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Main assumptions

Rigid body
Circular orbit

Geomagnetic field is represented with direct
and simplified dipoles

Euler angles (rotation sequence 3-1-2) describe
satellite attitude

Satellite moves in inertial space
External disturbances are not considered



Motion nature

Satellite motion is governed by -Bdot damping
algorithm m=-k dB/dt

Field variation is largely determined by satellite
rotation in transient motion

Satellite rotation velocity is close to the double
orbital one after transient motion. Inherent field
rotation in absolute space should be taken into
account

Resulting rotation velocity, axis of rotation and its
attitude in inertial space present some interest



Rotation stability

« Simplified dipole model is used (uniform field vector
rotation along the circular cone)

* Rotation along third satellite axis with double orbital
velocity exists

* Linearized near this rotation equations of motion
&, =22,0, — 0, (0, +2y),

(0, = 2250, + 06 (—@, COS°* O+ 2, SINOCOs O + 205’ Of ),
i, = £ (@, c0sOSINO - ,sin” © - 25iNOCOs O,

& = w,, B=w+2y, V=, -2



Characteristic exponents

Equations of motion and secular equation are

X =AX+eAX, P(,u+<977):Z:(Aj +<9Bj)(,u+<977)J =0
Zero-order approximatior{:O

poo =12\ Al 15=0, 5 =12I.

First order approximation
My =— 0 (14 A,)+ 6, cos’ O4, (A5 —1)/2(AAg +1), 7, =—5in* O,

Mas = —0x (1= Ag )+ 65 €05* O (A, +1)/2( A4 +1)

Rotation along maximum moment of inertia is stable



Pointing accuracy

Simplified dipole provides precise rotation axis
alignment along geomagnetic field cone axis

Direct dipole model is used to refine rotation
velocity, direction and pointing accuracy

Satellite motion is characterized with
periodical solutions

Inclination deviation from 0 and 90° is used as
small parameter



Subequatorial orbit

e Equations of motion have the form
x =f(X)+ig, (x)+i’g, (X)

* Asymptotically stable generating solution
X, =(Qu, 0,0,0,0, Q)

* Rotation velocity is 9/5 of the orbital one. This is
determined from the existence of planar periodical

solutions of the second order equations

@) = 3¢(Q—1)cos2u—5Q+9, & = @f?



First approximation

e Spatial motion first order approximation equations

6,]3/2(Q-2)sin(Q-2)u-1/2sinQu |

2, =Fz,+¢
0

0

 Their solution is
Y =1/2sinQu, 5% ~-1/2cosQu

6, | 3/2(Q—-2)cos(Q—2)u—1/2cosQu |
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* Rotation axis deviates form the orbital normal by up
to approximately half the inclination angle




Circumpolar orbit

e Rotation velocity is governed by the equation
@, +£(1+3sin* U) e, =3¢ (1+sin” u)
* Approximate solution is

e 2u_34in2u e sinu
o, ~ e (2 4 )£w3(0)+68{2552+16(

+1( ? +1j(e5/2‘9“ —1)
e\125¢°+80 5

* Onalong time interval
w, =9/5+3/5&sin2u+0( &)

5/2¢u

Sesinu—4cosu)




First approximation

e First order equations are further analyzed with
Poincare method. Torque value is used as a small
parameter.

* First order solution is a generating one for that
purpose. It is found from the existence of periodical
solutions of equations of the next order,

w, =w, =0,
B =4/9(x/2—i)cosl.8u, y =—4/9(x/2—i)sin1.8u

* Rotation axis deviates form the orbital normal by
approximately 4/9(z/2-i)



Numerical example

Inertia tensor(1.4, 1.6, 2.0) kg-m?, altitude 750 km,
inclination 75°, €=0.11

Numerical rotation axis deviation 5.5-7°, approximate 6.5°
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Results

* Rotation along the maximum moment of inertia is
shown, rotation velocity is found

e Stability is proven for the motion in simplified
geomagnetic field

* Rotation velocity, direction and stabilization accuracy
are found for subequatorial and circumpolar orbits in
direct dipole geomagnetic field



