

#### Attitude system design: Balancing real satellite and analysis complexity *Magnetic control example*

**Dmitry Roldugin** 

Keldysh Institute of Applied Mathematics Russian Academy of Sciences

#### Contents

- Simplifying decisions
  - Buy or develop ADCS
  - Control hardware
  - Control algorithms
  - Analysis method
  - Environment models (geomagnetic field)
- Application example (dynamics analysis)

## Dynamics place in mission design



10th Int. workshop & advanced school "Spaceflight dynamics and control"

# Buy or develop?

Why bother about AOCS among other subsystems?

- Dynamical problems (both angular and orbital) seem negligible in overall mission structure.
- Maybe buy popular solutions?
- ADCS easily consume third of space and energy budget available
- Maybe spend more effort on ADCS?
- Free some mission resources for improvement of other subsystems and payload.

# Definitely develop!

#### **Buy AOCS**

- Fast
- Reliable
- Expensive

# Develop architecture, build/buy components

- Slow
- Initially prone to faults
- Initially expensive (education)
- Optimized for a mission
- Long-term investment in skilled personnel and overall group expertise
- Interesting!

# Choosing hardware and algorithms

#### Wheels, jets, GG boom

- Well studied and proved
- No or mitigated control authority issues
- Good accuracy and time response
- Expensive, bulky etc.

#### Magnetorquers

- Slow and inaccurate
- Subject to underactuation
- Compact, cheap, reliable
- Interesting!

#### Magnetorquers + some other actuators Both problems and benefits are balanced

#### Example: CXBN-2 satellite





- Cosmic X-Ray Background in the 30-50 keV range
- 10/1 degrees attitude knowledge for primary/sec mission
- Possibly even celestial sphere coverage, maximizing overall science data
- Sensor can withstand bright sources, however loosing data

# Simplifying ADCS

- Possibly even celestial sphere coverage
- Different control schemes provide necessary result



## **Control** laws

• Spin stabilized

- Nutation damping 
$$\mathbf{m}_{nut} = -k_{nut} \left( \frac{d\mathbf{B}}{dt} \mathbf{e}_3 \right) \mathbf{e}_3$$

- Spinning 
$$\mathbf{m}_{spin} = k_{spin} (B_2, -B_1, 0)^T$$

- Reorientation 
$$\mathbf{m}_{or} = (0, 0, k_{or} (\Delta \mathbf{L} \cdot [\mathbf{e}_3 \times \mathbf{B}]))^T$$

• "Free" flying, speed control  $\mathbf{m} = \pm k_{damp} \frac{d\mathbf{B}}{dt}$ 

# Continuous rotation One month scientific data



#### 10th Int. workshop & advanced school "Spaceflight dynamics and control"

# Continuous rotation One year scientific data



10th Int. workshop & advanced school "Spaceflight dynamics and control"

# Free flying One year scientific data



## Control schemes data comparison

|                                  | Overall<br>sets/year   | Min. sets          | Max. sets             | Dipole<br>moment, Am <sup>2</sup> |
|----------------------------------|------------------------|--------------------|-----------------------|-----------------------------------|
| Spin<br>stabilization            | 31.346.066<br>(100.3%) | 534.320<br>(80.6%) | 1.177.844<br>(139.0%) | 0.05                              |
| SS with Earth<br>avoiding        | 31.875.472<br>(102.1%) | 266.819<br>(40.2%) | 1.106.402<br>(130.6%) | 0.15                              |
| SS, Earth<br>avoiding,<br>charge | 32.244.917<br>(103.3%) | 641.783<br>(96.8%) | 1.207.403<br>(142.5%) | 0.15                              |
| Free flying                      | 31.229.476<br>(100%)   | 663.068 (100%)     | 847.258 (100%)        | 0.05                              |

# **Overall comparison**

#### Spin stabilization

- More overall data
- Better polar regions coverage

#### Free flying

- More even data
- Simple control cycle
- Better attitude knowledge
- Less power consumption

# Choosing analysis method

- Numerical analysis
  - + Comprehensive satellite and environment models
  - + Exceptional accuracy
  - ± Time consuming, rewarded with a long lasting tool
  - Unique result
- Analytical solution
  - + General result, satellite behavior prediction
  - ± Time consuming, rewarded with a tool and publications
  - Simplified and restricted satellite and environmental models
  - Bad accuracy
  - Higher qualification necessary

## System state tyranny

- System in arbitrary motion is often analyzed using numerical methods
- Simplifying assumptions are governed by system motion peculiarities



# Dynamics simplification steps

- Convenient equations of motion
- Osculating variables, Euler angles with proper rotation
- Simple, but authentic environment models
- Averaged or dipole geomagnetic field
- Assumptions and analysis method
- Multiple time scales for fast rotation
- Solution in explicit form
- Different parameters influence on satellite behavior

# First analysis example: angular velocity detumbling

- Fast initial rotation
  - Multiple time scales method
  - Angular momentum changes slowly
  - Satellite attitude changes rapidly
  - Evolution of angular momentum obtained by averaging equations of motion
- Axisymmetrical satellite
  - Simple averaging over fast variables

# Osculating variables

- Convenient for the transient motion analysis
- The rate of angular velocity is characterized using only one variable – magnitude of angular momentum
- *Z<sub>i</sub>* define any inertial reference frame



#### Equations of motion



where  $M_1, M_2, M_3$  are components of the torque in the frame associated with angular momentum

## Control torque averaging

Damping control torque is

 $\mathbf{M}_{L} = \begin{pmatrix} \omega_{3L}B_{1L}B_{3L} - \omega_{1L}B_{3L}^{2} - \omega_{1L}B_{2L}^{2} + \omega_{2L}B_{1L}B_{2L} \\ \omega_{1L}B_{1L}B_{2L} - \omega_{2L}B_{1L}^{2} - \omega_{2L}B_{3L}^{2} + \omega_{3L}B_{2L}B_{3L} \\ \omega_{2L}B_{2L}B_{3L} - \omega_{3L}B_{2L}^{2} - \omega_{3L}B_{1L}^{2} + \omega_{1L}B_{1L}B_{3L} \end{pmatrix}$ 

 Averaging involves dimensionless geomagnetic induction vector components,

$$B_{ij} = \frac{1}{2\pi} \int_{0}^{2\pi} B_i B_j du,$$

#### Geomagnetic field models

- Gauss decomposition (IGRF, WMM)  $\mathbf{B} = \mu_0 \nabla V, \ V = -R \sum_{i=1}^k \left(\frac{R}{r}\right)^{i+1} \sum_{n=0}^m \left(g_n^m(t) \cos m\lambda_0 + h_n^m(t) \sin m\lambda_0\right) P_n^m(\cos \theta_0)$
- Inclined dipole

$$\mathbf{B} = \frac{\mu_e}{r^5} \left( \mathbf{kr}^2 - 3(\mathbf{kr})\mathbf{r} \right)$$

• Right dipole

$$\mathbf{B} = \frac{\mu_e}{r^3} \begin{pmatrix} -1.5\sin 2u\sin i \\ -3\sin^2 u\sin i + \sin i \\ \cos i \end{pmatrix}$$



#### Averaged geomagnetic field model



Geomagnetic induction vector evenly rotates on the cone with half opening angle given by

$$tg\Theta = \frac{3\sin 2i}{2\left(1 - 3\sin^2 i + \sqrt{1 + 3\sin^2 i}\right)}$$
$$\mathbf{B} = B_0 \begin{pmatrix} \sin\Theta\sin 2u\\ \sin\Theta\cos 2u\\ \cos\Theta \end{pmatrix}$$

## Averaged model result

$$\frac{dl}{du} = -\varepsilon l \Big[ 2p + (1 - 3p) \sin^2 \rho \Big] \bigg( \cos^2 \theta + \frac{C}{A} \sin^2 \theta \bigg),$$

$$\frac{d\rho}{du} = \varepsilon (3p-1) \sin \rho \cos \rho \left( \cos^2 \theta + \frac{C}{A} \sin^2 \theta \right),$$

$$\frac{d\sigma}{du} = 0,$$

$$\frac{d\theta}{du} = \frac{1}{2} \varepsilon \left( 1 - \frac{C}{A} \right) \left[ 2(1-p) + (3p-1)\sin^2 \rho \right] \sin \theta \cos \theta.$$

 Full set of autonomous first integrals can be found

## Dipole model result

$$\begin{aligned} \frac{dl}{du} &= -\varepsilon l \left[ \frac{20}{9} a + \sin^2 \rho \left( c - a \cos^2 \sigma - \frac{11}{9} a \sin^2 \sigma \right) + 2d \cos^2 \rho \sin \sigma \cos \sigma \right] \times \\ &\times \left( \cos^2 \theta + \frac{C}{A} \sin^2 \theta \right), \\ \frac{d\rho}{du} &= \varepsilon \left[ \left( \frac{11}{9} a \sin^2 \sigma + a \cos^2 \sigma - c \right) \sin \rho \cos \rho - d \sin \sigma \cos 2\rho \right] \left( \cos^2 \theta + \frac{C}{A} \sin^2 \theta \right), \\ \frac{d\sigma}{du} &= \varepsilon \left[ \frac{2}{9} a \sin \sigma \cos \sigma + d \cos \sigma \operatorname{ctg} \rho \right] \left( \cos^2 \theta + \frac{C}{A} \sin^2 \theta \right), \\ \frac{d\theta}{du} &= \varepsilon \lambda \left[ \frac{20}{9} a + c \left( 1 + \cos^2 \rho \right) + a \sin^2 \rho \left( \cos^2 \sigma + \frac{11}{9} \sin^2 \sigma \right) + 2d \sin \rho \cos \rho \sin \sigma \right] \times \\ &\times \sin \theta \cos \theta. \end{aligned}$$

10th Int. workshop & advanced school "Spaceflight dynamics and control"

# Dipole model result

- One more  $B_{ij}$  term
- One more term in equations
- Two first integrals can be found
- Solution to equations of motion is unavailable

# Solution in explicit form: spherical satellite damping



# Simple parameters adjustment



# Numerical simulation – verification, more accurate result after parameters are roughly adjusted

# Second analysis example: planar motion with magnet

- Satellite moves on polar orbit
- Permanent magnet should point the satellite along geomagnetic field
- Linearized equation of planar motion:

- Averaged field  

$$\ddot{\beta} + \beta \left( \lambda^{2} + \varepsilon \cos 2u \right) = -\varepsilon/2 \sin 2u$$
control torque gravitational (disturbing) torque  
- Dipole model (near node)  

$$\ddot{\beta} + \beta \left( 3\lambda^{2}/2 + (2\varepsilon - \lambda^{2})/2 \cos 2u \right) = (\lambda^{2} - \varepsilon)/2 \sin 2u$$

Inclined dipole: no planar motion

#### Unstable area

- Averaged field  $1 - \frac{\varepsilon}{2\lambda^2} + \frac{7}{32} \left(\frac{\varepsilon}{\lambda^2}\right)^2 + \dots \le \lambda^2 \le 1 + \frac{\varepsilon}{2\lambda^2} + \frac{7}{32} \left(\frac{\varepsilon}{\lambda^2}\right)^2 + \dots$ 
  - No area if gravitational torque is zeroed:  $\varepsilon = 0$
  - Quite sensible and easily interpreted result
- Dipole model

$$1 - \frac{2\varepsilon - \lambda^2}{6\lambda^2} + \frac{7}{32} \left(\frac{2\varepsilon - \lambda^2}{3\lambda^2}\right)^2 + \dots \le \lambda^2 \le 1 + \frac{2\varepsilon - \lambda^2}{6\lambda^2} + \frac{7}{32} \left(\frac{2\varepsilon - \lambda^2}{3\lambda^2}\right)^2 + \dots$$
  
- No area if gravitational torque is small enough:  
$$|A - B| \omega_0^2 / mB_0 \le 1/6$$

More general result, excessive strict assumption

# Third analysis example: three axis magnetic control

• The dipole moment (PD-controller inspired)

 $\mathbf{m} = \mathbf{B} \times (-k_{\omega} \mathbf{\omega} - k_{a} \mathbf{S}), \quad \mathbf{S} = (a_{23} - a_{32}, a_{31} - a_{13}, a_{12} - a_{21})^{T}$ 

- Control and gravitational torques are taken into account
- Circular orbit
- Dipole geomagnetic field

#### Linearized equations of motion

$$\frac{d\omega_{1}}{du} = -K_{\omega} \frac{B_{0}^{2}}{A\omega_{0}^{2}} \Big[ \Big( B_{2}^{2} + B_{3}^{2} \Big) \omega_{1} - B_{1}B_{2}\omega_{2} - B_{1}B_{3}\omega_{3} \Big] -$$

$$-2k_{a}\frac{B_{0}^{2}}{A\omega_{0}^{2}}\left[-B_{1}B_{2}\varphi-B_{1}B_{3}\theta+\left(B_{2}^{2}+B_{3}^{2}\right)\psi\right]+\omega_{2}+\frac{B-C}{A}(\omega_{2}+\psi),$$

$$\frac{d\omega_2}{du} = -K_{\omega} \frac{B_0^2}{B\omega_0^2} \Big[ -B_1 B_2 \omega_1 + (B_1^2 + B_3^2) \omega_2 - B_2 B_3 \omega_3 \Big] -$$

$$-2k_{a}\frac{B_{0}^{2}}{B\omega_{0}^{2}}\Big[\Big(B_{1}^{2}+B_{3}^{2}\Big)\varphi-B_{2}B_{3}\theta-B_{1}B_{2}\psi\Big]-\omega_{1}+\frac{C-A}{B}(\omega_{1}-4\varphi),$$

$$\frac{d\omega_{3}}{du} = -K_{\omega}\frac{B_{0}^{2}}{C\omega_{0}^{2}}\left[-B_{1}B_{3}\omega_{1} - B_{2}B_{3}\omega_{2} + \left(B_{1}^{2} + B_{2}^{2}\right)\omega_{3}\right] -$$

$$-2k_{a}\frac{B_{0}^{2}}{C\omega_{0}^{2}}\left[-B_{2}B_{3}\varphi + \left(B_{1}^{2} + B_{2}^{2}\right)\theta - B_{1}B_{3}\psi\right] + 3\frac{A-B}{C}\theta,$$

$$\frac{d\varphi}{du} = \omega_2, \qquad \frac{d\theta}{du} = \omega_3, \qquad \frac{d\psi}{du} = \omega_1.$$

10th Int. workshop & advanced school "Spaceflight dynamics and control"

March 17, 2016



March 17, 2016

"Spaceflight dynamics and control"

33

## Different models in simulation



#### direct dipole 15 s, averaged model 14.8 s.

March 17, 2016

10th Int. workshop & advanced school "Spaceflight dynamics and control"

## Different models in simulation



10th Int. workshop & advanced school "Spaceflight dynamics and control"

# Conclusion

- ADCS has significant effect on satellite design
- Analytical results prove to be convenient tool in a mission design process
- Even obvious missions benefit from some dynamical effort
- A number of simplifying assumptions suitable for the analysis method can lead to a very convenient equations