Министерство образования и науки Российской Федерации МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) ФАКУЛЬТЕТ АЭРОФИЗИКИ И КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ КАФЕДРА МЕХАНИКИ И ПРОЦЕССОВ УПРАВЛЕНИЯ

Определение углового движения по видеоизображению

Студент Julio Cesar Molina Saqui

Научный руководитель С.С. Ткачев

г. Москва 2018

Содержание

- Введение
- Матрица перехода
- Алгоритм DLT
- Алгоритм для калибровки
- Опыт

Введение

Матрица перехода

Алгоритм DLT (Direct Linear Transformation)

Оценка матрицы перехода Н

точек от WCS до системы координат изображения

6

Получение соответствия для калибровки

> Вычисление матрицы перехода

Запуск параметров внутреннего калибровки

Фокусное расстояние: Определяется с использованием всех матриц перехода

10

Запуск параметров внешненнего калибровки

Итеративный процесс улучшения оценки параметров внешней калибровки

Главный процесс оптимизации

Алгоритм для калибровки

Процесс основан на итеративном процессе, использующем проекцию всех точек в WCS на систему координат изображения используя модель измерения, инициализированные внутренние параметры и итеративный метод для уточнения оценки "R" и "t".

$$\begin{aligned} X_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} = RX_{i} + t \qquad X_{cp} = \begin{bmatrix} x_{c}/z_{c} \\ y_{c}/z_{c} \end{bmatrix} = \begin{bmatrix} x_{cp} \\ y_{cp} \end{bmatrix} \qquad \text{Проекция координат с WCS на} \\ \text{CCS} \end{aligned}$$

$$r^{2} = x_{cp}^{2} + y_{cp}^{2} \qquad \text{Радиальное искажение} \qquad \text{Тангенциальное искажение} \\ X_{d} = \begin{bmatrix} x_{d} \\ y_{d} \end{bmatrix} = \begin{bmatrix} x_{cp}(1 + k_{1}r^{2} + k_{2}r^{4} + k_{3}r^{6}) + 2p_{1}x_{cp}y_{cp} + p_{2}(r^{2} + 2x_{cp}^{2}) \\ y_{cp}(1 + k_{1}r^{2} + k_{2}r^{4} + k_{3}r^{6}) + 2p_{2}x_{cp}y_{cp} + p_{1}(r^{2} + 2y_{cp}^{2}) \end{bmatrix} \\ Xp_{i} = \begin{bmatrix} x_{p} \\ y_{p} \end{bmatrix} = \begin{bmatrix} (x_{d} + sy_{d})f + u_{0} \\ (x_{d})f + v_{0} \end{bmatrix} \qquad Xp_{i}: \text{ Точка, уже проецируемая в систему координат изображения} \\ E_{k} = \begin{bmatrix} X'_{1} - Xp_{1} & X'_{2} - Xp_{2} & \dots & X'_{i} - Xp_{i} \end{bmatrix} \qquad \text{Из-за нелинейности модели камеры одновременная оценка параметров включает применение итерационного алгоритма} \end{aligned}$$

Запуск параметров внешненнего калибровки

Итеративный процесс улучшения оценки параметров внешней калибровки

Главный процесс оптимизации

Алгоритм для калибровки

В этом процессе оптимизации обновляются все параметры внутренней и внешней калибровки обновляются.

 $F = \begin{bmatrix} f_x & f_y \end{bmatrix}$ $C = \begin{bmatrix} u_0 & v_0 \end{bmatrix}$ $K_D = \begin{bmatrix} k_1 & k_2 & p_1 & p_2 & k_3 \end{bmatrix}$ $M = \begin{bmatrix} F_1 & C_2 & K_3 \end{bmatrix}$ $M = \begin{bmatrix} F_1 & C_2 & K_3 \end{bmatrix}$

M : Глобальный вектор параметров k: Количество изображений,

 $M = \begin{bmatrix} F & C & S & K_D & R_1 & t_1 & R_2 & t_2 & \cdots & R_k & t_k \end{bmatrix}$

Опыт

Важным шагом является определение координат объекта в инерциальной системе координат. Данные координаты должны быть обнаружены камерой и иметь возможность установить соответствие между точками из WCS и системой координат изображения

Инерциальная система координат

Как только эти четыре точки обнаружены и их положение в изображении оценивается, невозможно определить какая точка является Р1, Р2,Р3 или Р4

Опыт

Инерциальная система координат P_2 Ζ P_4 P_4 Х P_3 V

Систем координат изображения

U

Использование Aruco Pattern установить помогает соответствие между точкой WCS системой И ИЗ координат изображения

Эксперимент

Расстояние : 64.62*cm* стандартное отклонение = 0.03 Вращение (*deg*) : 121.76 стандартное отклонение = 0.04 Крен (*deg*) : -11.73 стандартное отклонение = 0.034 Курс (*deg*) : -5.759 стандартное отклонение = 0.03

Заключения

- Были получены довольно точные результаты при использовании изображений 480х640 пикселей (меньше 0.5%). При использовании камеры более высокого разрешения ожидаются более точные результаты.
- Необходимо в дальнейшем использовать методы очистки от шума, поскольку он был обнаружен при измерении данных.
- Вероятность ошибки в матрице перехода повышается при неправильном определении соответствия точек.

Возможные применения на маленькие расстояния

Background figure Source : https://spacenews.com

Спасибо за внимание

Preconditioning

Вычисление преобразование T (перенос и изменение масштаба), которое превращает множество точек во множество. Так, что центроид нового множества начало координат (0,0) и среднее расстояние от начала координат $\sqrt{2}$. (подробности "Multiview geometry in Computer Vision, page 109" and "In Defense of the Eight-Point Algorithm" Richard I. Hartley)

20