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Abstract 
The problem of large slew maneuvers performing in the presence of prohibited areas is considered. It is shown 

that there is a modification of standard Lyapunov function that allows synthesising attitude control law that 

simultaneously ensures asymptotic stability of the required motion and avoids restricted areas. There are several 

issues that appear using this algorithm, such as new equilibriums that might be even asymptotically stable. All these 

problems are addressed in the paper.  
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1. Introduction 

Lyapunov-based attitude control algorithms offer 

good accuracy and robustness of the attitude control 

[1,2]. In addition, they are rather simple and can be 

easily implemented on-board the satellite. On the other 

hand, these algorithms have some peculiarities: they 

usually do not take into account the limitations that are 

imposed on the attitude. An example of such limitations 

is the presence of keep-out zones. They might appear 

because of sensitive equipment installed onboard the 

satellite, e.g. camera axis should not be aimed at bright 

objects. In present paper we discuss an approach that 

allows us to solve this problem. 

It must be noted that optimal control algorithms can 

be used to calculate slew maneuvers in the case of 

restricted areas presence. Unfortunately, they usually 

require much computational time. Though there are 

some techniques that allow reducing of this time, e.g. 

the particle swarm optimization [3], it still can be hardly 

applied for a real time attitude control. On the other 

hand, modification of Lyapunov-based control law, 

which is similar to the introduction of potential barriers, 

is able to ensure the maneuver performing and restricted 

area avoidance in real time.  

2. Problem statement 

The following right-handed Cartesian coordinate 

systems are used: 

1 2 3aO YY Y  – Inertial Frame: its origin aO  is located in 

the Earth center of mass, 1aO Y  is directed to the Vernal 

equinox of the J2000 epoch, 3aO Y  is orthogonal to the 

ecliptic plane. 

1 2 3Ox x x  – Body-Fixed Frame: its origin O  is 

located in the spacecraft center of mass, and the axes are 

its principal axes of inertia 

Keep-out zones are the cones with known axis 
ih  

and semiapex angle
i . During the rotation they are 

considered fixed in Inertial Frame. It is necessary to 

align given axis e (fixed in Body Frame, e.g. camera 

axis) with the given axis 
refe  (fixed in Inertial Frame). 

In addition, e should avoid keep-out zones. Obviously, 

the initial position of e , as well as required one
refe , are 

outside restricted regions. 

We consider the problem of performing rest-to-rest 

slew maneuvre in the presence of restricted attitudes. 

Usually such rotations do not require three axes attitude 

stabilization. In addition, single-axis stabilization 

control is much simpler for analysis. Hence, we will 

consider only the problem of single axis stabilization.  

3. Single axis stabilization 

In order to synthesize control algorithm for single 

axis stabilization we use Lyapunov direct method. The 

main idea of this method is to choose positive definite 

function V  (also called Lyapunov function) and, using 
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control, ensure that it satisfies Barbashin-Krasovsky-

LaSalle principle.  

Consider the most general case when it is necessary 

to align constant in Body Frame axis e  with given in 

Inertial Frame time-dependent
refe . In addition, it is 

necessary to provide a specific angular velocity  

 .ref ref ref ref  ω e ee   

  here is time-dependant scalar function. As we can 

see, this angular velocity ensures necessary motion of 

reference axis 
refe , i.e. 

ref ref ref e ω e . Let D  is 

direction cosine matrix that describes transfer from 

Inertial to Body Frame. Consider Lyapunov function 
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where J  is satellite tensor of inertia, 
absω  is its angular 

velocity. Equations of motion are 
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Here ,ext ctrlM M  are external and control torques 

respectively, and  
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Hence, time derivative of Lyapunov-function is  

    , ,a ref ref rel relkV    De e ω ωD e J . 

Expression ref ref ref e ω e  and equations of motion 

allow us to rewrite it: 

  .,rel rel a refV k ω DeωJ e   (1) 

Take into account time derivative of relative angular 

velocity: 
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After substitution it into (1) and ensuring that 

Lyapunov function derivative is nonpositive, we obtain 

the following control law: 

 
ctrl rel a ref a

f

bs abs

abs extre ref

k k  



   



ω e ω JM ω

ω ω

De

J JDD ω M
  

where ,ak k  are positive constants.  

Obtained control law is suitable for any single-axis 

attitude tracking. However, in the case of inertial 

stabilization it takes much simpler form 

 
ctrl rel a ref abs abs extkk    ω e ω JM ω MDe . 

Suggested control ensures asymptotic stability of 

required motion, hence it provides decent accuracy even 

in the presence of unaccounted disturbances. 

4. Restriction avoidance 

There are several techniques that allow us to 

perform slew maneuvre and avoid restricted areas. Most 

of them utilize either optimal control or technique 

similar to energy barrier construction [4–6]. The 

technique we suggest here can be related to the latter 

ones. As we have seen in previous section, Lyapunov-

based attitude control ensures that Lyapunov function 

never increases. Hence, if in restricted areas it is 

sufficiently large, the satellite would never enter them.  

Consider almost the same Lyapunov function as in 

the previous section: 

      
1

1 , 1 ,
2

refV F    ω ωDe e J  . 

Here F  is a scalar function that depends on e and 

ensures restricted area avoidance, ω  is satellite angular 

velocity ( 0ref ω  and index abs is omitted). Function 

F  can be chosen in different ways. Let us choose it as 

follows: 
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Here 
ih  is axis of i-th keep-out cone, 

ia  corresponds to 

its semiapex angle, ,i i iH b a  are positive constants. 

Constant 
ib  can be described as a boundary where the 

presence of keep-out cone starts affecting the satellite 

motion. This function equals zero when the satellite is 

far from keep-out cones, equals 
iH  when it is inside the 

i-th cone and between this positions it is smoothly 

connected.  

In order to obtain control law we have to take time-

derivative of Lyapunov function. Technique is the same 

as one described in Sec. 3. After the mathematics: 
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The first raw of this expression corresponds to the 

conventional single-axis stabilization. Additional terms 

appear only when satellite enters the vicinity of 

restricted region.  

 

4.1 Saddle points 

Consider the following simulation:  

 There is no external torques affecting the satellite 

 Only one keep-out cone 

 Tensor of inertia   2diag 2,3,4 kg m J   

 It is necessary to align third axis of Body Frame 

with third axis of Inertial Frame.  

As we can see in Fig. 1, satellite successfully avoids 

restricted area. However, for almost the same initial 

conditions, convergence time greatly increases (see 

Fig. 2). It is due to the fact that suggested control 

creates two additional equilibriums along the 

“meridian” of the sphere: one of them is unstable, and 

the other one is saddle, so it has one asymptotically 

stable manifold and one unstable. If initial conditions 

are near this meridian, it will take a lot of time to get out 

of saddle point. Hence, it is necessary to somehow 

avoid them. Introduce the following disturbance that act 

in the vicinity of the saddle point: 
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 Here s  is saddle point radius-vector, d is positive 

constant that corresponds to the size of the area 

where disturbance applied, G is the maximum 

magnitude of the disturbance. This disturbance helps 

to evade saddle point much faster (see Fig. 3).  

 

 

 

 

 
Fig. 1. Attitude control performance 
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Fig. 2. Saddle point 

 

 

 

 

 
 

Fig. 3. Saddle point avoidance 

 

4.2 Asymptotically  stable equilibriums 

Another peculiarity of suggested control law arises 

in the case when two restricted cones intersect. It might 

create additional asymptotically stable equilibrium, so 

satellite might get stuck in this point (see Fig.4). 

Solution of this problem might be the change of 

Lyapunov function: for example, two restricted cones 

might be included in one bigger cone. However, this 

might be inappropriate, because resulting cone is too 

large. Therefore, it is suitable to choose another figure 

on the sphere that includes both cones. We suggest to 

use “ellipses”. It is the locus of the points which are on 

the same (spherical) distance from two “focuses”. In 
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other words, these points should satisfy two conditions. 

Firstly, they must be located on a sphere. Secondly 

    21acos , acos , L p h p h   

In previous sections functions 
if  depend on dot 

product  , ie Dh . For ellipses it is suitable to choose the 

same functions, but now it should depend on 

   21acos , acos ,p h p h . Therefore control torque is 
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Here  
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It should be mentioned that for this control there is 

again the problem of saddle points. It can be solved in 

the same way as for the cones. In Fig. 5 simulation for 

the general case (several cones, one ellipse) is provided. 

As we can see, all restricted areas are successfully 

avoided. 

5. Conclusions  

In present paper direct Lyapunov method was used 

for attitude control synthesis in the presence of 

restrictions. In order to avoid keep-out zones a 

modification of the standard Lyapunov function was 

suggested. Two problems that might affect convergence 

rate of the control algorithm were discussed.  

In order to avoid saddle points an additional 

disturbance torque was introduced. It allows us to leave 

vicinity of saddle point much faster.  

In the case when two restricted cones intersect new 

asymptotically stable equilibrium appears. To solve this 

problem it was suggested to replace two cones by 

ellipse.  

Suggested control law might be used either to 

control the satellite directly or to generate the reference 

attitude motion, which afterwards is implemented by 

conventional Lyapunov-based control.  

Acknowledgements  

This work is supported by Russian Science Foundation 

(grant no. 17-71-20117) 

List of references  

1. Mashtakov Y.V., Ovchinnikov M.Y., Tkachev 

S.S. Study of the disturbances effect on small 

satellite route tracking accuracy // Acta 

Astronaut. 2016. Vol. 129. P. 22–31. 

2. Tsiotras P. New Control Laws for the Attitude 

Stabilization of Rigid Bodies // 13th IFAC 

Symposium on Automatic Control in 

Aerospace. 1994. P. 316–321. 

3. Melton R.G. Hybrid methods for determining 

time-optimal, constrained spacecraft 

reorientation maneuvers // Acta Astronaut. 

Elsevier, 2014. Vol. 94, № 1. P. 294–301. 

4. McInnes C.R. Large angle slew maneuvers with 

autonomous sun vector avoidance // J. Guid. 

Control. Dyn. 1994. Vol. 17, № 4. P. 875–877. 

5. Salama O. Autonomous Spacecraft Attitude 

Constraints Avoidance // Proceedings of the 

65th IAC. 2014. P. 9. 

6. Shen Q., Goh C.H., Yue C. Constrained attitude 

control of agile spacecraft using CMGs // 

Region 10 Conference (TENCON). 2016. P. 

3664–3669. 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  

Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-18-C1.4.7                           Page 6 of 6 

  

 

 

 

 

 
 

 
 

Fig. 4. Asymptotically stable equilibrium 

 

 

 

 

 

 

 
Fig. 5. Simulation in general case with enabled saddle point avoidance 


