

Deployment and Maintenance of Nanosatellite Tetrahedral Formation Flying Using Aerodynamic Forces

<u>D. Ivanov</u>, M. Mogilevsky, U. Monakhova, M. Ovchinnikov, A. Chernyshov

Keldysh Institute of Applied Mathematics of RAS Space Research Institute of RAS

Motivation

- For an experimental study of the spatial distribution of the Earth magnetosphere parameters it is necessary to conduct simultaneous measurements at several points
- At least four satellites are required to carry out spatial measurements
- In the ideal case the satellites should fly so that they are always at the vertices of the regular tetrahedron
- To construct and maintain such a configuration the relative motion control must be applied
- For the Low-Earth Orbits the control can be performed using aerodynamic forces

MMS Mission – tetrahedral formation flying

Methods for Relative Motion Control in LEO

Thrusters		
Advantages	Disadvantages	
Full controllability	Fuel consumption limitation	
Maintenance of orbit	Expensive	

Aerodynamics		
Advantages	Disadvantages	
Inexpensively	Limitations on control source	
No need for engines	Special form of the satellite	
Not creating ionized cloud (Important for the study of the magnetosphere)	Active attitude system	

Problem Statement

- The launch of four 3U CubeSats in LEO is considered
- Each satellite has information about relative motion of all other satellites
- The control is performed using aerodynamic forces (each satellite is equipped by an attitude control system)
- It is necessary to develop a decentralized control algorithm for tetrahedral configuration Construction
 Decentralized control approach: each satellite decides how to control

independently of others

The scheme of the launch as for PlanetLabs CubeSats

Aerodynamic Force Model

Relative motion equation model:

$$\begin{cases} \ddot{x} + 2\omega \dot{z} = f_x, \\ \ddot{y} + \omega^2 y = f_y, \\ \ddot{z} - 2\omega \dot{x} - 3\omega^2 z = f_z, \end{cases}$$

Solar panel

The aerodynamic force model with lift component:

$$\vec{f}_i = -\frac{1}{m}\rho V^2 S\left\{ (1-\varepsilon)(\vec{e}_V, \vec{n}_i)\vec{e}_V + 2\varepsilon(\vec{e}_V, \vec{n}_i)^2\vec{n}_i + (1-\varepsilon)\frac{\upsilon}{V}(\vec{e}_V, \vec{n}_i)\vec{n}_i \right\}$$

In the orbital reference frame:

$$\vec{f}_i = \frac{1}{m} \rho V^2 S \begin{bmatrix} -2\varepsilon (\sin\theta_i)^3 + \eta(\varepsilon - 1)(\sin\theta_i)^2 + (\varepsilon - 1)\sin\theta_i \\ -\cos\theta_i \sin\theta_i (\eta - \varepsilon\eta + 2\varepsilon\sin\theta_i)\cos\varphi_i \\ -\cos\theta_i \sin\theta_i (\eta - \varepsilon\eta + 2\varepsilon\sin\theta_i)\sin\varphi_i \end{bmatrix}$$
$$n(\theta) = -2\varepsilon (\sin\theta)^3 + n(\varepsilon - 1)(\sin\theta)^2 + (\varepsilon - 1)\sin\theta_i$$

 $p(\theta_i) = -2\varepsilon(\sin\theta_i)^3 + \eta(\varepsilon - 1)(\sin\theta_i)^2 + (\varepsilon - 1)\sin\theta_i$ $g(\theta_i) = -\cos\theta_i \sin\theta_i(\eta - \varepsilon\eta + 2\varepsilon\sin\theta_i)$

IAC-18-B4.7.6 - Tetrahedral Formation Flying

Acceptable control region

Motion equations

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},$

Cost function

$$J = \int_{\tau}^{\infty} (\mathbf{e}^T \mathbf{Q} \mathbf{e} + \mathbf{u}^T \mathbf{R} \mathbf{u}) dt,$$

Feedback control is

$$\mathbf{u} = -\mathbf{R}^{-1}\mathbf{B}^T\mathbf{P}\mathbf{e}, \text{ where } \mathbf{e} = \mathbf{x} - \mathbf{x}_d,$$

matrix P is the solution of Riccati equation

$$\mathbf{Q} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{P} + \mathbf{P}\mathbf{A} + \mathbf{A}^T\mathbf{P} = \mathbf{0}.$$

 In the case of four satellites for each satellite the mean deviation vector is

$$\overline{\mathbf{e}}_i = \sum_{j=1}^3 \mathbf{e}_{ij} / 3, \quad \overline{\mathbf{u}}_i = -R^{-1}B^T P \overline{\mathbf{e}}_i$$

 Taking into account the force constraints the decentralized control is

$$\mathbf{u}_{i} = \begin{cases} -\mathbf{u}_{\max}^{x}, \text{ if } \overline{u}_{i}^{x} > u_{\max}^{x}, \\ -\mathbf{u}_{\max}^{yz}, \text{ if } 0 < \overline{u}_{i}^{x} < u_{\max}^{x}, \\ \text{ and } \sqrt{\left(\overline{u}_{i}^{y}\right)^{2} + \left(\overline{u}_{i}^{z}\right)^{2}} > u_{\max}^{yz}, \\ -\overline{\mathbf{u}}_{i}, \text{ if } 0 < \overline{u}_{i}^{x} < u_{\max}^{x}, \\ 0, \text{ if } \overline{u}_{i}^{x} < 0. \end{cases}$$

Reference Trajectories for Tetrahedral Configuration

- Two of the satellites are moving along the same circular orbit with a constant separation equal to 2D
- The other two satellites are moving along the circular relative trajectories

$$\begin{aligned} x_1 &= 2A\cos(\omega t - \arccos(1/3)), & x_3 = D, \\ y_1 &= A\sqrt{3}\sin(\omega t), & y_3 = 0, \\ z_1 &= A\sin(\omega t - \arccos(1/3)), & z_3 = 0, \end{aligned}$$
$$\begin{aligned} x_2 &= 2A\cos(\omega t), & x_4 = -D, \\ y_2 &= A\sqrt{3}\sin(\omega t + \arccos(1/3)), & y_4 = 0, \\ z_2 &= A\sin(\omega t). & z_4 = 0. \end{aligned}$$

Y. Mashtakov, S. Shestakov Maintenance of the tetrahedral satellite configuration with single-input control // Preprints of Keldysh Institute for Applied Mathematics. 2016. № 95. 27 p.

Numerical Study

КИ

Main parameters of the formation		
Number of satellites in the formation,	4	
Time interval between control calculation,	150 s	
Parameter of tetrahedron A	100 m	
Parameter of tetrahedron D	115 m	
Launch parameters		
Time interval between the launches,	10 s	
Ejection velocity,	0.5 m/s	
Ejection error deviation,	0.015 m/s	
CubeSats parameters		
Mass of satellite,	3 kg	
Difference between maximum and minimum value of the cross-	0.02 m ²	
Sectional area,	2	
LQK parameters		
Matrix R	diag ([1e-13; 1e-14; 1e- 14])	
Aerodynamic drag force parameters		
Constant atmosphere density,	kg/m ³	
Orbit altitude,	340 km	
Airflow velocity,	7.69 km/s	
Parameters and	0.1	
Maximum of the control source,	m/s²	

Relative Trajectories Deviations

И

Calculated and Implemented Control

 Due to aerodynamic force restrictions and decentralized control strategy the calculated and implemented control vectors are different

IAC-18-B4.7.6 - Tetrahedral Formation Flying

Calculated control vector

Implemented control vector

Construction and Resizing

- It is interesting to investigate the time that is needed to construct the tetrahedral formation flying depending on the launch conditions
- For magnetosphere measurements it is important to scale the size of the tetrahedron to investigate the magnetic effects at different scales

IAC-18-B4.7.6 - Tetrahedral Formation Flying

Conclusion

- The decentralized control scheme is proposed for the tetrahedral formation flying using the aerodynamic force with the lift component
- The proposed control scheme of the tetrahedral formation flying construction requires further investigation
- Active magnetic attitude control application should be studied in future work

The work supported by Russian Foundation for Basic Research, grant № 17-01-00449_a.

Thank you for attention!

Our web-site: http://keldysh.ru/microsatellites/eng/

IAC-18-B4.7.6 - Tetrahedral Formation Flying