

Attitude and relative motion control of satellites in formation flying via solar sail with variable reflectivity properties

Ya.V.Mashtakov, M.Y.Ovchinnikov, T.Yu.Petrova, <u>S.S.Tkachev</u>

Keldysh Institute of Applied Mathematics, Moscow, Russia

Contents

- Introduction
- Equations of motion
- Control force synthesis
- Control torque synthesis
- Numerical example
- Conclusion

Introduction

IKAROS - Reflection properties variation to control attitude

General idea

Solve attitude and relative two satellite motion control problem by means of solar sail

Goal

Get the elliptic orbit

Assumptions

Satellites identical Specular reflection only Center of mass motion: J₂ + solar radiation pressure (SRP) Angular motion: Gravity gradient torque + SRP

IKAROS mission (global.jaxa.jp)

Motion equations

Orbital dynamics

$$\ddot{\mathbf{r}} = -\mu_E \frac{\mathbf{r}}{r^3} + \mathbf{g}, \ \mathbf{g} = \mathbf{g}_{J_2} + \mathbf{g}_s, \ \mathbf{g}_s = A(\mathbf{r}_s, \mathbf{n})((1-f)\mathbf{r}_s + 2f(\mathbf{r}_s, \mathbf{n})\mathbf{n}), \ f = \frac{\int \alpha dS}{S}$$

Angular dynamics

$$\mathbf{J}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega} = \mathbf{M}_s + \mathbf{M}_g, \ \mathbf{M}_{grav} = 3\omega_0^2 \mathbf{e}_3 \times \mathbf{J}\mathbf{e}_3, \ \mathbf{M}_s = \int \mathbf{r} \times d\mathbf{F}_s$$

Relative motion dynamics (control synthesis only)

$$\begin{aligned} \ddot{x} + 2\omega \dot{z} &= u_x, \\ \ddot{y} + \omega^2 y &= u_y, \\ \ddot{z} - 2\omega \dot{z} - 3\omega^2 y &= u_z. \end{aligned}$$

$$\begin{aligned} \mathbf{u} &= 0 \\ \Rightarrow \end{aligned}$$

$$\begin{aligned} x &= -3C_1\omega t + 2C_2\cos\omega t - 2C_3\sin\omega t + C_4; \\ y &= C_5\cos\omega t + C_6\sin\omega t; \\ z &= 2C_1 + C_2\sin\omega t + C_3\cos\omega t. \end{aligned}$$

$$\mathbf{u} = \frac{\mathbf{F}_{s,2} - \mathbf{F}_{s,1}}{m}$$

Motion equations (relative motion parameterization)

 $x = 2B_2 \cos \psi_1 + B_3,$ $z = B_2 \sin \psi_1 + 2B_1,$ $\dot{x} = -2B_2 \omega \sin \psi_1 - 3B_1 \omega,$ $\dot{z} = B_2 \omega \cos \psi_1,$ $y = B_4 \sin \psi_2,$ $\dot{y} = B_4 \omega \cos \psi_2.$

Goal

Ellipse with center at (0,0) and semi-axes $2B_{20}$ and B_{20}

$$B_1 = 0, B_2 = B_{20}, B_3 = 0, B_4 = 0$$

 $\dot{B}_1 = \frac{1}{\omega} u_x,$ $\dot{B}_3 = -3B_1\omega - \frac{2}{\omega}u_z,$ $\dot{B}_2 = \frac{1}{\omega} \left(u_z \cos \psi_1 - 2u_x \sin \psi_1 \right),$ $\dot{\psi_1} = \omega - \frac{1}{R\omega} \left(u_z \sin \psi_1 + 2u_x \cos \psi_1 \right),$ $\dot{B_4} = \frac{1}{\omega} u_y \cos \psi_2,$ $\psi_2 = \omega - \frac{1}{\omega B_4} u_y \sin \psi_2.$

Control synthesis scheme

Control force synthesis

Relative orbit center stabilization

$$V = \frac{1}{2}B_{1}^{2} + \frac{1}{2}B_{3}^{2}$$

$$\dot{V} = B_{1}\dot{B}_{1} + B_{3}\dot{B}_{3} = \frac{1}{\omega}B_{1}u_{x} + B_{3}\left(-3B_{1}\omega - \frac{2}{\omega}u_{z}\right)$$

$$u_{x} = -k_{1}B_{1}, \ k_{1} > 0,$$

$$u_{z} = \frac{1}{2}\left(-3B_{1}\omega^{2} + k_{2}\omega B_{3}\right), \ k_{2} > 0.$$

Relative orbit size stabilization (B_1 and B_3 is small)

$$V = \frac{1}{2}B_{1}^{2} + \frac{1}{2}B_{3}^{2} + \frac{1}{2}(B_{2} - B_{20})^{2}$$

$$\dot{V} = \frac{1}{\omega}(B_{1} - 2(B_{2} - B_{0})\sin\psi_{1})u_{x} + \frac{1}{\omega}(-2B_{3} + (B_{2} - B_{0})\cos\psi_{1})u_{z} - 3B_{1}B_{3}\omega$$

$$u_{\text{max}} > |3B_{1}B_{3}\omega^{2}| \text{ stability condition}$$

$$u_{x} = -k_{3}(B_{1} - 2(B_{2} - B_{0})\sin\psi_{1}), k_{3} > 0$$

$$u_{z} = -k_{4}(-2B_{3} + (B_{2} - B_{0})\cos\psi_{1}), k_{4} > 0$$

Out-of-plane stabilization

$$u_y = -k_y B_4 \cos \psi_2, \, k_y > 0$$

Sail attitude and reflection

Solar sail normal	Control for small θ_i
$(\sin\theta\cos\phi)$	$u_{x_s} = 2Af_2\theta_2\cos\varphi_2 - 2Af_1\theta_1\cos\varphi_1,$
$\mathbf{n} = \left \sin \theta \sin \varphi \right $	$u_{y_s} = 2Af_2\theta_2 \sin \varphi_2 - 2Af_1\theta_1 \sin \varphi_1,$
$\left(\cos \theta \right)$	$u_{z_s} = Af_2 - Af_1.$
f=0 and f=1 zero torque f=0.5 maximum torque	$ \begin{pmatrix} f_1 - 0.5 \end{pmatrix}^2 + \begin{pmatrix} f_2 - 0.5 \end{pmatrix}^2 \to \min \\ f_1 = 0.5 - \frac{u_{z_s}}{2A} \\ f_{\min} = 0.2, \ f_{\max} = 0.8 \\ f_2 - f_1 = \frac{u_{z_s}}{A}, \\ 0 < f_{\min} \le f_i \le f_{\max} < 1, \ i = 1, 2. \end{cases} $
Maximum u_x and u_y	$L = (f_2\theta_2 \cos \varphi_2 - f_1\theta_1 \cos \varphi_1)^2 + \qquad $
Minimum θ_i	$L = \theta_1^2 + \theta_2^2, \qquad \qquad \theta_1 = -\frac{\sqrt{u_{x_s}^2 + u_{y_s}^2}}{2A} \frac{f_1}{f_1^2 + f_2^2}, \\ f_2 \theta_2 - f_1 \theta_1 = \frac{\sqrt{u_{x_s}^2 + u_{y_s}^2}}{2A} \qquad \qquad \theta_2 = \frac{\sqrt{u_{x_s}^2 + u_{y_s}^2}}{2A} \frac{f_2}{f_1^2 + f_2^2}. $ 8/13

Attitude motion control

Lyapunov control function

$$V = \frac{1}{2} \left(J_{\xi} \omega_{\text{rel},1}^2 + J_{\eta} \omega_{\text{rel},2}^2 \right) + k_a \left(1 - \left(\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^{\text{T}}, \mathbf{Bn} \right) \right)$$

$$\boldsymbol{\omega}_{rel} = \boldsymbol{\omega} - \boldsymbol{\omega}_{ref}, \, \boldsymbol{\omega}_{ref} = \mathbf{n} \times \dot{\mathbf{n}}$$

$$\dot{V} = \boldsymbol{\omega}_{rel}^{T} \left(\mathbf{J} \, \dot{\boldsymbol{\omega}}_{rel} + k_{a} \mathbf{B} \mathbf{n} \times \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^{T} \right)$$

$$\mathbf{M}_{\text{control}} = \left(-k_{\omega}\boldsymbol{\omega}_{\text{rel}} - \mathbf{M}_{\text{ext}} + \boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega} - \mathbf{J}\boldsymbol{\omega} \times \mathbf{B}\boldsymbol{\omega}_{\text{ref}} + \mathbf{J}\mathbf{B}\dot{\boldsymbol{\omega}}_{\text{ref}} - k_{a}\mathbf{B}\mathbf{n} \times \begin{pmatrix}0 & 0 & 1\end{pmatrix}^{\mathrm{T}}\right)_{\xi,\eta}.$$

Solar sail pattern

Integral reflection $f = \left(\frac{1}{n}\right)^2 N$, N is the number of "white" cells $\mathbf{M}_{\text{control}} = \frac{1}{2} \left(\frac{a}{n}\right)^3 \cos^2 \theta \begin{pmatrix} P \\ Q \\ -n \tan \theta \sin \alpha Q - \tan \theta \cos \alpha P \end{pmatrix}, \quad P = 2I - (n+1)N, \quad I = \sum_{(i,j):\alpha_{i,j}=1} i \\ Q = 2J - (n+1)N, \quad J = \sum_{(i,j):\alpha_{i,j}=1} j \end{pmatrix}$

Numerical example

Orbit size $R_{orb} = 9000 \ km$ Relative orbit $\mathbf{r}_{rel} = (10 \ 10 \ 5) \ m$, $\mathbf{V}_{rel} = (0.05 \ 0.1 \ 0.1) \ m/s$, Mass $m = 10 \ kg$ Size $5 \ m$ Inertia tensor $\mathbf{J} = diag (2.1 \ 2.1 \ 3.8) \ kg \cdot m^2$ Angular velocity $\mathbf{\omega}_1 = (0.002 \ 0.003 \ 0.001) \ rad/s$ $\mathbf{\omega}_2 = (0.001 \ 0.003 \ 0.002) \ rad/s$

Control parameters
$$k_{\omega} = 0.02 \ N \cdot m \cdot s, \ k_a = 10^{-4} \ N \cdot m$$

 $k_1 = k_3 = k_4 = 20, \ k_2 = 10^{-6} \ s^{-1}$

Switch condition $B_1B_3 < 1 m^2$

Maximum control $u_{max} = 10^{-6} N$ $M_{tra} = 3 \times 10^{-5} N \cdot m$

10/13

Numerical example (B-parameters)

Numerical example (control)

12/13

Conclusion

It is shown that it is possible to stabilize elliptic relative orbit by means of the SRP only

The control synthesis scheme include the control of the angular and relative motion simultaneously

The relative motion is provided by the SRP force and control source is the solar sail attitude and variable reflectivity

The desired solar sail attitude is also proved by the SRP (torque)

The work was supported by the RFBR grants no. 16-01-00739 and 17-01-00449. Authors are grateful to prof. Anna Guerman for the problem statement and discussions