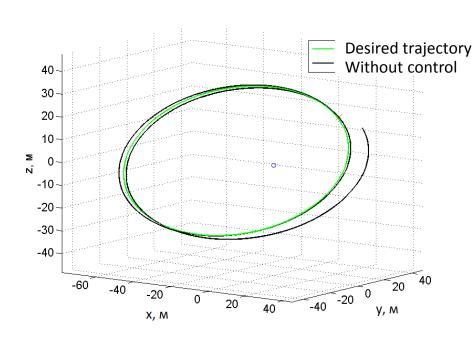
$$F_2 = \frac{\pi^2}{32} R_d^2 P_c a_1 \sin \alpha, \qquad \Longrightarrow$$

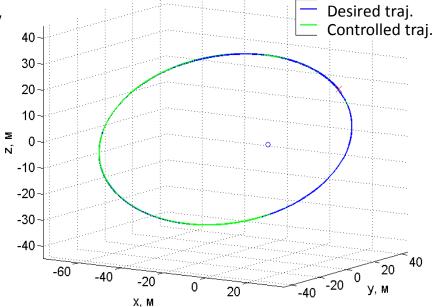
$$F_3 = -\frac{P_c \pi^2 R_d^2}{4} a_0 + P_c \pi (R_p^2 - R_d^2).$$

$$\alpha = \arctan\left(-\frac{F_2}{F_1}\right),\,$$

$$a_1 = -\frac{32}{\pi^2 P_c R_d^2} \cdot \frac{F_1}{\cos \alpha},$$

$$a_0 = -\frac{4}{\pi^2 P_c R_d^2} F_3 + \frac{4}{\pi R_d^2} \left(R_p^2 - R_d^2 \right).$$

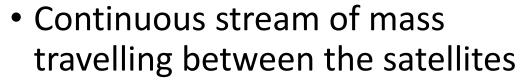




The momentum exchange-based control

The momentum from lasers for repulsive force

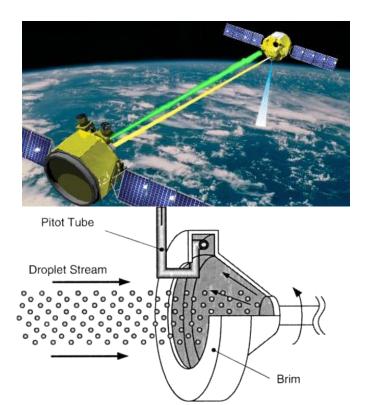
Y. K. Bae. A contamination-free ultrahigh precision formation flying method for micro-, nano-, and pico-satellites with nanometer accuracy. In Space Technology and Applications International Forum-Staif 2006, volume 813, pages 1213–1223, 2006.



S. G. Tragesser. Static formations using momentum exchange between satellites. Journal of guidance, control, and dynamics, 32(4):1277 – 1286, 2009.

Liquid droplet streams exchange

T. Joslyn and A. Ketsdever. Constant momentum exchange between microspacecraft using liquid droplet thrusters. In 46th joint Propulsion Conference, volume 6966, pages 25–28, 2010.



Single mass exchange control concept

- At command the single mass separates from the satellite
- The separated mass moves to the other satellite and impacts it absolutely inelastically
- After the whole mass transfer the resulting relative trajectory changes in adjustable way

the thrower before exchange
the separable mass
the thrower during exchange
the thrower after exchange

The Problem Formulation

Boundary problem:

What is the initial relative velocity of the mass required to hit the thrower?

Initial conditions:

$$x_0 = x(t_0), y_0 = y(t_0), z_0 = z(t_0),$$

The final position:

$$x_1 = x(t_1) = 0$$
, $y_1 = y(t_1) = 0$, $z_1 = z(t_1) = 0$.

Hill - Clohessy - Wiltshire equations:

$$\ddot{x} + 2\omega \dot{z} = 0,$$

$$\ddot{y} + \omega^2 y = 0,$$

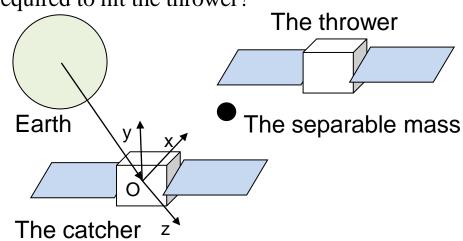
$$\ddot{z} - 2\omega \dot{x} - 3\omega^2 z = 0$$

The exact solution:

$$x = C_4 - 3C_1\omega t + 2C_2\cos\omega t - 2C_3\sin\omega t,$$

$$y = C_5\sin\omega t + C_6\cos\omega t,$$

$$z = 2C_1 + C_2\sin\omega t + C_3\cos\omega t$$

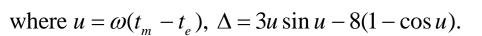


$$\begin{split} C_1 &= 2z(t_0) + \frac{\dot{x}(t_0)}{\omega}, C_2 = \frac{\dot{z}(t_0)}{\omega}, \\ C_3 &= -3z(t_0) - \frac{2\dot{x}(t_0)}{\omega}, C_4 = x(t_0) - \frac{2\dot{z}(t_0)}{\omega}, \\ C_5 &= \frac{\dot{y}(t_0)}{\omega}, C_6 = y(t_0). \end{split}$$

The Analytical Problem Solution

Throwing mass relative velocity:

$$\begin{split} \delta \dot{x} &= -\dot{x}_0 - 2z_0 \omega + \frac{1}{\Delta} [x_0 \omega \sin u + 2z_0 \omega (\cos u - 1)], \\ \delta \dot{y} &= -\dot{y}_0 - y_0 \omega \frac{\cos u}{\sin u}, \\ \delta \dot{z} &= -\dot{z}_0 - \frac{1}{\Delta} [2x_0 \omega (1 - \cos u) + z_0 \omega (3u \cos u - 4 \sin u)], \end{split}$$



The resulting thrower satellite velocity after mass throwing

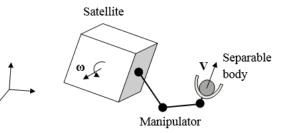
$$\mathbf{v}_{t} = \mathbf{v}_{t,0} - \frac{m}{M} \, \delta \, \mathbf{v}.$$

The resulting catcher satellite velocity after mass catching

$$\mathbf{v}_{c}(t_{m}) = \frac{m}{M+m} \mathbf{v}_{s}(t_{m}).$$

For instance, the final relative trajectory \tilde{C}_1 constant:

$$\tilde{C}_{1} = \left(2z_{0} + \frac{\dot{x}_{0}}{\omega}\right) + \frac{k(k+2)}{(k+1)^{2}} \cdot \frac{x_{0}\cos s - 2z_{0}\sin s}{8\sin s - 6s^{3}\cos s}.$$



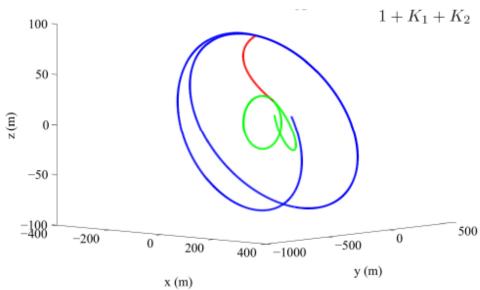
Swarm construction objective: eliminate the relative drift

- Consider three satellites with relative drifts
- The mass exchange aims to set the drifts of first two satellites (C_c and C_t) equal to the third one C_r
- It is possible if the inequality holds (Kc, Kt mass ratios)

$$A - B \le C_r \le A + B$$

$$A = \frac{C_c(K_c - 3) + C_t(K_t + 1)}{1 + K_c + K_t}$$

$$B = \frac{2}{1 + K_c + K_t} \sqrt{(2C_c - z_{c,0})^2 + \frac{\dot{z}_{c,0}^2}{\omega^2}}$$



Conclusion

- The swarm of the satellites is a new paradigm in space systems
- The fuelless control approaches are fitting small satellite restrictions, they are smart but challenging
- We should allow for the distributed system to be autonomous and self-organizing, but we must be

watchful