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Momentum exchange 

FF Control Concepts 
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 One satellite creates

momentum by ejecting

an additional separable

mass

 The other one then

captures and redirects

it back

 The repulsive force is

obtained
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Single mass exchange 

control concept 
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 By command the single 
mass separates from the 
satellite

 The separated mass

moves to the other

satellite and impacts it

absolutely inelastically

 After the whole mass

transfer the resulting

relative trajectory changes

in adjustable way
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What is the initial relative velocity of the mass required to hit the thrower?
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Boundary problem

Initial conditions

Thefinal position

Hill - Clohessy
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The Problem Formulation 
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The catcher 

The thrower 

The separable mass
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The Analytical Problem Solution 
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Throwing mass relative velocity

The resulting thrower satell
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1

ite velocity after mass throwing

The resulting  satellite velocity after mass catching

For instance, the final relative trajector
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An Example: Obtaining a closed 

relative trajectory 
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Solution of equation with respect to s= ( ) / 2

is a time required for mass exchange.

Consider an example with C 10m,

then obtain 8070 , 0.85 / .
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Reconfiguration 
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1, 1,

0 0

Let =0 for the final relative trajectory,

then
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Solution of equation is a 

time required for mass exchange.

Consider an example - 

circular relative trajectory
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Optimization problems 
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1

1 6Trajectory parameters ... ( , )are functions

of the time of throwing  and time of catching 

Consider following minimization tasks:
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The energy - optimum exchange
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Optimization problems: Examples 
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The trajectory shape is closest to the initial one
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Errors analysis 
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Assume errors in mass ejecting mechanism.

Consider a manipulator capable to catch 

the mass in a sphere with radius .

If the mass is ejected at time ,

then for previous example 1.
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Errors in time
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Errors in velocity
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Conclusions 
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 Formation flying control by mass exchange is 
proposed

 A set of optimization problems of concept is 
presented and solved

 The errors in ejecting/collecting mechanism 
could be estimated and accounted

 So, the mass exchange control concept could 
be applied successfully to solve a problem of 
relative motion maneuvering
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