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L1 and L2 families of halo orbits
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Selected resonant NRHOs from the L1 and L2 northern
families adapted to the high-fidelity model
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NRHO-Moon transfer

* Two scenarios of delivering a lander to the
Moon are considered:

— the direct landing from the working NRHO orbit

— the transfer to some intermediate low-perilune
orbit

* Outline landing sites and low-perilune orbits
accessible from NRHOs

* Estimate landing/transfer costs
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Departure from NRHO

* The initial phase of the both scenarios is the
departure impulse at some point of the working orbit

* We examined 100 candidate points that are equally
distributed across the period of a given NRHO. The
magnitude of the impulse was selected from the
following discrete set: 50, 100, ..., 450, 500 m/s

* Finally, 92 impulse directions are sampled nearly
uniformly on the unit sphere, which gives a set of
92,000 departing trajectories
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Radial velocity, km/s
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Approaching trajectories are
all near-parabolic!

U = Vese ~ 2.19 km/s
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Velocity components (along-track and
radial) at the 300 km altitude for
the northern 9:2 L2 NRHO

" Only 5-10% of the
- trajectories approach the

Moon with a perilune

~altitude of 300 km or

less (these trajectories

- are referred as the

approaching trajectories)
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Inclinations accessible from the northern 9:2 L2
NRHO and the associated departure V (in m/s)
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Gravity-turn landing technique

e U -~ Approaching
.__trajectory

Assumptions:

1) Spherical non-rotating

Moon Landing

site

2) Gravity and thrust trajectory
accelerations are of
constant magnitude Lunar
Ry, surface

3) Angle of attack is zero
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Citron, S.J., Dunin, S.E., and Meissinger, H.F., A Terminal Guidance Technique for Lunar Landing,
AlAA Journal, 1964, Vol. 2, No. 3, pp. 503-5009.
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Parabolic approaching trajectory
assumption

* For parabolic orbits, 7o and vy can be simply
expressed as functions of h

* The equation has a unique positive solution

/ L0 B 1 | 1 / 24
Rm, - 2N | 4nA ngR-m-
if h 1
<
Ry, — 4n?

For n =5 weget h, <0.01R,, =~ 17 km
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Time of descent and downrange values
for landing from the southern 9:2 L2 NRHO
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Possible sites of direct landing from the southern 9:2 L2

NRHO and the associated total AV (in km/s)
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Longitude of the landing point, deg



Possible sites of direct landing from the northern
11:3 L1 NRHO and the associated total AV (in km/s)
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Cheapest-to-get lunar regions

L1 halo orbit L2 halo orbit
Perilune above South-West South-East
the south pole
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Targeting and stabilizing
low-perilune orbits

* |n another scenario, involving a transfer to some low-
perilune orbit, the minimum stabilizing impulse at the
perilune of approaching trajectories is sought

* Upon applying the braking impulse, an approaching
trajectory should be transformed in a stable elliptic
orbit

* By stable we imply the orbit whose perilune altitude
and inclination variations throughout three
consecutive revolutions around the Moon do not

exceed 10% and 0.1 deg, respectively
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Inclination and perilune altitude of stable low-perilune orbits
accessible from the northern 9:2 L2 NRHO and the associated
total AV (in m/s).
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Conclusions

The problem of delivering a lander from the working near-
rectilinear halo orbit around the Moon directly to the lunar surface
(soft landing) or to some intermediate low-perilune orbit has been
examined

Although any landing site is in principle feasible, there exist areas of
least-cost landing

The former asymmetry has appeared to be related to the NRHO
subtype (northern/southern), while the latter is connected to what
libration point is considered

The landing characteristics have been estimated using the
relationships of the gravity-turn landing strategy

Among low-perilune orbits, a wide range of inclinations is
accessible, with (near-)polar orbits being stabilizable at lowest cost

The perilune of stabilizable orbits cannot be too low to avoid the
influence of the highly irregular lunar gravity field
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Backups
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Rotating frame in the circular
restricted three-body problem
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The frontal view (as seen from the
Earth) of a sample lunar L2 halo orbit
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The perilune distance and the orbital
period of the lunar L1 and L2 NRHOs
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Variation of the largest eigenvalue modulus
with the perilune distance for the L1 and L2 NRHOs
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Altitude of initiating the gravity-turn maneuver
for approaching trajectories with different /..
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