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What is distributed system?

oA space system consisting of multiple space
elements that can communicate, coordinate and
interact in order to achieve a common goal.

— Concurrency of elements
— Tolerance for failure of individual systems

— Scalability and flexibility in design and
deployment of system



“Definitions for distributed space systems

Constellation: similar . %
trajectories without control for
relative position; coordination
from a control center.

Formation: closed-loop control
on-board in order to preserve
topoIoFy in the group and to
control relative distances

Cluster: distributed
heterogeneous system of
satellites to achieve in .
cooperation a joint objective. | &

Swarm: a group of similar
(homogenous) vehicles
cooperating to achieve a joint
goal without fixed positions;
Each member determines and
controls relative positions in
relations to others.
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Main parameters of distributed SS

* A number of satellites

* A degree of autonomy

* Communication links between satellites
* Relative trajectory types



Autonomy in relative control
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Communication

 The communication is =
information exchange or just @ /

measuring of relative pose

* There could be directed or
mutual communication - -

0
e If det(A)#0, the formation is 0
decentralized A= 1
0

* If det(A)=0, the formation is
of leader-follower type,
communication is cycled
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Satellite formation flying features

A small number of satellites

e Centralized control:

o Mother-daughter relationship: mother knows the best for her
children and command them

o Leader-follower relationship: leader moves everywhere it wants,
the followers pursue it

e Communication with all the group members
* Motion along predefined trajectories



Equations of relative motion:

linear model, near circular orbit

On the first stage of control algorithms investigation Clohessy-
Wiltshire model is used:

(X+2w2 =0

V+w’y=0 Earth * a
k'Z'—Za))'(—Sa)ZZZO o

Solution is : Z

(x =-3C,wt +2C, cos wt — 2C,sinwt +C, Scheme of motion

N

y =C,sinwt + C, cos wt
12=2C, +C,sinwt +C, cos mt

—3C1a)t - Relative drift
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Formation flying specific relative
trajectories

* Train formation
 Relative circular orbit

* Projected circular orbit
* Docking trajectories
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KIKU-7 mission CanSat4&5 mission
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Satellite swarm features

* A large number of satellites
e Decentralized control

e Communication with limited number of group
member

* Motion along occasional trajectories:
 Random but bounded relative trajectories
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Swarm control objectives

* Collision avoidance

* When the relative distance d; is less then fixed threshold
R,, the collision maneuver is performed

* Alignment
* The satellites tent to align to its neighbors R,, <d;< R,

* Attraction
* Each satellite try to be closer to far members R, <d;< R,
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Artificial potential control approach

* Collision avoidance Equations of motion
d;
- mr.=-V.U(r)+d.
Ui;ep :_Crepe Rrep E 11 1 ( I) | I |
* Alignment
Ra
d=> C, (vij -rij)e T, g
jj=
3
* Attraction ¢
Ui?t =—C,¢e " -?s'- S

Agent Posttion - x coordinate (a.u,)

M. Sabatini, G. B. Palmerini and P. Gasbarri. Control Laws for Defective
Swarming Systems// Advances in the Astronautical Sciences, Seconpll IAA
DyCoss'2014, V. 153. p. 132-153.
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Linear quadratic regulator application

e Collision avoidance Equations of motion
u™ => u® whend; <R, x. = Ax, +Bu,,

J, J#
* Alignment Feedback control is

uf = jzj;;iu;I’When Ry <dj <Ry u =-R™B'Pe,
y where e, =X, — X',
x! =[~=2~00000] o |
20, matrix Pisthesolution

* Attraction of Riccatiequation
U — Zurep when d. <R Q—PBR_lBTP-I-PA—I-ATP = 0.
ij rep

ij
J =
M. Sabatini, G. B. Palmerini. Collective control of spacecraft swarms

for space exploration// Celest Mech Dyn Astr (2009) 105:229-244
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e Convergence to a common
orbital plane

z (DU}

z DU}

e The error function:

n T xou C you x(DU)
_ _ a) Initial orbits
gi_E:aij(l ninj)
j=1

b} Final converged orbits

Thakur D., Hernandez S., Akella M.R. Spacecraft swarm finite-thrust cooperative

control for common orbit convergence // J. Guid. Control. Dyn. 2015. Vol. 38, Ne
478-487.

 Attitude synchronization

* Non-linear control law: _ AT Qe
‘ ;:'0_0'2 ‘‘‘‘‘‘‘ % ______ ! i “‘_J; 77777 ?\ %
7 = w; Jiw; +J; (—Q,-"Q,-ﬁ),- - Q7 'k ol AT A nalatilte. |
) 2/p—-1\"" }
X {(Q,'ﬂ),-}."’ —I—]\E [ZCIU(qf_qj)+bl{qf_qff):|} )
JEN;

Zhou J., Hu Q., Friswell M.I. Decentralized Finite Time Attitude Synchronization Control of Satellite
Formation Flying // J. Guid. Control. Dyn. 2013. Vol. 36, Ne 1. P. 185-195.
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Virtual structure control approach

* Imitation the satellite system by
a solid structure model

* Control law

u; = —X:.fcﬁafm(,urIC - pi) — ) Point masses connected by a spring-
er€E . damper mesh
Chen Q. et al. Virtual Spring- S
Damper Mesh-Based Formation
Control for Spacecraft Swarms in .
Potential Fields // J. Guid. Control. 200 A---D¥ S S
Dyn. 2015. Vol. 38, Ne 3. P. 539— SRR e

546.

¥ im) X (mj)

a) Initial time (£ = 0 5) b) Steady state (f = 8000 s) 17



Fuelless FF Control Concepts

* Tethered systems

* Aerodynamic drag

* Electro-magnetic interaction
 Solar pressure

* Momentum exchange




Aerodynamic drug based control

o Features:
= [ow Earth Orbit O — JC2Sat-FF/Kanada
= Satellites with variable cross

section area

o Shortcomings:
= Short | ife time One satellite changes the attitude and
= Reaction wheel saturation Yaries the f-rontal C1Oss .sectional area to

. _ mcrease aerodynamic drag
during attitude control

JC2Sat Mission
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LQR-based control algorithm

o Aerodynamic drug force
fi —lpVZS{(l—g)(eV N)ey +2s(e,,n)’ N, +(1_5)\%(ev nonY,
m

N = (COS & COS S;Sin f3;SIn & C0S 7).
o Linear-quadratic regulator

300 -,

).( — AX + bu, 200 7 - _ Fe_tquliredbfctrajectory I
A | T ks
. . . . . = 1DD""' f 1 =
Minimising cost function = ("\
00 -100 )\‘s\ J
J= j (" Qe +u"Ru )dt, o,
-300 A
T 200
Feedback control is R — w0 "
1T y, [M] -100 400 =200
u=-R b Pe, where e = X — Xd . 200 600 X, [m]
matrix Pis the solutionof Riccatiequation Relative trajectories

Q- PBRIB'TP+PA+A'P=0. during the maneuver
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N‘E\ectro—magnetic Interaction
based control

* Magnetic interaction

Youngquist R.C., Nurge M.A., Starr S.O. Alternating —~
magnetic field forces for satellite formation flying //
Acta Astronaut. Elsevier, 2013. \ol. 84. P. 197-205. f % I spacocrat

L ’\Spacscraﬂ
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]

N

* Lorenz force of charged satellite

Peck M.A. et al. Spacecrat Formation Flying Using . R
Lorentz Forces // J. Br. Interplanet. Soc. 2007. Vol.
60. P. 263-267.

* Coulomb force interaction

Schaub H. et al. Challenges and Prospects of
Coulomb Spacecraft Formation Control of the
Astronautical Sciences // J. Astronaut. Sci. 2004. \Vol.

52. P. 169-193.
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Coulomb force based control algorithm

o Features:

* The charging device is required

 Small relative distances

* Charges are eliminating by

plasma
107 | .
ax . | === Coulomb force under A\;=140 m P _%
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”Equatlons of mot|on for three
satellites

In the orbital reference frame

[
.é"l
KR

[a—
&"!
K

8

F+20x1 +30xoxr =—-""————.—
mrn, K, mr 9

Jr-z+2a:a><rz+3a>><a;><;r-2——i'if_z.ﬁ2 17 a&
m, n, hy My 7y ._k

- - 1 -r 1 r
F,+20xr+3oxoxr = 3 f;z 23 al
m; g, I NGy rzs

where
ai('}' ’i}k)=kcqj( > ,1;)?1;( L ,k)
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B Sliding-mode control

* Lyapunov-candidate function

1, 1., 1, 1 1 1
V=Rt o Bt (=) 4 Dk — )+ (5~ )

Its derivative

V= 1o By + Ky (1, — @) + oy (Fys + K, (13 — @) + 13y (7 + K5 (13, — a@3)-
* For negative sign should be:

ho()+ g h, + R (r, — ) =0,

753(0) + 873 +ky (13 —a,) =0,

731(0,) + &35 + ks (1 —a3) = 0.
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Control algorithm

* The solution of equations is:
a=A"-b,

* It could not be always performed by the charges.
* So, trying to minimize the function

D =(q,9, — %) +(4,9; — )’ +(q,9; —,)* — min

e Get four solutions:

4 )
+ ,_ﬂ
a;

I+

— 1stsat
—— 2ndgat
——— 3rdsat




Algorithm simulation
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Solar radiation pressure based
control

e Solar sail with fixed orientation

Smirnov G.V., Ovchinnikov M.Y., Guerman A.D. Use of
solar radiation pressure to maintain a spatial satellite
formation // Acta Astronaut. 2007. Vol. 61, Ne 7-8. P. 724—
728.

e Solar sail with variable reflection

Mori O. et al. First Solar Power Sail Demonstration by
IKAROS // Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp.
Technol. Japan. 2010. Vol. 8, No ists27. P. To_4 25 —
To_4_31.
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ar radiation pressure based

control

We consider:

* Spherical satellites

* Vlariable reflection on “pixel”

surface

liquid-crystal thin

 Nearcircular orbits
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PD-controller-based control
algorithm

* Motion equations:

p=v,
v="F(p,v)+u
* PD-regulator:

U=—K, (PP ) K, (V= Vi )+ ¥y —F

where

k2
k_, k, = const >0, choosen that k, :I";
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Solar pressure model

* The solar pressure force:

F=—P| [ @—k)(s,n)sdS +2 [ kn(s, n)stj

 The reflection function:

K(e,0) = g(e)-h(6),

where 1

d(p) =a,cos(p +a) +a,, h(0) = > +%sin 40,

d,, a,, @ — Variable control parameters
Restrictionsare: (Q<k<1.

O<(alcos(go+a)+a0)(%+%sin 40)31

0<a,cos(p+a)+a, <1 | | 30



Numerical example
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* The momentum from lasers for
repulsive force

Y. K. Bae. A contamination-free ultrahigh precision formation flying
method for micro-, nano-, and pico-satellites with nanometer
accuracy. In Space Technology and Applications International Forum-
Staif 2006, volume 813, pages 1213-1223, 2006.

Continuous stream of mass
travelling between the satellites

S. G. Tragesser. Static formations using momentum exchange between
satellites. Journal of guidance, control, and dynamics, 32(4):1277 —
1286, 2009.

Liquid droplet streams exchange

T. Joslyn and A. Ketsdever. Constant momentum exchange between
microspacecraft using liquid droplet thrusters. In 46th joint Propulsion
Conference, volume 6966, pages 25-28, 2010.
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Single mass exchange
control concept

At command the single
mass separates from the

satellite Sa

* The separated mass moves

to the other 8-

satellite and impacts it
absolutely inelastically

e After the whole mass
transfer the resulting
relative trajectory changes
in adjustable way

the thrower before exchange
the separable mass

the thrower during exchange
==the thrower after exchange
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The Problem Formulation

Boundary problem:

What is the initial relative velocity of the mass required to hit the thrower?

Initial conditions:

Xy = X(to)1 Yo = Y(to)1 Zy = Z(to)’
Thefinal position:

x =X(t)=0,y,=y(t)=0,z =2z(t,)=0.
Hill - Clohessy - Wiltshire equations:

X+2w2 =0,

y+ a)zy =0,
7-2wXx—-3w'z=0
The exact solution:

Xx=C, —3C,ot +2C, coswt — 2C, sin at,

y=C;sinwt +C, cosat,
z=2C,+C,sinwt + C, coswt

Earth

vyt

The thrower

] 17

>

The separable mass

Lo

The catcher z

C, =2z(t,) +w,C2 = 2(ty) ,
[0} w
c, =-32t,) - 2WM) ¢, —xqt,) - 22%),
C; = (k) Cs =Y(t).
[0}
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The Analytical Problem Solution

Throwing mass relative velocity:

Satellite

1 .
OX=—X, —2Z,0 +—[X,0SINU + 2Z,w(cosu —1)],
A Separable

. . cosu of ot
oy ==Yy = Yo ——— /L

Sln u , Manipulator
1 :
0l=-12, - K[ZXOa)(l— Cosu)+ z,w(3ucosu —4sinu)],
where u =o(t, —t.), A=3usinu —8(1—cosu).
The resulting thrower satellite velocity after mass throwing
m
Vi =V, —M5v.
The resulting catcher satellite velocity after mass catching

m
V. (t,)= Y ervs(tm).

For instance, the final relative trajectory (~31 constant:

61:(220 4+ X0j+ k(k+2) . XO COSS_ZZOSinS

®) (k+1)? 8sins-—6sEoss




~ Swarm construction objective:
eliminate the relative drift

* Consider three satellites with relative drifts

* The mass exchange aims to set the drifts of first
two satellites (C. and C,) equal to the third one C,

* It is possible if the inequality holds (Kc, Kt — mass

ratios) 10

A-B<C <A+B =«

—

A= Cc(Kc _3)+Ct(Kt +1)

1+ K, + K, 50 |

B 2
1+ K, + K,

B \/(ZCC —2,,) +—
)

E 04
=

22, W

14+ K+ Ko

500

200 0 - : 0

200 400 -1000 00

i
¥ (m) ¥ m)
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Conclusion

* The swarm of the satellites is a new paradigm in
space systems

* The fuelless control approaches are fitting small
satellite restrictions, they are smart but challenging

* We should allow for the distributed system to be
autonomous and self-organizing, but we must be
watchful
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