$65^{\text {th }}$ International Astronautical Congress, Toronto, Canada, 1-5 ${ }^{\text {th }}$ October

Orbital Dynamics of Formation Flying Under Mass-Exchange Novel Control

Danil Ivanov ${ }^{1}$, Sergey Shestakov ${ }^{1,2}$, Mikhail Ovchinnikov ${ }^{1}$
${ }^{1}$ Keldysh Institute of Applied Mathematics
${ }^{2}$ Moscow Institute of Physics and Technology

Content

- Introduction
- The problem statement

■ Reconfiguration

- Optimization problems

■ Errors analysis

- Conclusion

Fuelless FF Control Concepts

- Tethered satellite formations
- Electro-magnetic interaction
- Atmospheric drags
- Solar pressure

Momentum exchange FF Control Concepts

- One satellite creates momentum by ejecting an additional separable mass
- The other one then captures and redirects it back
- The repulsive force is obtained

The former research

- The momentum from lasers for repulsive force
Y. K. Bae. A contamination-free ultrahigh precision formation flying method for micro-, nano-, and pico-satellites with nanometer accuracy. In Space Technology and Applications International Forum- Staif 2006, volume 813, pages 12131223, 2006.
- Continuous stream of mass travelling between the satellites
S. G. Tragesser. Static formations using momentum exchange between satellites. Journal of guidance, control, and dynamics, 32(4):1277-1286, 2009.
- Liquid droplet streams exchange
T. Joslyn and A. Ketsdever. Constant momentum exchange between microspacecraft using liquid droplet thrusters. In 46th joint Propulsion Conference, volume 6966, pages 25-28, 2010.

Single mass exchange control concept

- By command the single mass separates from the satellite
- The separated mass moves to the other satellite and impacts it absolutely inelastically
- After the whole mass transfer the resulting relative trajectory changes

__ the thrower before exchange
__ the separable mass
- the thrower during exchange
——the thrower after exchange in adjustable way

The Problem Formulation

Boundary problem:

What is the initial relative velocity of the mass required to hit the thrower?
Initial conditions:
$x_{0}=x\left(t_{0}\right), y_{0}=y\left(t_{0}\right), z_{0}=z\left(t_{0}\right)$,
Thefinal position:
$x_{1}=x\left(t_{1}\right)=0, y_{1}=y\left(t_{1}\right)=0, z_{1}=z\left(t_{1}\right)=0$.
Hill - Clohessy - Wiltshire equations:
$\ddot{x}+2 \omega \dot{z}=0$,
$\ddot{y}+\omega^{2} y=0$,
$\ddot{z}-2 \omega \dot{x}-3 \omega^{2} z=0$
The exact solution:
$x=C_{4}-3 C_{1} \omega t+2 C_{2} \cos \omega t-2 C_{3} \sin \omega t$,

$$
\begin{aligned}
& C_{1}=2 z\left(t_{0}\right)+\frac{\dot{\dot{x}}\left(t_{0}\right)}{\omega}, C_{2}=\frac{\dot{z}\left(t_{0}\right)}{\omega}, \\
& C_{3}=-3 z\left(t_{0}\right)-\frac{2 \dot{x}\left(t_{0}\right)}{\omega}, C_{4}=x\left(t_{0}\right)-\frac{2 \dot{z}\left(t_{0}\right)}{\omega}, \\
& C_{5}=\frac{\dot{y}\left(t_{0}\right)}{\omega}, C_{6}=y\left(t_{0}\right) .
\end{aligned}
$$

The catcher z

The thrower

$$
y=C_{5} \sin \omega t+C_{6} \cos \omega t
$$

$$
z=2 C_{1}+C_{2} \sin \omega t+C_{3} \cos \omega t
$$

The Analytical Problem Solution

Throwing mass relative velocity:
$\delta \dot{x}=-\dot{x}_{0}-2 z_{0} \omega+\frac{1}{\Delta}\left[x_{0} \omega \sin u+2 z_{0} \omega(\cos u-1)\right]$,
$\delta \dot{y}=-\dot{y}_{0}-y_{0} \omega \frac{\cos u}{\sin u}$,
$\delta \dot{z}=-\dot{z}_{0}-\frac{1}{\Delta}\left[2 x_{0} \omega(1-\cos u)+z_{0} \omega(3 u \cos u-4 \sin u)\right]$,
where $u=\omega\left(t_{m}-t_{e}\right), \Delta=3 u \sin u-8(1-\cos u)$.
The resulting thrower satellite velocity after mass throwing
$\mathbf{v}_{t}=\mathbf{v}_{t, 0}-\frac{m}{M} \delta \mathbf{v}$.
The resulting catcher satellite velocity after mass catching
$\mathbf{v}_{c}\left(t_{m}\right)=\frac{m}{M+m} \mathbf{v}_{s}\left(t_{m}\right)$.
For instance, the final relative trajectory $\tilde{\mathbf{C}}_{\mathbf{1}}$ constant:
$\tilde{C}_{1}=\left(2 z_{0}+\frac{\dot{x}_{0}}{\omega}\right)+\frac{k(k+2)}{(k+1)^{2}} \cdot \frac{x_{0} \cos s-2 z_{0} \sin s}{8 \sin s-6 s \cos s}$.

An Example: Obtaining a closed relative trajectory

Let $C_{1, c}=C_{1, t}$ for the closed relative trajectory, then obtain equation
$\left(2 z_{0}+\frac{\dot{x}_{0}}{\omega}\right)+\frac{k(k+2)}{(k+1)^{2}} \cdot \frac{x_{0} \cos s-2 z_{0} \sin s}{8 \sin s-6 s \cos s}=0$.

Solution of equation with respect to $\mathrm{s}=\omega\left(t_{m}-t_{e}\right) / 2$ is a time required for mass exchange.

Consider an example with $\mathrm{C}_{1}=10 \mathrm{~m}$, then obtain $t_{m}=8070 \mathrm{~s},|\delta \mathbf{v}|=0.85 \mathrm{~m} / \mathrm{s}$.

Relative trajectory

Reconfiguration

Let $C_{1, c}=C_{1, t}=0$ for the final relative trajectory, then obtain equation
$x_{0} \cos \frac{u}{2}=2 z_{0} \sin \frac{u}{2}, \frac{3 u}{2} \cos \frac{u}{2}-4 \sin \frac{u}{2} \neq 0$.

Optimization problems

Trajectory parameters $C_{1} \ldots C_{6}\left(t_{e}, t_{m}\right)$ are functions of the time of throwing t_{e} and time of catching t_{m} Consider following minimization tasks:
The trajectory shape is closest to the initial one
$\Phi_{1}\left(t_{e}, t_{m}\right)=(\bar{A}-A)^{2}+(\bar{B}-B)^{2}$,
where $A=\sqrt{C_{2}^{2}+C_{3}^{2}}, B=\sqrt{C_{5}^{2}+C_{6}^{2}}$
The energy - optimum exchange
$\Phi_{2}\left(t_{e}, t_{m}\right) \# \delta \mathbf{v} \|^{2}=\delta \dot{x}^{2}+\delta \dot{y}^{2}+\delta \dot{z}^{2}$
The time-optimum exchange
$\Phi_{3}\left(t_{e}, t_{m}\right)=t_{m}-t_{e}$

Demand to be the final trajectory closed $\tilde{C}_{1}=0$.
The problems are solved numerically.

Optimization problems: Examples

Consider an example
$x_{0}=242 \mathrm{~m}, y_{0}=67 \mathrm{~m}, z_{0}=140 \mathrm{~m}, \dot{x}_{0}=-0.2244 \mathrm{~m} / \mathrm{s}$,
$\dot{y}_{0}=0.11 \mathrm{~m} / \mathrm{s}, \dot{z}_{0}=0.11 \mathrm{~m} / \mathrm{s}, \omega=0.0011 \mathrm{~s}^{-1}, k=1 / 20$,
——— time-optimal

- energy-optimal
___ closest to the initial one then
$A=100.7 \mathrm{~m}, B=120.4 \mathrm{~m}, C_{1}=76 \mathrm{~m},|\mathbf{v}|=1.30 \mathrm{~m} / \mathrm{s}$.

The trajectory shape is closest to the initial one
$t_{e}=4380 \mathrm{~s}, t_{m}=5286 \mathrm{~s}, \Delta t=906 \mathrm{~s}$
$|\mathbf{v}|=1.3 \mathrm{~m} / \mathrm{s}, \Delta A=0.5 \mathrm{~m}, \Delta B=4.6 \mathrm{~m}$
The energy - optimum exchange
$t_{e}=1806 \mathrm{~s}, t_{m}=2424 \mathrm{~s}, \Delta t=618 \mathrm{~s}$
$|\mathbf{v}|=1.25 \mathrm{~m} / \mathrm{s}$
The time - optimum exchange
$t_{e}=925 \mathrm{~s}, t_{m}=1025 \mathrm{~s}, \Delta t=100 \mathrm{~s}$
$|\mathbf{v}|=2.86 \mathrm{~m} / \mathrm{s}$.

x, m

Relative trajectory

Errors analysis

Assume errors in mass ejecting mechanism.
Consider a manipulator capable to catch the mass in a sphere with radius R.

Errors in time
If the mass is ejected at time $t=t_{e}+\varepsilon_{t}$, then for previous example $\varepsilon_{t} \leq 1.13 \mathrm{~s}$, if $R=1 \mathrm{~m}$. Errors in velocity

Let separation velocity be $\delta \mathbf{v}+\boldsymbol{\varepsilon}$, then the ellipsoid of errors is
$R^{2} \omega^{2}=A \varepsilon_{x}^{2}+B \varepsilon_{y}^{2}+C \varepsilon_{z}^{2}+2 D \varepsilon_{x} \varepsilon_{z}$

where

$$
\begin{aligned}
& A=8(1-\cos u)+12 \sin u(\sin u-2 u)+9 u^{2} \\
& B=\sin ^{2} u, C=5+3 \cos ^{2} u-8 \cos u \\
& D=6(\sin u-u)(\cos u-1)
\end{aligned}
$$

For previous example $\varepsilon_{t} \leq 0.11 \mathrm{~cm} / \mathrm{s}$, if $R=1 \mathrm{~m}$.

Conclusions

- Formation flying control by mass exchange is proposed
- A set of optimization problems of concept is presented and solved
- The errors in ejecting/collecting mechanism could be estimated and accounted
- So, the mass exchange control concept could be applied successfully to solve a problem of relative motion maneuvering

Acknowledgments

- This work was supported by the Russian Foundation for Basic Research (Grants no. 14-01-31313, 13-01-00665)
- Also authors thank Mr. S. Trofimov for helpful discussions

Thank you for your attention!

