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Abstract 

In this paper an algorithm of simultaneous relative motion and attitude control via solar radiation pressure is 

suggested. This allows us to deploy and maintain the given formation of two satellites. The principle idea is to use 

special materials for solar sail that are able to change its optical properties. It is considered that solar sail is divided 

into a number of cells. Each of them can be absolutely black, i.e. it absorbs completely the solar radiation, or 

absolutely specular (white), i.e. it reflects all solar radiation. The necessary control force is developed by varying the 

average reflectivity of solar sail, and the control torque is achieved by the appropriate pattern of black and white 

cells.  
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Acronyms/Abbreviations 

SRP – solar radiation pressure 

IF – inertial frame 

OF – orbital frame 

BF – body-fixed frame 

SF – solar frame 

LCF – Lyapunov control function 

SSN – solar sail normal 

 

1. Introduction 

Utilization of a group of satellites, for example 

formation flight, brings new possibilities in space 

missions. In addition, group of satellites is more reliable 

because even if one satellite fails, others can continue 

their operation.  

The main problem of formation flying utilization is 

the deployment and maintenance of the particular group 

configuration. The simplest solution for this problem is 

to use thrusters that are installed onboard all or several 

satellites. On the other hand, thrusters require 

propellant, which can greatly affect the satellite lifetime 

or the payload mass. To overcome this problem 

environmental forces for formation flying motion 

control can be used [1]. This approach can be applied 

relatively easily by installing a special high area-to-

mass ratio device such as a flat sail. There are two 

forces that can be used: aerodynamic drag [2–6] and 

solar radiation pressure (SRP) [7–11]. The principal 

idea here is to use a difference in environmental forces 

acting on each satellite in formation. This difference 

usually appears when a sail rotates but the effective size 

variation is also considered in literature [12]. 

In paper the case when both attitude and relative 

motion are controlled via solar sail with variable optical 

properties. It is considered that sail is divided into cells 

which can either absorb all solar radiation or fully 

reflect it. 

 

2. Problem statement and reference frames 

 

Deployment and maintenance of required relative 

orbit of two satellites is considered. It is assumed that 

each satellite has solar sail. The initial orbit of one 

satellite (leader) is circular. Second satellite (follower) 

is moving along the orbit which is close to the first one. 

Satellites move under the solar radiation pressure and 

2J  perturbations. 

In paper the following reference frames are used: 

– 1O XYZ  is the Inertial Frame (IF) with the 

origin in the Earth centre of mass, 1O Z  is 

orthogonal to the equatorial plane, 1O X  is 

directed to the vernal equinox; 

– Оxyz  is the orbital frame (OF), its origin is 

located in the leader satellite centre of mass, 

Оz  directed along its radius vector, Оy  is 

orthogonal to the orbit plane; 

– О  is the body-fixed frame (BF), its axes 

are the principal axes of inertia (it is also 

assumed that О  is orthogonal to the sail 

plane); 

– s s sОx y z  is the solar frame (SF), 
sОz  is directed 

to the Sun, 
sОy  is orthogonal to the ecliptic 

plane. 

Transition between IF and OF is performed by the 

following matrix  

 1 2 3S e e e , 3
r


r

e , 2
| |






r v
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r v
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where r  is the radius vector and v  is the velocity of  

the leader satellite. Transition between IF and SF is 

determined by the  

 sun 1 2 3S l l l , 
3

cos

sin cos

sin sin



 

 

 
 

  
 
 

l , 
2 sin

cos

0





 





 
 
 

l , 

1 2 3 l l l . 

  is the ecliptic longitude,   is the obliquity of the 

ecliptic. 

 

2. Motion equations 

There are three types of motion equations that are 

used in this paper.  

 

2.1. Orbital dynamics 

Orbital dynamics is described by the following 

vector equation 

3E
r

  
r

r g , 

where E  is the Earth gravity constant and g  is the 

result vector of the external disturbances. As it was sad 

before the effects of 2J  and SRP force are taken into 

account only. The first has a form of 

2
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2
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3sin sin 1
3

sin sin 2
2

sin 2 sin

E

J

i u
J R

i u
r

u u

 

 
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  
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Here 3

2 1.08 12 0J  , R  is the mean Earth radius, i  

is the orbit inclination and u  is the argument of latitude. 

SRP force on the elemental area can be written as 

follows 

 

     

0 ,

2
1 2 , 1 ,

3

s s

s s s

d
c

dS   


  

  
       
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where 
2

0 1357 W m   is the solar flux constant, sr  is 

the unit vector from the Sun to the satellite, n  is the 

solar sail normal (SSN),   is the reflection coefficient, 

  is the specularity coefficient. Further the case of 

1   is considered, so 

      0 , 1 2 ,s s s sd dS
c

 


   F r n r r n n . 

Due to the variation of  from point to point the total 

SRP force becomes 

      0 , 2 ,s s s sS dS dS
c

 


    F r n r r n n . 

If denote 
dS

f
S





  0 1f   and 0SA
c


  , 

then 

      , 1 2 ,s s s sA f f  F r n r r n n . 

These equations are written for both satellites and 

are used in numerical simulation. 

 

2.2. Angular dynamics 

Angular dynamics is described in the BF by the 

Euler equations 

control g  Jω ω Jω M M , (1) 

where J  is the satellite inertia tensor, ω  is the angular 

velocity, controlM  is the control torque and 

g 5
3 E

r


M r Jr  is the gravity torque. 

Attitude kinematics is defined by the quaternion 

 0 ,   , 2 2

0 1  λ . And corresponding equations 

are the following 

 
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These equations are used for the numerical simulation 

and control torque synthesis. 

 

2.3. Relative motion dynamics 

The control synthesis is based on the Hill-Clohessy-

Wiltshire equations. It is assumed that the leader 

satellite moves along circular orbit while the relative 

orbit is small with respect to the size of the orbit. So this 

motion equations in the OF can be written as follows 

2

2 0

2

,

3 ,

0,

0

2

x z

y

z z

y

y





 

 

 
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    (2) 

where   is the orbital angular velocity of the leader 

satellite,  
T

x y zρ  is the relative position, 

12 ρ r r . Index “1” corresponds to the leader satellite 

and “2” to the follower. 

If control and disturbances are taken into account 

Eq.(2) can be rewritten in the following form 

2

2

2

2 3

,

,
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x x
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y u
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Here xu , yu , zu  and xg , yg , zg  are the components 

of control vector 
,2 ,1s s

m




F F
u  and disturbances vector 

g , respectively. 

Solution of (2) is  

1 2 3 4

5 6

1 2 3

3 2 cos 2 sin ;

cos sin ;

2 sin cos .
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One can introduce new variables based on this 

solution. 

1 3
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It should be noted that 1B corresponds to the drift 

velocity of the follower satellite along axis Ox  of the 

OF. The equations that correspond to these variables 

have form 
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 (3) 

These equations will be used for the relative motion 

control synthesis.  

3. Control synthesis 

Relative orbit

Solar sail rotation 

and reflection 

Ideal relative 

motion control

Reference 

angular motion

Control torque Solar sail pattern

B1, B2, B3, B4

ux, uy, uz

θi, φi 

ni, ωref,i

Mi,ξ, Mi,η

fi

 
Figure 1. Control synthesis scheme 

The control synthesis scheme is presented in Fig. 1. 

First of all, the ideal control that provides required 

relative motion is found. Then corresponding integral 

reflection coefficient if  and angles of SSN i , i  are 

determined. Normal directions define the reference 

angular motion of each satellite. After that the control 

torque is calculated ,i controlM  (in О  plane). Finally, 

,i controlM  and if  determine the solar sail reflection 

pattern. Further in this section each step is discussed. 

 

3.1. Relative motion control 

The purpose of the control is to deploy and maintain 

the required relative orbit. This orbit is defined by the 

iB  ( 1,2,3,4i  ). In paper the following relative orbit is 

considered  

1 0B  , 02B B , 
3 0B  , 

4 0B  . 

This means that the centre of the orbit is the origin 

of the OF and its shape is the ellipse with major and 

minor semi-axes 
02B  and 0B  respectively. The relative 

orbit stabilization is performed by two stages: firstly 

1 0B   and 
3 0B   are provided then 2 0B B  is 

achieved. The out-of-plane motion control is separated, 

so 
4 0B   can be guaranteed independently. 

On the first stage the following Lyapunov control 

function (LCF) is used 

2 2

1 3

1 1

2 2
V B B  . 

Its time derivative is (the disturbances are omitted) 
. .

11 3 3 1 3 1

1 2
3x zV B B B B B u B B u

 

 
      

 
. 

So the control that ensures global asymptotic stability of 

1 0B   and 
3 0B   is the following (Barbashin-

Krassovskii theorem) 

 

1 1 1

2

1 2 3 2

, 0,

1
3 , 0.

2

x

z

u k B k

u B k B k 

  

   
   (4) 

Once 1 0B   and 
3 0B   are achieved or at least 1B  and 

3B  are small the second stage of control begins. The 

LCF here is 

 
22 2

1 3 2 20

1 1 1

2 2 2
V B B B B     

and its time derivative 
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As the last term is small then it is enough to make first 

and second term negative. Hence, the control is as 

follows 

  

  
3 1 2 0 1 3

4 3 0 42 1
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The stability condition for the control (5) ( 0V  ) is 
2

max 1 33u B B  . 

Where maxu  is the maximum possible control force. 

Since expressions (4) and (5) are different two states 

should be switched between each other. Control (4) is 

used when 1 3B B  is large, otherwise (5) is used.  

Additionally, as 1B  determine the drift velocity it 

could be used to control the convergence speed of 3B  to 

zero. If 3B  is large, then instead the first expression of 

(4) the following control is used 

 1 1 10xu k B B   . 

The out-of-plane motion control has a form 

4 2cosy yu k B   , 0yk  . 

Control xu , yu , zu  is an ideal one. It should be 

implemented through the solar sails rotation and integral 

reflectivity coefficients if . 

 

3.2. Relative motion control implementation 

Let   be the angle between the SSN and Sun 

direction,   is the angle between normal projection to 

the plane s sОx y  of the SF and axis 
sОx . Then in the SF 

the SSN is as follows 

cos
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 

 
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 (6) 

As the SRP force is decreasing when i  tends to 90 

degrees, it is reasonable to suppose that i  are small, so 

(6) transforms to  

2 2 2 1 1 1

2 2 2 1 1 1

2 1

2 cos 2 cos ,
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.
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   (7) 

System (7) has six unknown variables and only three 

equations. From the last equation one can see that if  

determine 
szu . It should be noted that the maximum 

torque will be when 0.5f   while for 0f   and 1f   

the torque is zero. So if  can be found from the 

optimization of  

   
2 2
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The solution in the inner domain is as follows 

1

2
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2

0.5 .
2

s

s
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u
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u
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A
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It exists when 

min max2 1 2 1szu
f f

A
    .    (9) 

In the further discussion it is supposed that min 0.2f   

and max 0.8f  . So (9) can be rewritten as 

0.6 0.6szu

A
   . 

When if  is known one can find i  from the 

maximization (with i  fixed) of  
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It means that the result values of i  should correspond 

to the maximum values of the control force. This 

problem has two groups of solutions 

1 2  , 1 2 0   , 

1 2    , 1 2 0   . 

It should be noted that relative attitude of two 

satellites is the same for both solutions. So further the 

case 1 2     is considered. The first and second 

equations of (7) one can rewrite as follows 
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To find i  one can solve the following optimization 

problem  
2 2

1 2L     

with constraints (10) and 
max maxi     . 

The solution in the inner domain is as follows 
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Thus, once u  is known the attitude of SSN can be 

found. 

 

3.3. Attitude control 

The next step is to provide attitude control that 

guarantees the required SSN motion. The LCF in this 

case is as follows 

 

   

2 2
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a
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,1 .

2
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 (11) 

Here J , J  are the in-plane moments of inertia, ,1rel , 

,1rel  are the corresponding relative angular velocity 

components ( rel ref ω ω ω ), ref  ω n n , n  is the 

required SSN attitude in the IF, 0ak   and B  is the 

transition matrix between the IF and the BF. The goal of 

the control is to guarantee asymptotic stability of the 

motion when the axes O  of the BF and n  coincide. 

Derivative of (11) is 
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As there is no need to control the third component of the 

angular velocity it is reasonable to take relative angular 

velocity vector as  ,1 ,2 0
T

rel rel rel ω . In this case  
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And (12) one can rewrite as follows 
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It should be noted that only two first components of 

controlM  are taken. The last component will be 

determined when the cell pattern is defined. 

 

3.4. Solar sail pattern 

The sail is divided into n n  cells. Each cell one can 

define by pair  ,i j , where i and j  are the row and 

the column numbers. Let ,i j  is the reflection 

coefficient of the  ,i j  cell and has values either 0 or 

1. So integral coefficient of reflection is 
2

1
f N

n

 
  
 

. 

Here N  is the total number of cells which , 1i j  . 

The SRP control torque 

control d  s
M r F . 

The integral is taken over all surface of the sail, r  is the 

radius vector of some point of the sail in the BF and 

sdF  is the elemental SRF force. For the disсrete case 

the control torque becomes 

3

2

control

1
cos ,

2
tan sin tan cos

P
a

Q
n

n Q P



   

 
   
   
     

M

2 ( 1)P I n N   , 2 ( 1)Q J n N    

  ,, 1: i ji j

I i
 

  , 
  ,, 1: i ji j

J j
 

  . 

From the control torque expression one can see that 

there are only two independent components. The third 

component is defined when the first and the second are 

known. Thus, once f  is defined from (8) one can 

determine N . After that I  and J  can be calculated 

using the control torque components from (13). 

 

3.5. Solar sail cell pattern 

Solar sail pattern is described by the string of 2n  

length, where l-th element define  ,i j  cell: 

if mod( , ) 0,,

mod( , );

l nn
j

l n


 


, 1
l j

i
n


  . 

One in this string means that , 1i j  , zero otherwise. 

For allowed values of  min max,NN N , where 

2

min minN n f , 
2

max maxN n f  the matrix NG  is built. 

Element  ,I J  of this matrix is the set of all cell 

patterns for each the following expressions are valid 

l

i I , 
l

j J . 

All this data is then saved and is used when the certain 

cell pattern have to be chosen. During control algorithm 

operation once N  is known the corresponding matrix 
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NG  is taken. In this matrix the element  ,I J  is being 

looking for. If this element is not empty then there are 

two options: if the cell pattern is unique then this is the 

pattern one is looking for otherwise the pattern that is 

close to the previous one is selected. In case when the 

element is empty the closest one is taken. 

 

4. Numerical example 

 

The proposed scheme was built for the case when 

there are no disturbances and the relative motion model 

is linear. To show the control performance in case of 

non-linear model the numerical example is provided 

(Fig.2-5). The following parameters and initial 

conditions are taken 

Orbit radius: 9000orbR km , 

Initial relative orbit: 
 

 

= 10 10 5  ,

= 0.05 0.1 0.1 ,

rel

rel

m

m s

r

V
 

Satellite mass: 10m kg , 

Sail size: square with 5 m  side, 

Inertia tensors:   22.1 2.1 3.8diag kg m J , 

Initial angular velocity: 

 1 0.002 0.003 0.001 rad sω , 

 2 0.001 0.003 0.002 rad sω , 

Control parameters: 6 1

1 3 4 220, 10k k k k s     , 

0.02k N m s    , 410ak N m  , 

Maximum control force: 6

max 10u N ,  

Maximum control torque: 53 10trqM N m     

Switch condition: 2

1 3 1B B m . 

 
Figure 2. Parameter 1B  

 
Figure 3. Parameter 2B  

 
Figure 4. Parameter 3B  

 
Figure 5. Parameter 4B  
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Figure 6. In-plane relative motion (result motion) 

 

Numerical simulation results show that the 

control solve its task. In Fig.2 one can see that between 

5
th

 and 10
th

 revolution the parameter 1 20B m  . This 

allows to stabilize the 3B  much faster (see Fig.4). The 

model relative motion control is presented in Figures 

7,8. Its implementation is presented in Figures 9,10. 

 
Figure 7. Control 1u  

 
Figure 8. Control 3u  

 
Figure 9. Angle 1  

 
Figure 10. Integral reflectivity 1f  

From Fig.7 and 8 one can see that control 

components don’t exceed maxu  and so 1f  and 1  (as 

well as 2f  and 2 ) are stayed within the desired ranges. 

Finally, the model control torque one can find in 

Figures 11 and 12. 

 
Figure 11. Control torque 1M   
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Figure 12. Control torque 2M   

Figures 11 and 12 show that the control torque is also 

within the desired range. 

 

5. Conclusions  

In paper the scheme of the two satellites formation 

flying control using the solar sail is proposed. It was 

shown that it is possible to control relative motion and 

corresponding attitude control using solar sail only.  

The provided numerical example shows the control 

scheme operation in case of 2J  disturbance and gravity 

gradient torque presence.  
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