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What is distributed system? 

oA space system consisting of multiple space 
elements that can communicate, coordinate and 
interact in order to achieve a common goal.  

 – Concurrency of elements  

 – Tolerance for failure of individual systems  

 – Scalability and flexibility in design and 
 deployment of system 
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Definitions for distributed space systems 
 • Constellation: similar 

trajectories without control for 
relative position; coordination 
from a control center. 

• Formation: closed-loop control 
on-board in order to preserve 
topology in the group and to 
control relative distances 

• Cluster: distributed 
heterogeneous system of 
satellites to achieve in 
cooperation a joint objective. 

• Swarm: a group of similar 
(homogenous) vehicles 
cooperating to achieve a joint 
goal without fixed positions; 
Each member determines and 
controls relative positions in 
relations to others. 
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Main parameters of distributed SS 

• A number of satellites 

• A degree of autonomy 

• Communication links between satellites 

• Relative trajectory types 
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Autonomy in relative control 
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Communication 

• The communication is 
information exchange or just 
measuring of relative pose 

• There could be directed or 
mutual communication 

• If det(A)≠0, the formation is 
decentralized 

• If det(A)=0, the formation is 
of leader-follower type, 
communication is cycled 
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Natural distributed systems 
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Satellite formation flying features 

• A small number of satellites 

• Centralized control: 
o Mother-daughter relationship: mother knows the best for her 

children and command them 

o Leader-follower relationship: leader moves everywhere it wants, 
the followers pursue it 

• Communication with all the group members 

• Motion along predefined trajectories 
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On the first stage of control algorithms investigation Clohessy-
Wiltshire model is used: 

Solution is : 

Equations of relative motion:  
linear model, near circular orbit 
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Formation flying specific relative 
trajectories 
• Train formation 

• Relative circular orbit 

• Projected circular orbit 

• Docking trajectories 
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Satellite swarm features 

• A large number of satellites 

• Decentralized control 

• Communication with limited number of group 
member 

• Motion along occasional trajectories: 
• Random but bounded relative trajectories 
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Swarm control objectives 

• Collision avoidance 
• When the relative distance dij is less then fixed threshold 

Rav the collision maneuver is performed  

• Alignment 
• The satellites tent to align to its neighbors Rav <dij< Ral 

• Attraction 
• Each satellite try to be closer to far members Ral <dij< Ratt 

13 



Artificial potential control approach 

• Collision avoidance 

 

 

• Alignment 

 

 

• Attraction 
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Linear quadratic regulator application 

• Collision avoidance 

 

• Alignment 

 

 

 

• Attraction 
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Swarm consensus control 
• Convergence to a common 

orbital plane 
• The error function: 

 

 

• Attitude synchronization 
• Non-linear control law: 
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Virtual structure control approach 

• Imitation the satellite system by 
a solid structure model 

• Control law 
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Point masses connected by a spring-
damper mesh 
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Fuelless FF Control Concepts 
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• Tethered systems 

• Aerodynamic drag 

• Electro-magnetic interaction 

• Solar pressure 

• Momentum exchange 
 



Aerodynamic drug based control 
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o Features: 
 Low Earth Orbit 
 Satellites with variable cross 

section area 
 

o Shortcomings: 
 Short lifetime 
 Reaction wheel saturation 

during attitude control 
 

  
JC2Sat Mission 

 

 



LQR-based control algorithm 
oAerodynamic drug force 

 

 

o Linear-quadratic regulator 
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Electro-magnetic interaction 
based control 

• Magnetic interaction 

 

 

• Lorenz force of charged satellite 

 

 

• Coulomb force interaction 
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Coulomb force based control algorithm 
o Features: 

• The charging device is required 

• Small relative distances 

• Charges are eliminating by 
plasma 
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Equations of motion for three 
satellites 
In the orbital reference frame 

 

 

 

 

 

where 
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Sliding-mode control 
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• Lyapunov-candidate function 

 

 

• Its derivative 

 

• For negative sign should be: 



Control algorithm 
• The solution of equations is: 

 

• It could not be always performed by the charges. 

• So, trying to minimize the function 

 

 

• Get four solutions: 
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Algorithm simulation 
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Solar radiation pressure based 
control 
• Solar sail with fixed orientation 

 

 

 

 

• Solar sail with variable reflection  
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Solar radiation pressure based 
control 
We consider: 

• Spherical satellites 

• Variable reflection on “pixel” 
surface 

• Nearcircular orbits 
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PD-controller-based control 
algorithm 
• Motion equations: 

 

 

• PD-regulator: 

 

 

where 
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Solar pressure model 
• The solar pressure force: 

 

 

• The reflection function: 

 

  where 

 

 

Restrictions are: 

 

 
30 

2(1 )( , ) 2 ( , )c

S S

P k dS k dS
 

 
     

 
 F s n n s ns

( , ) ( ) ( ),k g h    

1 0

1 1
( ) cos( ) , ( ) sin 4

2 2
g a a h        

10 , ,a a   Variable control parameters 

0 1.k 

 1 0

1 0

1 1
0 cos( ) sin 4 1

2 2

0 cos( ) 1

a

a a

a   

 

 
     

 

   



Numerical example 
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The momentum exchange-based control 
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• The momentum from lasers for 
repulsive force 

 Y. K. Bae. A contamination-free ultrahigh precision formation flying 
method for micro-, nano-, and pico-satellites with nanometer 
accuracy. In Space Technology and Applications International Forum- 
Staif 2006, volume 813, pages 1213–1223, 2006. 

• Continuous stream of mass 
travelling between the satellites 

 S. G. Tragesser. Static formations using momentum exchange between 
satellites. Journal of guidance, control, and dynamics, 32(4):1277 –
1286, 2009. 

• Liquid droplet streams exchange 
 T. Joslyn and A. Ketsdever. Constant momentum exchange between 

microspacecraft using liquid droplet thrusters. In 46th joint Propulsion 
Conference, volume 6966, pages 25–28, 2010. 



Single mass exchange  
control concept 
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• At command the single 
mass separates from the 
satellite 

• The separated mass moves 
to the other  
satellite and impacts it 
absolutely inelastically 

• After the whole mass 
transfer the resulting 
relative trajectory changes 
in adjustable way 
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The Analytical Problem Solution 
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Swarm construction objective: 
eliminate the relative drift 
• Consider three satellites with relative drifts 

• The mass exchange aims to set the drifts of first 
two satellites (Cc and Ct) equal to the third one Cr 

• It is possible if the inequality holds (Kc, Kt – mass 
ratios) 
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Conclusion 

• The swarm of the satellites is a new paradigm in 
space systems 

• The fuelless control approaches are fitting small 
satellite restrictions, they are smart but challenging 

• We should allow for the distributed system to be 
autonomous and self-organizing, but we must be 
watchful 
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