

69th International Astronautical Congress Bremen, 1-5 October 2018

Lyapunov control for attitude maneuvers with restricted areas

Yaroslav Mashtakov

Stepan Tkachev

Sergey Shestakov

Keldysh Institute of Applied Mathematics of RAS

Introduction

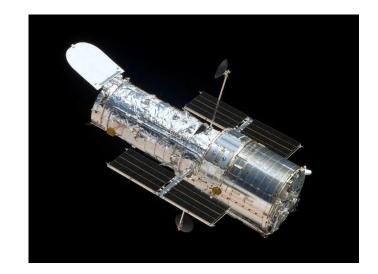
We want to change satellite attitude

Restrictions:

- Camera cannot be aimed at bright objects
- Solar panels are directed to the Sun

Possible approaches:

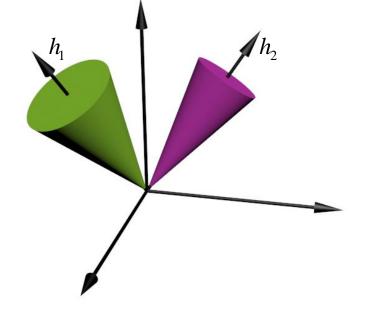
- Optimal control
 - 🗸 Fast
 - Complicated for on-board computation
- Direct Lyapunov method
 - ✓ Rather simple control expressions
 - Asymptotic stability (robust)
 - × Not time optimal



Problem statement

What do we know?

- Satellite parameters
- Restricted areas (fixed in Inertial Frame cones)
- Camera axis
- Initial and desired attitude
- Initial and desired angular velocity equal to zero



What do we want?

- Perform slew maneuver
- Avoid restricted cones

Lyapunov-based control

- Simple control expressions
- Ensures asymptotic stability of the reference motion
- Robust

Main idea:

- Positive definite function (Lyapunov function)
- Control ensures Barbashin-Krasovsky-LaSalle principle satisfaction

Examples

Single-axis attitude control

Function:

$$V_{0} = \frac{1}{2} \left(\boldsymbol{\omega}_{rel}, \mathbf{J} \boldsymbol{\omega}_{rel} \right) + k_{a} \left(1 - \left(\mathbf{D} \mathbf{n}_{ref}, \mathbf{n} \right) \right)$$
$$\boldsymbol{\omega}_{rel} = \boldsymbol{\omega}_{abs} - \mathbf{D} \left(\mathbf{n}_{ref} \times \dot{\mathbf{n}}_{ref} + \Omega \mathbf{n}_{ref} \right) = \boldsymbol{\omega}_{abs} - \mathbf{D} \boldsymbol{\omega}_{ref}$$

Control:

$$\mathbf{M}_{ctrl} = -k_{\omega}\boldsymbol{\omega}_{rel} - k_{a}\mathbf{D}\mathbf{n}_{ref} \times \mathbf{n} + \boldsymbol{\omega}_{abs} \times \mathbf{J}\boldsymbol{\omega}_{abs} - \mathbf{J}\boldsymbol{\omega}_{abs} \times \mathbf{D}\boldsymbol{\omega}_{ref} + \mathbf{J}\mathbf{D}\dot{\boldsymbol{\omega}}_{ref} - \mathbf{M}_{ext}$$

Three-axis attitude control

Function:

$$V_{0} = \frac{1}{2} (\boldsymbol{\omega}_{rel}, \mathbf{J}\boldsymbol{\omega}_{rel}) + k_{q} (1 - q_{0})$$
$$\boldsymbol{\omega}_{rel} = \boldsymbol{\omega}_{abs} - \mathbf{A}\boldsymbol{\omega}_{ref}$$

Control:

$$\mathbf{M}_{ctrl} = -\mathbf{M}_{ext} + \mathbf{\omega}_{abs} \times \mathbf{J}\mathbf{\omega}_{abs} + \mathbf{J}\mathbf{A}\dot{\mathbf{\omega}}_{ref} - \mathbf{J}[\mathbf{\omega}_{rel}]_{\times} \mathbf{A}\mathbf{\omega}_{ref} - k_q \mathbf{q} - k_{\omega}\mathbf{\omega}_{rel}$$

 $(q_0, \mathbf{q}), \mathbf{A}$ – quaternion and DCM from Reference to Body Frame \mathbf{D} – DCM from Inertial Frame to Body Frame $\boldsymbol{\omega}_{abs}, \boldsymbol{\omega}_{rel}, \boldsymbol{\omega}_{ref}$ – absolute, relative and reference angular velocity

Principal Idea

- We will use single axis attitude control
- It does not include restriction avoidance
- Modify Lyapunov function, so in restricted area it is very large
- Control ensures that Lyapunov function always decreases, hence we will never enter restricted areas
- Similar to the potential barrier introduction

Modification of Lyapunov Function

We will use this modification

$$V = \frac{1}{2} \begin{pmatrix} \boldsymbol{\omega}_{rel}, \mathbf{J}\boldsymbol{\omega}_{rel} \end{pmatrix} + k_a \left(1 - (\mathbf{D}\mathbf{n}_{ref}, \mathbf{n}) \right) f$$

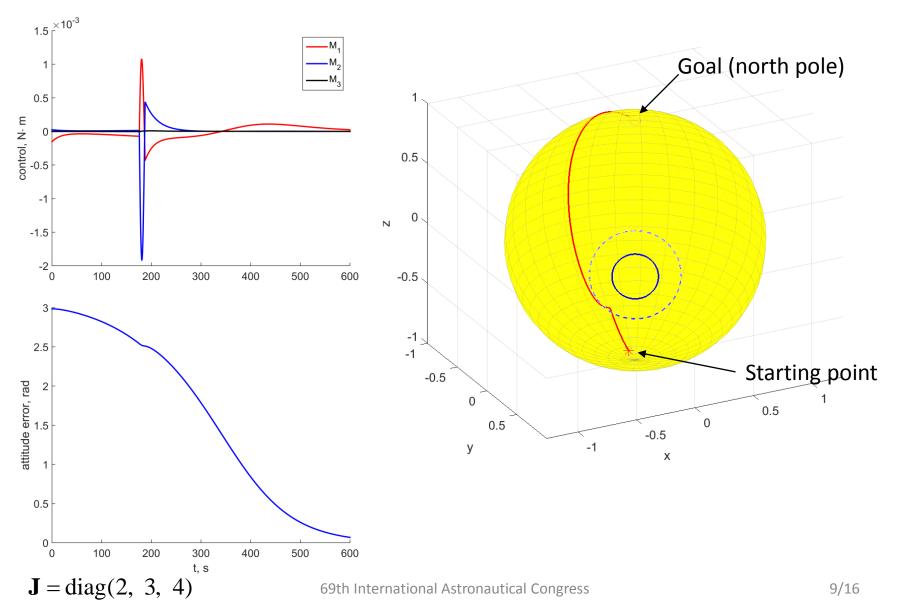
$$f = 1 + \sum_{k=1}^n f_i, \quad f_i = \begin{cases} H_i & \lambda_i < 0\\ H_i \left(-3\lambda_i^2 + 2\lambda_i^3 + 1 \right) & 0 \le \lambda_i \le 1, \quad \lambda_i = \frac{\operatorname{acos}\left(\mathbf{n}, \mathbf{h}_i\right) - a_i}{b_i - a_i} \\ 0 & 1 < \lambda_i \end{cases}$$

- Additional control will affect the motion only near restricted areas
- *f* is cubic Hermit spline, continuously differentiable
- Depend only on angle λ_i between cone axis \mathbf{h}_i and camera axis \mathbf{n}
- a_i, b_i, H_i correspond to the size and "height" of the cone

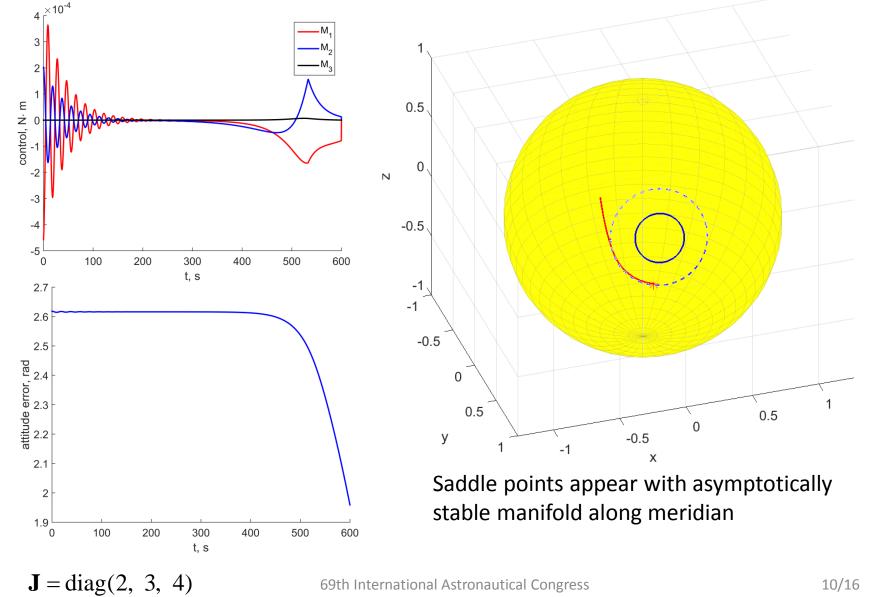
Attitude control

- Reference motion is inertial stabilization, $\omega_{rel} = \omega_{abs}$
- Take time derivative of V and ensure satisfaction of B.-K.-L. theorem
- Expression for the control torque

Simulation results



Pecularities



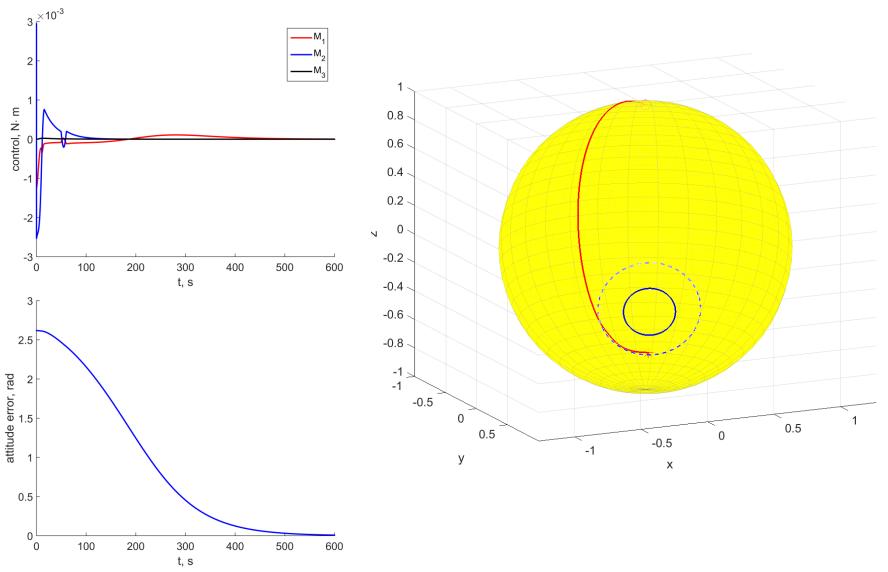
Saddle point avoidance

- Saddle point might greatly affect convergence time
- We will add disturbance in the vicinity of saddle point
- Principal idea is to increase angular velocity along the lattitude
- Disturbance torque (s is unit vector to a saddle point on a sphere):

$$\mathbf{M}_{dist} = \operatorname{sign}\left(\left(\boldsymbol{\omega}_{abs}, \mathbf{n}_{ref} \times \mathbf{n}\right)\right) \mathbf{J} \frac{\mathbf{n}_{ref} - \mathbf{n}\left(\mathbf{n}_{ref}, \mathbf{n}\right)}{\left|\mathbf{n}_{ref} - \mathbf{n}\left(\mathbf{n}_{ref}, \mathbf{n}\right)\right|} g,$$

$$g = \begin{cases} G\left(2\mu^3 - 3\mu^2 + 1\right) & \mu \le 1\\ 0 & \mu > 1 \end{cases}, \quad \mu = \frac{\operatorname{acos}(\mathbf{n}, \mathbf{s})}{d} \end{cases}$$

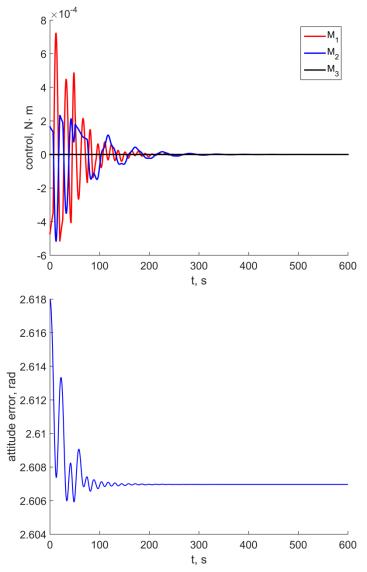
Saddle point avoidance

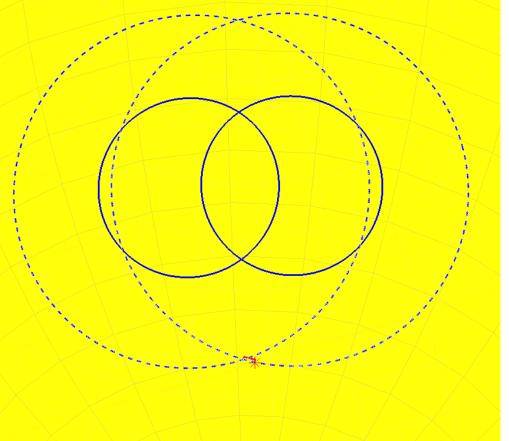


69th International Astronautical Congress

12/16

Several keep-out cones





When two cones intersect new asymptotically stable equilibrium might appear

Avoidance of as. stable equilibriums

- We cannot apply suggested control in case of two intersected cones
- It is necessary to "cover" intersected cones by something else
- We suggest to use ellipses: it is the locus of points for which the following is satisfied:

$$|\mathbf{P}| = 1$$
, $\operatorname{acos}(\mathbf{P}, \mathbf{F}_1) + \operatorname{acos}(\mathbf{P}, \mathbf{F}_2) = L$

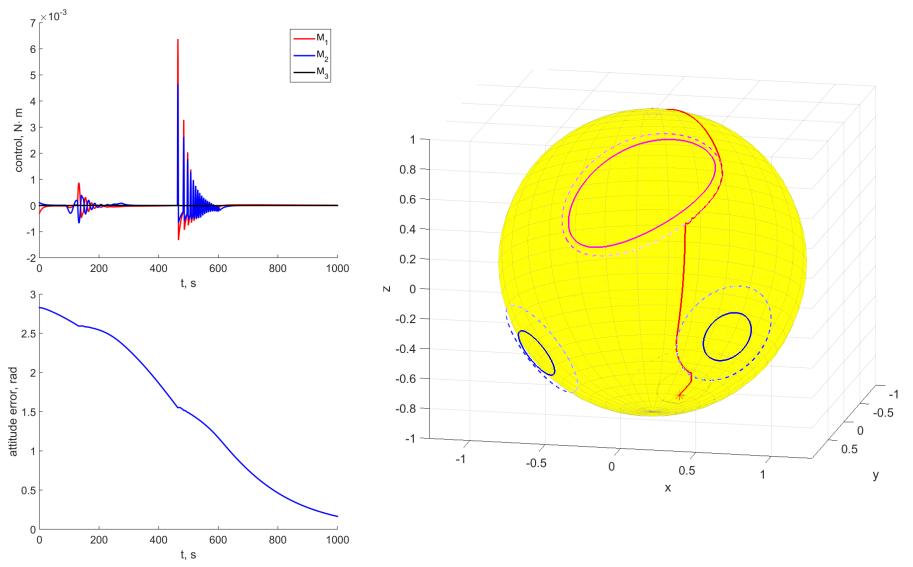
 $\mathbf{F}_1, \mathbf{F}_2$ are the ellipse focuses

Control torque

$$\mathbf{M}_{ctrl} = -M_{ext} - k_{\omega} \mathbf{\omega}_{abs} + \mathbf{\omega}_{abs} \times \mathbf{J} \mathbf{\omega}_{abs} - k_{a} \left[\mathbf{n}_{ref} \times \mathbf{n} \right] + k_{a} \left(1 - \left(\mathbf{n}_{ref}, \mathbf{n} \right) \right) \sum_{i=1}^{n} \frac{H_{i} \left(6V_{i}^{2} - 6V_{i} \right)}{B_{i} - A_{i}} \left(\frac{\mathbf{n} \times \mathbf{F}_{1}^{i}}{\sqrt{1 - \left(\mathbf{n}, \mathbf{F}_{1}^{i} \right)^{2}}} + \frac{\mathbf{n} \times \mathbf{F}_{2}^{i}}{\sqrt{1 - \left(\mathbf{n}, \mathbf{F}_{2}^{i} \right)^{2}}} \right) - k_{a} \left[\mathbf{n}_{ref} \times \mathbf{n} \right] (f - 1)$$

69th International Astronautical Congress

Simulation in general case



69th International Astronautical Congress

15/16

Conclusion

- The attitude control algorithm that takes into account keep-out cones is suggested
- Several cases when this approach might fail or give unsatisfying results are considered, and solution for them is suggested
- Control torques are find analytically, they can be easily calculated onboard
- Control law can be used in two ways: "as is" during the mission, or as a tool of reference motion construction

This work is supported by Russian Science Foundation (grant no. 17-71-20117)