13th Summer Space School
 "FUTURE SPACE TECHNOLOGIES AND
 EXPERIMENTS IN SPACE"
 19 JUNE TO 1 JULY 2017

On small spacecraft to other planets of the Solar system

Prof. Mikhail Ovchinnikov

Keldysh Institute of Applied Mathematics ovchinni@keldysh.ru

Dr. Maksim Shirobokov Keldysh Institute of Applied Mathematics

History and milestones of activity

Institute of Applied
Mathematics was
established in 1953 to lead in the National Programs:

- nuclear energy utilization (for defense goal, nuclear bomb simulation)
- exploration in space (for defense goal, dynamics of missiles)
- development and application of computer science technology (to achieve two goals above)

Partners's missions

The first Russian private microsatellite TabletSatAurora (launched in 2014), active attitude control system, 26 kg (credit Sputnix Lid)

The German picosatellite (cubesat) BeeSat-3 (launched in 2013), passive attitude control system with hysteresis plate, 1 kg (credit TUB)

The Russian microsatellite Chibis-M (launched in 2012). $43 \mathrm{~kg} \mathrm{kr} \quad \mathrm{kg}$ (credit NSPO)

The Taiwanese satellite Formosat-7 (13), active
(credit SRI of RAS)

The Russian nanosatel ileSamSat-
QB50,aerodynamical attitude TNS-0 No1 (launched in 2005)
 Aerospace University)

BADR-B (launched in 2001)
semiactive gravitational
attitude control system, 70 kg (credit SUPARCO) (credit Institute of Precision Instrument Engineering)

credit JSC 'Russian Space Systems")

The Russian nanosatellite REFLECTOR (launched in 2001), passive gravity gradient attitude control system, 7 kg

The American nanosatellite CXBN-2, active attitude control system, 2.5 kg (credit Morehead State University)

The first Russian nanosatellite The Russian nanosatelite TNS-1, active magnetic attitude control system, self-rotation stabilization, 10 kg (credit JSC "Russian Space Systems")

The Swedish nanosatellite Munin, (launched in 2000). passive magnetic attitude control system, 6 kg
(credit IRF)

$2017^{\text {th }}$ year missions

- 3U CXBN-2 (PI Morehead State University, KY) deployed on $9^{\text {th }}$ of May from ISS

- Nanosat TNS-0 \#2 (PI JSC "Russian Space Systems") delivered to ISS on $16^{\text {th }}$ of June
- 2U SamSat-QB50 (PI SSAU) expected to launch late 2017

Nowadays tendencies in smallsat utilisation

- Wide implementation in near-Earth missions (remote sensing, communication, space research, technology demonstration and education). This is a main stream for the nearest years...
- Two rills extract from main stream:
- Formation Flying in variations (trailing, cluster, swarm)
- Interplanetary missions

Formation Flying Dynamics in KIAM

- M. Koptev, Y. Mashtakov, M. Ovchinnikov, S. Shestakov, Novel approach to construction and maintenance of tetrahedral formation, Proceedings of the 9th International Workshop on Satellite Constellations and Formation Flying, 19-21 June, 2017, Boulder, Colorado.
- R. Dosaev, S. Tkachev, Two spherical satellite relative motion control in formation flying via variable surface reflectivity, Keldysh Institute Preprints, 2016, № 107, 28 p.
- M.Ovchinnikov, S. Trofimov, Optimal Multiple-Impulse Solution to Circular Orbit Phasing Problem // Journal of Guidance, Control, and Dynamics, July 2016, Vol. 39, No. 7, Pages 1675-1678
- M.Kushniruk, D.Ivanov, Collision Avoidance Algorithms for Satellite Formation Flying by Using Aerodynamic Drag, Keldysh Institute Preprints, 2015, № 99, 30 p.
- S. Shestakov, D. Ivanov, M. Ovchinnikov. Formation Flying Momentum Exchange Control by Separate Mass// Journal of Guidance, Control, and Dynamics, May 2015, Vol.38. No 8, Pages 1534-1543

Lab facility for FF dynamics and movement control simulation

Motion Model Of Mock-up With Flexible Booms

- Consider the linearized motion model of the mock-up with two equal flexible booms
- Take into account only one mode for each boom - q_{a} and q_{p}
- The angular and flexible motion equations:

$$
\begin{aligned}
& J \dot{\omega}+S_{\omega} \ddot{q}_{a}+S_{\omega} \ddot{q}_{p}=T_{s} \\
& S_{\omega} \dot{\omega}+\left(1-\frac{1}{m} A^{2}\right) \ddot{q}_{a}-\frac{1}{m} A^{2} \ddot{q}_{p}=\mathbf{A}^{T} \frac{\mathbf{F}_{O}}{m}-\Omega q_{a} \\
& S_{\omega} \dot{\omega}-\frac{1}{m} A^{2} \ddot{q}_{a}+\left(1-\frac{1}{m} A^{2}\right) \ddot{q}_{p}=-\mathbf{A}^{T} \frac{\mathbf{F}_{O}}{m}-\Omega q_{p}
\end{aligned}
$$

- Mock-up body center of mass position

$$
\mathbf{r}_{s}=\mathbf{r}+\frac{1}{m} \mathbf{A}\left(q_{p}-q_{a}\right)
$$

- The parameters of the model are identificated

Vibrational modes by using Least Square Method

Control Algorithms Comparison

Experiments

Interplanetary missions

Contents

- Introduction
- Gravity assists maneuvers
- Invariant manifolds of the libration point orbits
- Weak stability boundary
- Resonant encounters
- Summary

State-of-the-art methods of astrodynamics

- Increase capabilities of scientific missions
- Make missions feasible
- Facilitate the trajectory design
- Help to perform a preliminary mission analysis more efficiently
- Provide mathematical insight into the problem of trajectory design optimization

Contents

- Introduction
- Gravity assists maneuvers
- Invariant manifolds of the libration point orbits
- Weak stability boundary
- Resonant encounters
- Summary

Gravity assist (GA) maneuvers

- The planetary gravitational fields can efficiently accelerate or decelerate the fly-by bodies
- The essence of GA maneuvers: a spacecraft steals the kinetic energy from the planet to change its own trajectory in a required way

The Luna-3 mission

- In 1959, a GA maneuver was first used by the Luna-3 spacecraft in its way to deliver the first photographies of the far side of the Moon

The Mariner 10 mission

- In 1974, NASA's Mariner 10 perform a GA maneuver using Venus to achieve the Mercury

Geometry of the GA maneuver (sling effect)

Final heliocentric velocity (bold) for energy-reducing GA maneuver

Final heliocentric velocity (bold) for energy-increasing GA maneuver

Multiple GA trajectories

Voyager 1,2 paths

MESSENGER path

McAdams, J.V., et al., "Trajectory Design and Maneuver Strategy for the MESSENGER Mission to Mercury," Journal of Spacecraft and Rockets, 2006, Vol. 43, No. 5, pp. 1054-1064.

Delta-v/TOF tradeoff

- Powered GA maneuvers (single impulse at pericenter):

EJ	EVJ	EVEJ	EVEEJ
$8.70 \mathrm{~km} / \mathrm{s}$	$3.8745 \mathrm{~km} / \mathrm{s}$	$1.6996 \mathrm{~km} / \mathrm{s}$	$0.1457 \mathrm{~km} / \mathrm{s}$
2.75 years	2.4378 years	5.9034 years	8.1571 years

- Unpowered GA maneuvers augmented with deep space maneuvers

EVJ	EVEJ	EVEEJ
$9.5265 \mathrm{~km} / \mathrm{s}$	$2.97 \mathrm{~km} / \mathrm{s}$	$0.089 \mathrm{~km} / \mathrm{s}$
2.303 years	5.0513 years	6.03 years

Transfers to Jupiter, EVEEJ

Delta-V: $145.7 \mathrm{~m} / \mathrm{s}$
TOF: 8.157 years

Delta-V: $89 \mathrm{~m} / \mathrm{s}$
TOF: 6.03 years 21/52

Contents

- Introduction
- Gravity assists maneuvers
- Invariant manifolds of the libration point orbits
- Weak stability boundary
- Resonant encounters
- Summary

Circular restricted three-body problem

The circular restricted three-body problem (CR3BP) assumes that

- a spacecraft of negligible mass moves under the gravitational influence of two masses m_{1} and m_{2}
- the masses m_{1} and m_{2} move around their barycenter in circular orbits

Reference frame

$(-\mu, 0,0)$

Mass parameter

$$
\mu=m_{2} /\left(m_{1}+m_{2}\right)
$$

Non-dimensional units:

$$
m_{1}=1-\mu \quad x_{m 1}=-\mu
$$

$$
m_{2}=\mu
$$

$$
x_{m 2}=1-\mu
$$

$$
\omega_{0}=1
$$

The Sun-(Earth+Moon) system $\quad \mu=3.03939 \cdot 10^{-6}$
The Earth-Moon system $\quad \mu=1.21506 \cdot 10^{-2}$

Equations of motion of the CR3BP

In the rotating frame

$$
\ddot{x}-2 \dot{y}=U_{x}, \quad \ddot{y}+2 \dot{x}=U_{y}, \quad \ddot{z}=U_{z}
$$

where

$$
U(x, y, z)=\frac{x^{2}+y^{2}}{2}+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}}
$$

is the so called effective potential; U_{x}, U_{y}, and U_{z} are the partial derivatives of U with respect to the position variables. The distances between the spacecraft and the primaries equal

$$
r_{1}=\sqrt{(x+\mu)^{2}+y^{2}+z^{2}} \quad r_{2}=\sqrt{(x-1+\mu)^{2}+y^{2}+z^{2}}
$$

Libration points

Equilibrium (libration) points can be found from the equations

The linearized equations of motion

$$
\begin{gathered}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) \quad \mathbf{f}(\mathbf{x})=\left(\dot{x}, \dot{y}, \dot{z}, 2 \dot{y}+U_{x},-2 \dot{x}+U_{y}, U_{z}\right)^{T} \\
\delta \mathbf{x}=\mathbf{x}-\mathbf{x}_{L} \\
\delta \dot{\mathbf{x}}=\mathbf{A} \delta \mathbf{x}, \mathbf{A}=\left(\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right)_{\mathbf{x}=\mathbf{x}_{L}}=\left(\begin{array}{cc}
\mathbf{O}_{3 \times 3} & \mathbf{I}_{3 \times 3} \\
U_{\mathbf{r r}} & -2 \boldsymbol{\Omega}_{3 \times 3}
\end{array}\right)_{\mathbf{x}=\mathbf{x}_{L}} \\
\lambda_{1,2}= \pm \sqrt{\left(\bar{\mu}-2+\sqrt{9 \bar{\mu}^{2}-8 \bar{\mu}}\right) / 2} \quad \lambda_{1}=-\lambda_{2}=\lambda>0 \\
\lambda_{3,4}= \pm i \sqrt{\left(2-\bar{\mu}+\sqrt{9 \bar{\mu}^{2}-8 \bar{\mu}}\right) / 2} \quad \lambda_{3}=-\lambda_{4}=i \omega_{p} \\
\lambda_{5,6}= \pm i \sqrt{\bar{\mu}}
\end{gathered}
$$

Solutions to the linearized equations

$$
\delta \mathbf{x}=\alpha_{1} e^{\lambda t} \mathbf{u}_{1}+\alpha_{2} e^{-\lambda t} \mathbf{u}_{2}+2 \operatorname{Re}\left(\beta_{1} e^{i \omega_{p} t} \mathbf{w}_{1}+\beta_{2} e^{i \omega_{v} t} \mathbf{w}_{2}\right)
$$

Classification of orbits:

$$
\begin{array}{ll}
\alpha_{1}=\alpha_{2}=0 & \text { Periodic orbits } \\
\alpha_{1} \alpha_{2}=0 & \text { Asymptotic orbits } \\
\alpha_{1} \alpha_{2}<0 & \text { Transit orbits } \\
\alpha_{1} \alpha_{2}>0 & \text { Nontransit orbits }
\end{array}
$$

x

Lyapunov's and Moser's results

- Lyapunov Center Theorem (LCT): periodic libration point orbits exist in the nonlinear dynamics of the CR3BP
- Moser's generalization of LCT: four-parameter families of trajectories exist around libration points in the CR3BP

Qualitative behaviour of the dynamics remains the same in the CR3BP model

Planar and vertical Lyapunov orbits in the EM system

x (nondimensional)

Northern and southern halo orbits around EM L1

A lot of other periodic orbits exist in CR3BP:

Doedel, E. J. et al., "Elemental Periodic Orbits Associated with the Libration Points in the Circular Restricted 3-Body Problem," International Journal of Bifurcation and Chaos, 2007, Vol. 17, Is. 8, pp. 2625-2677

Stable (green) and unstable (red) manifolds near an EM L1 halo orbit

Stable (green) and unstable (red) invariant manifolds

Transfer to Sun-Earth L1 along the stable manifold

$\Delta \mathrm{V}=3.0-3.2 \mathrm{~km} / \mathrm{s}$
TOF $=80-90$ days

Single-impulse transfers are possible for L1 halo orbits with Az $\geq 300,000 \mathrm{~km}$

Transfers between L1 and L2 halo orbits

The Genesis trajectory

- LOI: 6-36 m/s
- SK: $9 \mathrm{~m} / \mathrm{s} /$ year
- s/c mass: 636 kg
- $\mathrm{Az}=450,000 \mathrm{~km}$

The GRAIL trajectory

Advantages over the direct transfers to the Moon:

1) Lower LOI delta-v;
2) Low delta-v cost for LOI separation;
3) Longer launch period (at least 21 days)
4) Longer flight time

- Launch period: 8 Sep 2011 - 19 Oct 2011
- TOF to the Moon: 3-4 month
- Lunar orbit insertion (LOI): $190 \mathrm{~m} / \mathrm{s}$

Parker, J.S., Anderson R.L., "Targeting Low-Energy Transfers to Low Lunar Orbit," Acta Astronautica, 2013, Vol. 84, pp. 1-14. M.-K. Chung, et al., "Trans-Lunar Cruise Trajectory Design of GRAIL (Gravity Recovery and Interior Laboratory) Mission," AIAA/AAS Astrodynamics Specialist Conference, 2010, Paper AIAA 2010-8384

Transfers between the Sun-Earth and the Earth-Moon systems

Howell, K.C., Kakoi, M., "Transfers Between the Earth--Moon and Sun--Eart Manifolds and Transit Orbits," Acta Astronautica, 2006, , Vol. 59, Is. 1, pp. 367--380.

Best SE/EM halo orbit combinations, the ephemeris model

Earth-Moon $A z(\mathrm{~km})$	Sun-Earth $A z(\mathrm{~km})$	$\Delta V(\mathrm{~m} / \mathrm{s})$
16,000	111,000	0
18,000	142,000	0
19,000	140,000	0
22,000	126,000	0
24,000	130,000	0
26,000	131,000	0
28,000	155,000	0
30,000	157,000	0

Howell, K.C. and Kakoi, M., "Transfers Between the Earth--Moon and Sun--Earth Systems Using Manifolds and Transit Orbits," Acta Astronautica, 2006, Vol. 59, Is. 1, pp. 367--380.

Transfers between other three-body systems

- The invariant manifolds associated with libration point orbits of the Sun-Earth system do not intersect manifolds of any other Sun-Planet system
- Transfers can be assisted with high/low-thrust arcs or by using solar sails*
- However, the manifolds of the gas giants' and the ice giants' systems do intersect

Interplanetary superhighway

M.W. Lo, "The Interplanetary Superhighway and the Origins Program," IEEE Aerospace Conference, March 2002, Big Sky, MT, USA.

Interplanetary superhighway

Contents

- Introduction
- Gravity assists maneuvers
- Invariant manifolds of the libration point orbits
- Weak stability boundary
- Resonant encounters
- Summary

Hohman transfer to the Moon

The flow in the equilibrium region of position space

x
Conley, C.C., "Low Energy Transit Orbits in the Restricted Three-Body Problems", SIAM Journal on Applied Mathematics, 1968, Vol. 16, No. 4, pp. 732-746

Weak stability boundary (WSB)

E. Belbruno have generalized the notion of the sphere of influence:

- WSB is a surface in phase space
- WSB concept is based on behavior of trajectories rather than on relation between gravitational forces
- WSB is the boundary between the stable and unstable motion

Stable and unstable motion

Transfer design to the Moon

- Fix the position near the Moon
- Find a near-Moon orbit such that the s / c is in the WSB w.r.t. the Moon
- Propagate the trajectory backward in time until the WSB w.r.t. the Earth (near SE L1)
- Fix the position near the Earth and find an impulse that deliver the s/c through the Moon's gravity assist to the required point near SE L1
- Eliminate the velocity discontinuity by an impulse
- Optimize the transfer by varying the initial and final times of flight and the near-Moon orbit

Belbruno, E. A., Miller, J.K., "'Sun-perturbed Earth-to-Moon Transfers with Ballistic Capture", Journal of Guidance, Control, and Dynamics, 1993, Vol. 16, Is. 4, pp. 770-775.

The Hiten trajectory

Belbruno, E. A., Miller, J.K., "'Sun-perturbed Earth-to-Moon Transfers with Ballistic Capture", Journal of Guidance, Control, and Dynamics, 1993, Vol. 16, Is. 4, pp. 770-775.

Contents

- Introduction
- Gravity assists maneuvers
- Invariant manifolds of the libration point orbits
- Weak stability boundary
- Resonant encounters
- Summary

GA maneuvers outside the sphere of influence (SOI)

- Previously (classical way):
- Patched conic approximation
- GA maneuvers inside the SOI
- Now:
- Restricted three-body problem
- GA maneuvers outside the SOI (high-altitude fly-bys)

Idea of resonant encounters

Perigee raising by using the high-altitude fly-by

$$
\Delta r_{\pi}=34,000 \mathrm{~km}
$$

Perigee lowering by using the high-altitude fly-by

$$
\Delta r_{\pi}=-29,000 \mathrm{~km}
$$

Impact of encounter on semi-major axis, one revolution

Lantoine, G., et al., "Optimization of Low-Energy Resonant Hopping Transfers Between Planetary Moons," 55/52 Acta Astronautica, 2011, Vol. 68, Is. 7, pp. 1361--1378.

Impact of encounters on semi-major axis, 14 revolutions

Lantoine, G., et al., "Optimization of Low-Energy Resonant Hopping Transfers Between Planetary Moons,"

Resonant encounters

- The I:m resonance:

$$
l \cdot T=m \cdot 2 \pi
$$

- Encounter that occur in the I:m resonance orbit repeats after m periods of the Moon
- Hopping between resonances ensures regular energy growth/reduction

Example: transfer to a halo orbit around EM L1

$$
\varphi=0.2
$$

$\Delta v_{0}=0.78 \mathrm{~m} / \mathrm{s}$
$5: 2 \rightarrow 3: 1$
$\Delta v_{1}=47.5 \mathrm{~m} / \mathrm{s}$
$\Delta v_{2}=0 \mathrm{~m} / \mathrm{s}$
$r_{\pi}=41,127 \mathrm{~km}$
$r_{\alpha}=300,600 \mathrm{~km}$
$\mathrm{TOF}=163.4$ days

58/52

SMART-1 hopping

J. Schoenmaekers, "'Post-launch Optimisation of the SMART-1 Low-thrust Trajectory to the Moon," 18th International Symposium on Space Flight Dynamics, October 2004, Munich, Germany.

SMART-1 trajectory, capture by the Moon

J. Schoenmaekers, "Post-launch Optimisation of the SMART-1 Low-thrust Trajectory to the Moon," 18th International Symposium on Space Flight Dynamics, October 2004, Munich, Germany.

Contents

- Introduction
- Gravity assists maneuvers
- Invariant manifolds of the libration point orbits
- Weak stability boundary
- Resonant encounters
- Summary

Summary

- GA maneuvers exploit the orbital energy of the planets, save fuel, and increase the mass of payload needed for scientific observations
- Invariant manifolds associated with LPOs form a vast transport network in the solar system (the "Interplanetary Superhighway") and lead to cheap interplanetary transfers between different two-body systems
- The notion of weak stability boundary formalizes the thinnest border between the near-Earth orbits and the Earth-to-Moon trajectories facilitating the trajectory design
- Resonant encounters are a natural energy-increasing tool on the way to the Moon

Thank you for your attention!

