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Abstract 
The paper considers the problem of maintaining a specific satellite structure mainly in connection with the 

problem of exploring the Earth’s magnetic field. To provide accurate results in this case it is necessary to perform 

measurements not just in several different points of space: the satellites should form a 3-dimensional formation in 

space. Therefore, the minimal amount of satellites needed to perform such a measurement is four. Moreover, they 

should form the particular tetrahedral structure, which should not be degenerate and must remain as constant as 

possible. The goal of the present paper is to find reference motion of four satellites that is suitable for this description. 

We use assumptions that the satellites move along near circular orbits and major semiaxes of each satellite orbit are 

equal to prevent relative drift. Two satellites of the formation move on the same orbit. In the paper we define 

analytically such initial conditions and therefore such reference motion of satellites that the tetrahedron they form 

preserves its volume and shape in a linear model of motion. We also define an index describing the distortion of the 

tetrahedron, and show that the optimal solution approximately keeps the geometry fixed. General expressions for the 

initial parameters are obtained. Moreover, a simple atmospheric control algorithm, based on Lyapunov direct method 

that extends time of non-degenerate formation motion in the presence of J2 disturbance is provided. 

Keywords: tetrahedral formation, drag control, Lyapunov based control 

 

Acronyms/Abbreviations 

Inertial Reference Frame (IRF). 

Orbital Reference Frame (ORF). 

Clohessy-Wiltshire (CW) 

Low Earth Orbit (LEO) 

 

1. Introduction 

Formation flying is known as a particularly effective 

concept of nanosatellite mission arrangement. Among 

others, this type of arrangement provides different 

points of view for the observations, which is very useful 

in certain situations. Particular attention is attracted to 

the constellation concepts that imply the satellites to fly 

following a given geometry. Among the successful 

constellations flying in formation of this type there are 

PRISMA, GRACE, and other missions [1–5].  

The present paper is especially focused on the 

Magnetospheric Multiscale Mission (MMS). For this 

mission four satellites need to fly in a tetrahedron 

formation in a highly elliptical orbit. The goal is to keep 

the geometry of the tetrahedron as constant as possiblex. 

However, we will consider the case when satellites fly 

in circular Low Earth Orbits. We define an index 

describing the distortion of the tetrahedron and show 

that the optimal solution approximately keeps the 

geometry fixed. 

Under the influence of external disturbances, e.g. 
2J  

perturbation, the satellites do not keep the necessary 

tetrahedron configuration. Moreover, the distance 

between them might increase over time. Therefore, the 

active control is necessary. 

The paper organised as follows. In Section 2 we give 

the statement of the problem. In Section 3 we introduce 

a distortion parameter and derive necessary and 

sufficient conditions for its preservation. In Section 4 

we obtain particular initial conditions for the problem. 

In addition, using numerical simulation we show that in 

real model of motion that includes 
2J  perturbation the 

tetrahedron degrades over time. In Section 5 we present 

a simple control law that allow us to extend lifetime of a 

formation. In Section 6 we provide numerical 

simulation of the suggested control.  

2. Problem statement and motion model 

Let us consider the following problem  
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 Four satellites orbit passively on near 

circular orbits, major semiaxes of their 

orbits are equal. 

 Two of them move along the same circular 

orbit with some initial shift. 

 Four satellites together form a tetrahedron 

for which we want to define some 

mathematical equivalent of size and shape. 

 We need to find the initial parameters for 

the satellites motion so that the tetrahedron 

does not change its size and shape over 

time at least approximately 

 Also, the tetrahedron should never reach 

zero volume. 

 Moreover, we want to construct a simple 

control algorithm to maintain shape of the 

tetrahedron in a presence of disturbances. 

We use the following right-handed Cartesian 

reference frames: 

IRF. Its center O
 is at the Earth center of mass, the 

axis O Z
 is directed along the Earth axis of rotation, 

the axis O X
 is directed to the vernal equinox 

corresponding to the epoch J2000. 

ORF. Its center O  is at the one of satellites, the axis 

Ox  is directed along the radius vector of the point O  

away from the Earth, the axis Oz  is normal to the 

orbital plane and is directed along the orbital 

momentum. 

The center of ORF is located in one of the satellites 

that is moving along the circular orbit. Without loss of 

generality we refer to this satellite as “the fourth”. Its 

motion in ORF is described by 

 4 4 4 4( ) ( ), ( ), ( ) 0,0,0 .t x t y t z t   r   

Our assumptions allow us to describe the relative 

motion of other satellites using the linearized CW 

equations: 

 

2

2

2 3 0,

2 0,

0,

x ny n x

y nx

z n z

  

 

 

  

where 3/n    is the mean motion,   is the 

Earth gravitational parameter,   is the radius of 

circular orbit. Orbits major semiaxes being equal 

guarantees periodic motion of each satellite in ORF, so 

the tetrahedron size is bounded over time. This motion 

is described then by equations 

 

( ) sin cos ,

( ) 2 cos 2 sin ,

( ) sin cos ,

i i i

i i i i

i i i

x t A B

y t A B C

z t D E

 

 

 

 

  

 

  (1) 

where nt   . Here , , , ,i i i i iA B C D E  are constants 

depending on the initial values of motion, index i  

attains values 1, 2, 3. The motion of the fourth satellite 

is described by the same set of equations with all the 

constants being equal to zero. 

3. Size and shape of tetrahedron 

We now derive the conditions for the tetrahedron to 

preserve size and shape. In this section we do not use 

the fact that two satellites move along the same orbit, 

rather we define size and shape in general case of 

tetrahedron.  

The natural measure for the size of the tetrahedron is 

volume . In ORF the volume has the form 

 
1 4 2 4 3 4 1 2 3

1 1
det , , det , , .

6 6
    r r r r r r r r r   

Substituting 
ir  with values from (1) we obtain 

volume as trigonometric polynomial of    

 
3 3 2 2

2 2

6 sin cos sin cos sin cos

sin cos sin cos .

P Q R T

U V W

     

   

   

  
  

The coefficients in the polynomial depend on initial 

conditions, i.e. on , , , ,i i i i iA B C D E . For the volume  

of the tetrahedron to remain constant it is necessary that 

 
P = Q = T = W = R = 0,

U = V.
  

Under these conditions, the volume is equal to 

6U , hence they are also sufficient. 

We want the tetrahedron to be non-degenerate. To 

simplify notation we combine constants , , , ,i i i i iA B C D E  

in (1) in vectors. Let 1 2 3, ,A A AA , vectors , , ,B C D E  

are defined analogously. 

With this notation and after appropriate 

simplifications conditions have the form  

 

( , , ) ( , , ),

0 ( , , ) 0,

0 ( , , ) 0,

0 ( , , ) ( , , ),

0 ( , , ) 0,

0 ( , , ) 0,

P

Q

W

R

U V

T

 

  

  

  

 

  





C D A C E B

B A D

A E B

C D B C A E

B A E

A D B

  (2) 

where ( , , )X Y Z  is mixed product of three 

vectors X , Y  and Z . 

If , , ,A B C D or E  is equal to zero, then 0  that 

should be avoided. If none of these vectors are equal to 

zero, then from (2) we can derive that all four of them 

should be coplanar. If A  and B  are collinear, again 

0 . If A  and B  are not collinear then they form a 
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basis in a plane and coplanar D , E  are expressed as 

linear combinations 

 
,

,

a b

c d

 

 

D A B

E A B
  

so that  

 
( , , ) ( , , ),

( , , ) ( , , ),

b c

a d





C B A C A B

C A B C A B
  

which eventually leads to b c  , a d . 

With such a conditions the volume  could be 

calculated from the formula  

 ( , , ).
6

b
 A C B   

The coefficient b  should not be equal to zero in all 

subsequent calculations. 

Unlike the volume, the shape of the tetrahedron does 

not have simple geometric or algebraic interpretation, 

partially due to the fact that the tetrahedron is not fully 

described by lengths of its edges. We do not demand the 

similarity of the tetrahedron in each moment of time, 

instead we use one parameter that depicts the shape of 

the tetrahedron in average. We also assume that 

conservation of this parameter implies conservation of 

the shape at least approximately. This parameter, which 

here and below is called the tetrahedron quality, is 

described as 

 
 

2/3
3

12   

Here  is the volume,  is the sum of squares of 

the tetrahedron edge lengths. For regular tetrahedron 

1  and for degenerate one (when four satellites lie in 

the same plane) 0 . 

Similar to the volume derivation we derive the 

expression for :   

 2 2 2 2 2 2

1 2 1 3 2 3 1 2 3( ) ( ) ( ) .        r r r r r r r r r   

After substitutions, reductions of terms and all 

simplifications the derivation for  is a trigonometric 

polynomial. In general the polynomial has the form 

 
2 2cos cos sin sin

cos sin

P Q R

T U W

   

 

  

  
  

The necessary and sufficient conditions for 

conservation of   have the form 

 
0,

.

Q T U

P R

  


  

Using volume conservation expressions we can 

simplify the equations. Finally, for the non-degenerate 

tetrahedron preserving its volume and quality (size and 

shape) vectors A  and B  must be non-collinear and the 

following expressions must be true 

 

 
 

 

1 1 2 2 3 3

1 2 1 3 2 1

2 3 3 1 3 2

2 2 2 2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

1 2 1 3 2 3

1 1 2 3

2 2 1 3

3 3 1 2

1 1 2 3

2 2 1 3

3

,

,

3 3 3

0,

3

2

2 0,

(3 )

(3 )

(3 ) 0,

(3 )

(3 )

a b

b a

A B A B A B

A B A B A B

A B A B A B

B B B A A A

A A A A A A

B B B B B B

C A A A

C A A A

C A A A

C B B B

C B B B

C

 

  

 

  

   

    

  

   

 

  

   

 

  



D A B

E A B

3 1 2(3 ) 0.B B B  

  (3) 

To fully describe all possible configurations 

preserving volume and quality one should solve this 

system for unknown vectors , , ,A B C D  and E . This is 

the system of 10 equations with 15 variables so the 

solutions are 5-parametric families. Two of the 

parameters are the constants a  and b . One parameter 

should be proportional to the volume of the tetrahedron 

because enlarging or shrinking of the tetrahedron does 

not affect the quality. The fourth parameter is the initial 

phase of the motion, because nt   changes from 0 to 

2  over time, so adding arbitrary number to the phase 

of all satellites in a group does not change the motion. 

The fifth parameter could be found using the following 

observation:  vector C  has three components, but only 

two last equations depend on them, so C  could be 

found only up to a factor. This arbitrary factor is the 

fifth parameter – in our case it is the shift between two 

satellites orbiting on the same orbit. Note that the 

satellite renumbering does not affect the dynamics, so 

we refer two different solutions obtained from each 

other by renumbering the satellites to a single family of 

solutions. 

4. Particular solutions analysis 

In a search for particular solutions we do the 

following variables change 
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1 1

2 2

3 3

cos , sin ,

cos , sin ,

cos , sin ,

A B

A B

A B

   

   

   

 

 

 

  

here , ,     -- amplitudes of oscillations of first, 

second and third satellites in ORF respectively, , ,    

are the initial phases. 

Now we use our main simplifying assumption: two 

satellites, the third and the forth are on the same orbit, 

so the third satellite rests in ORF. That means 0  . 

 
   

   

2 2

2 2

2 cos( ) 3 cos 2 cos 2 ,

2 sin( ) 3 sin 2 sin 2 .

      

      

  

  
  

Moreover, nt   changes from 0  to 2  upon the 

motion, so we choose initial moment of time so 

that 0  .  The only non-degenerate solution is 

 

,

1
cos .

3

K 



 


  

Here K  represents the linear size of tetrahedron 

(average length of edge) and   is the phase shift 

between the first and the second satellites. When   is 

again nonzero arbitrary phase angle we obtain initial 

conditions 

 

 

 

 

 

1

2

3

1

2

3

6 / 3cos 3 / 3sin ,

6 / 3cos 3 / 3sin ,

0,

3 / 3cos 6 / 3sin ,

3 / 3cos 6 / 3sin ,

0.

A K

A K

A

B K

B K

B

 

 

 

 

 

 



  

 



  

Substituting obtained relations in (3) we obtain  

 1 2 3, 2C cC C c     

with arbitrary .c  Combining it with  

 
,

,

a b

b a

 

  

D A B

E A B
  

we obtain full solutions to the problem of initial 

values with , , , ,K a b c  being parameters. 

In this case  

 

2

2 2 2 2

2 2
( , , ) ,

6 9

8
( 5) 8 .

3

b
cK b

K a b c

 

   

A C B

  

As being expected, neither volume, nor quality 

depends on   in linear case. 

The maximum of quality is achieved when 

5
0, 5,

3
a b c K      and is equal to 

3

1

5
max    

Fig. 1 shows the evolution of the formation quality 

in the nonlinear motion model including 
2J  

geopotential harmonic, depending on the relative orbits 

of the satellites for an orbit 10 000 km radius. Different 

plots contain the information of tetrahedron degrading 

for different tetrahedron size; the graphics look alike, 

but the scale of y -axis is different, black line represents 

conserving quality in linear model.  

Fig. 2 depicts quality changing for 40 000 km orbit, 

as can be seen due to the absence of 
2J  disturbance, the 

quality exhibits much more regular behaviour. 

2000 mK   is presented on both figures for 

comparison. 

Fig. 3 shows the visualization of the resulting 

tetrahedron. 

 

Fig. 1. Quality evolution over time for 10 000 km orbit 

 
Fig. 2. Quality evolution over time for 40 000 km orbit 
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Fig. 3. Tetrahedron evolution 

 

5. Atmospheric control algorithm 

Simulations show that for high orbits degradation 

of the tetrahedron quality is rather small, so active 

control of relative orbits is not necessary. However, at 

LEO tetrahedron degradation rate leaves much to be 

desired so some control algorithm, for example using 

thrusters [6], is necessary. 

The motion model including non-linearity and 

control is of the form 

 

2

2

2 3 ,

2 ,

,

x x

y y

z z

x ny n x g u

y nx g u

z n z g u

   

  

  

  

Introduce new variables , , ,, ,A B C D   : 
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sin 2 ,

cos ,

2 cos ,

2 sin 3 ,

sin ,

cos .

x

y

x A C

An

y A D

An Cn

z

Bnz

B 











 



 

  





  

Their derivative in accordance with equations of 

motion can be written as follows: 

 

    

 

 

 

 

    

1
cos 2 sin ,

1
cos ,

1
,

2
3 ,

1
sin .

1
sin 2 cos .

x x y y

z z

y y

x x

z z

x x y y

A u g u g
n

u g
n

С u g
n

D Cn u g
n

n u g
nB

n

B

u g u g
An



 

 

  

   

 

 

   

  

    

  

The physical meaning of new variables is closely 

related to the meaning of CW constants: the relative 

trajectory is close to ellipse with semiaxes A  and B , 

this ellipse drifts from the origin of ORF with rate C  

and initial shift D . Also,   and  correspond to the 

position of the satellite on the relative orbit. The 

motion orthogonal to the orbit plane is quasiperiodic 

and therefore is not much of an interest.  

The relative orbit size changes slowly with respect 

to shift and drift that can change rapidly and with 

increasing rate. So the first step of a control algorithm 

should nullify drift and set shift to a desired value  

 00, .ref refC D D    

In order to increase lifetime of the satellite it 

would be useful to suggest fuelless control algorithm. 

For example, we can use atmospheric drag. It means, 

that control can be applied only along the velocity 

vector of the satellite, i.e. 0x zu u  . Here we do not 

take into account the possible reflection of air 

molecules from the satellite body, i.e. aerodynamic 

lift – we will consider it as a disturbance and, as well 

as other disturbances, will not include it in control 

synthesis. Hence, simplified system dynamics is 

 

2 sin
,

,

3 .

y

y

u
A

n

u
С

n

D Cn






 

  

For control construction we use Lyapunov direct 

method. Consider the Lyapunov-candidate function  

  
2

2 , 0.D ref DV C k D D k      

Its derivative is 

  3 .D r f

y

e

u
C DV nk

n
D

 
  

 
  

If , 0c ck CV k  , the derivative is non-

positive and equal to zero on set containing only one 

whole trajectory 0, .refC D D   According to 

Barbashin-Krasovski-LaSalle theorem the control 

  23 D rey cfu k D Dn k C     

provides asymptotic stability of a desired motion. 

However, due to the presence of external disturbances 

this control will only ensure that drift and shift of the 

orbit are within the vicinity of the required ones. 

In addition to shift elimination, we should also 

provide the correct size of relative orbit 

 .refA A   

We suggest simple idea: when shift and drift are 

within acceptable vicinity of required values, control 

should work only when it helps to achieve correct 

size of relative orbit i.e. when 

  sign sin 0ref yA A u   
 

  

otherwise control equals to zero. Such an 

algorithm provides desired zero drift, shift and size of 

relative orbit. 

It should be noted that drag gives us an 

opportunity to produce control only in the direction 

opposite to the current satellite velocity. However, 

since we got two satellites, one of which is located in 

the origin of ORF, total control can be described by 

 rsay git o i nu f f    

where originf  affects the satellite located in the 

origin of ORF and 
satf  affects the other one. Hence, it 

is possible to create control not only in the direction 

opposite to the velocity, but also in the same direction. 

We now apply designed control algorithm to 

maintain the tetrahedron. Since we got four satellites 

(the fourth is located in the origin of ORF), the 

following control scheme is suggested. For three 
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satellites the reference values of shift, drift and 

relative orbit is set. For each of them ideal necessary 

control is calculated separately, so we have three 

different (in general case) values of required control. 

Therefore, 

 

,1 ,1

,2 ,2

,3 ,3

,

,

,

sat origin y

sat origin y

sat origin y

f f u

f f u

f f u

 

 

 

  

must be satisfied. This system consists of three 

equations and three variables. Also, there are 

additional constraints: 

 
, max max0 .0, ori isat i g nff f f      

The ambiguity can be solved as follows.  

The first step ensures that all forces applied are 

nonnegative: 

 
 

,1 ,2 ,3 ,1 ,2 ,3

,1 ,2 ,3

: 0,

min

, , , ,

, ,0

,

,

origin sat sat sat y y y

y y y

f f f u u

u

f

u u

u


  

The second step takes into account the magnitude 

constraint 

 

 
max

,1 ,2 ,3

,1 ,2 ,3

,1 ,2 ,3

:, , ,
max , , ,

, , ,

origin sat sat sat

origin sat sat sat

origin sat sat sat

f

f

f
f f f

f f f

f f f

f





  

Suggested technique allows us to take into 

account all the constraints and get rid of the 

ambiguity.  

6. Simulation results 

In this section we show a simulation results of the 

control technique proposed in Section 5. 
2J  effects, 

as well as lift force were included in simulation. 

Characteristics of relative orbits are chosen in 

accordance with results obtained in Section 4:  

 

1, 2, 3,

1, 2, 3,

1, 2, 3,

, 0,

0,

5 5
, 2 ,

3 3

ref ref ref

ref ref ref

ref ref ref

A K A

C C

A

C

D D K D K

  

  

  

  

Here 300mK  . In Fig. 4 evolution of 

tetrahedron quality is presented with active 

atmospheric drag control is presented. Figs. 5 and 6 

contain relative orbit parameters evolution. 

 
Fig. 4. Evolution of tetrahedron quality under control 

 
Fig. 5. Amplitude of relative orbit evolution 

 
Fig. 6. Shift of relative orbit evolution 

As we can see, suggested control technique allows 

us to maintain the necessary relative orbit parameters, 

at least in orbital plane. 

 

7. Conclusion 

In the paper we construct reference orbits for four 

satellites in linear model for the tetrahedron to 

preserve volume and quality according to introduced 
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criterion. In Keplerian motion model including 

Earth's 
2J  perturbation it is shown that in low orbits 

the tetrahedron shape remains approximately constant 

and degradation rate notably grows with tetrahedron 

size increase. It is shown that simple fuellsess control 

algorithm based on atmospheric drag utilization 

allows expanding mission lifetime to a month. 
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