Skoltech Space Center Seminar

November 8, 2018

Satellite formations control: approaches and algorithms

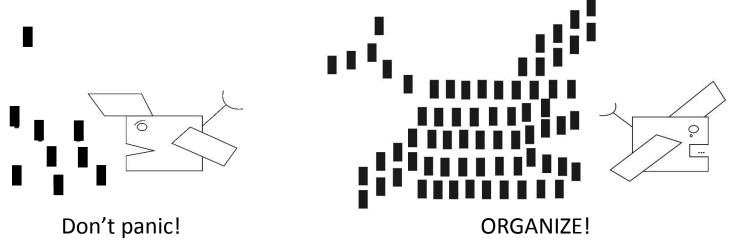
Danil Ivanov PhD, Senior Researcher Keldysh Institute for Applied Mathematics

Content

- Introduction
- \odot Distributed space systems control approaches
- Fuelless satellite formation flying control and algorithms
- Conclusions

What is distributed space system?

- A space system consisting of multiple space elements that can communicate, coordinate and interact in order to achieve a common goal.
 - Tolerance for failure of individual systems
 - Scalability and flexibility in design and deployment of system
 - New capabilities compared to a single satellite



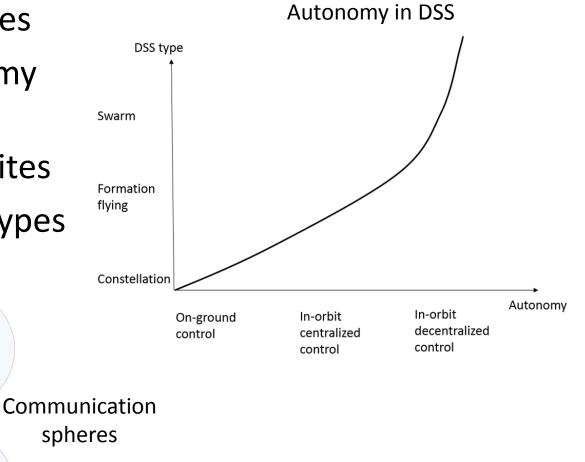
3

Definitions for distributed space systems

- Constellation: similar trajectories without control for relative position; coordination from a control center
- Formation: closed-loop control on-board in order to preserve topology in the group and to control relative distances
- Cluster: distributed heterogeneous system of satellites to achieve in cooperation a joint objective
- Swarm: a group of similar (homogenous) satellites cooperating to achieve a joint goal without fixed positions; Each member determines and controls relative positions in relations to others

Main parameters of distributed SS

- A number of satellites
- A degree of autonomy
- Communication links between satellites
- Relative trajectory types



5

Natural distributed systems

School of fishes

Swarm of bees

Flock of birds

Herd of animals

6

Satellite formation flying features

- Relatively small number of satellites
- Centralized control:
 - Mother-daughter relationship: mother knows the best for her children and command them
 - Leader-follower relationship: leader moves everywhere it wants, the followers pursue it
 - Chaser-target relationship: chaser follow the target, that could be noncooperative
- Communication with all the group members
- Motion along predefined trajectories

Equations of relative motion: linear model, near circular orbit

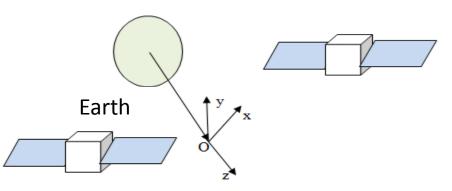
Hill-Clohessy-Wiltshire model:

 $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 = \begin{bmatrix} x & y & z \end{bmatrix}^T$ $\begin{cases} \ddot{x} + 2\omega\dot{z} = 0 \\ \ddot{y} + \omega^2 y = 0 \\ \ddot{z} - 2\omega\dot{x} - 3\omega^2 z = 0 \end{cases}$

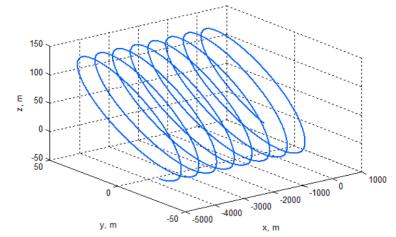
Solution is :

 $\begin{cases} x = -3C_1\omega t + 2C_2\cos\omega t - 2C_3\sin\omega t + C_4 \\ y = C_5\sin\omega t + C_6\cos\omega t \\ z = 2C_1 + C_2\sin\omega t + C_3\cos\omega t \end{cases}$

 $-3C_1\omega t$ - Relative drift



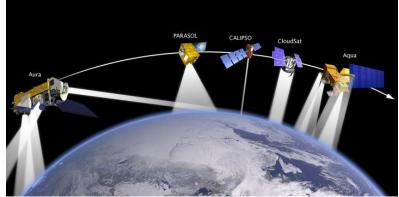
Common case of free motion



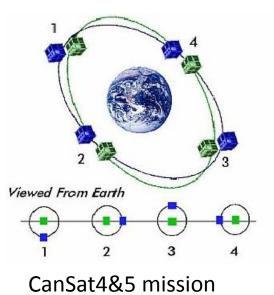
Formation flying specific relative trajectories

- Train formation
- Relative circular orbit
- Projected circular orbit
- Docking trajectories

KIKU-7 mission

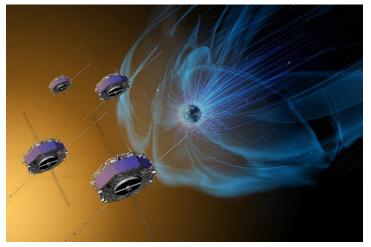


A-train formation flying

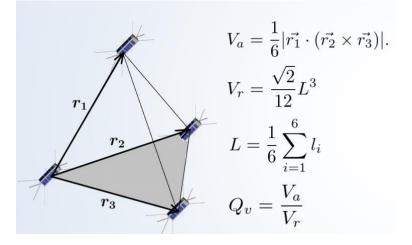


Tetrahedral formation flying

- For an experimental study of the spatial distribution of the Earth magnetosphere parameters it is necessary to conduct simultaneous measurements at several points
- At least four satellites are required to carry out spatial measurements
- In the ideal case the satellites should fly so that they are always at the vertices of the regular tetrahedron
- To construct and maintain such a configuration the relative motion control must be applied



Magnetospheric Multiscale Mission



Optimization problem

 Find optimal orbits for each of the four spacecraft near the reference orbit to maximize the number of orbital revolutions with acceptable formation quality (Q>0.7)

$$\overline{Q}_{int}(x) = \frac{1}{N_{rev}} \sum_{i=1}^{N_{rev}} \hat{Q}^i_{int}(x) \longrightarrow max$$

 Unknown vector x: 6 orbital parameters for each of the four deputy satellites (24 variables in total)

5 6

Time, days

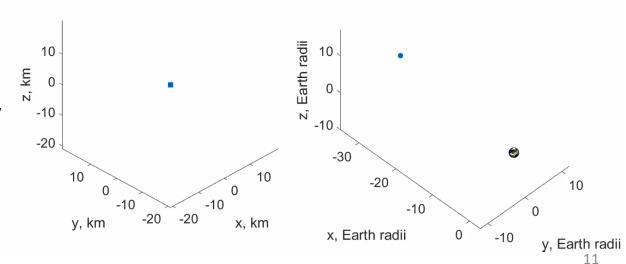
4

7 8 9 10

11 12

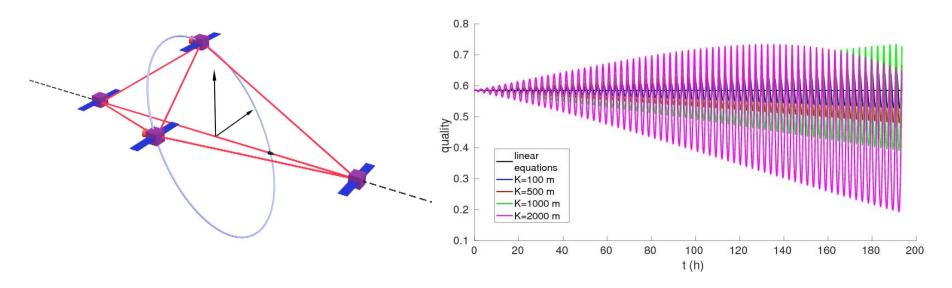
2 3

Koptev M.D., Trofimov S.P. Design, deployment and keeping of nanosatellite-based tetrahedral highly elliptical orbit formation// Preprints of Keldysh Institute for Applied Mathematics. 2018. Nº 97. 28 p.



Reference Trajectories for Tetrahedral Configuration in LEO

- Two of the satellites are moving along the same circular orbit with a constant separation equal to 2D
- The other two satellites are moving along the circular relative trajectories

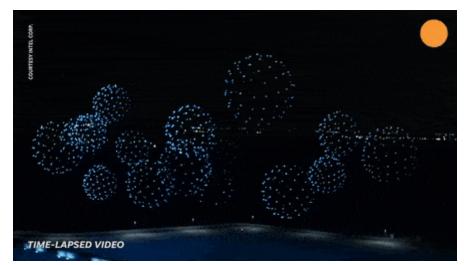


Y. Mashtakov, S. Shestakov Maintenance of the tetrahedral satellite configuration with single-input control // Preprints of Keldysh Institute for Applied Mathematics. 2016. № 95. 27 p.

Satellite swarm features

Drone light show

- A large number of satellites
- Decentralized control
- Communication with limited number of group members
- Motion along occasional trajectories:
 - Random but bounded relative trajectories



Launch of the PlanetLabs 3U CubeSats

Artificial potential control approach

Collision avoidance

$$U_{ij}^{rep} = -C_{rep} e^{-\frac{d_{ij}}{R_{rep}}}$$

Alignment

$$\mathbf{d}_{i} = \sum_{j, j \neq i} C_{al} \left(\mathbf{v}_{ij} \cdot \mathbf{r}_{ij} \right) e^{-\frac{u_{ij}}{R_{al}}} \mathbf{r}_{ij}$$

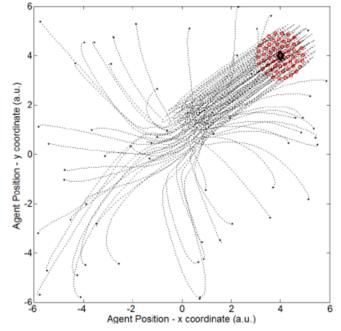
Л

• Attraction

$$U_{ij}^{at} = -C_{at}e^{-\frac{d_{ij}}{R_{at}}}$$

Equations of motion

$$m_i \mathbf{r}_i = -\nabla_i U(\mathbf{r}_i) + \mathbf{d}_i$$



M. Sabatini, G. B. Palmerini and P. Gasbarri. Control Laws for Defective Swarming Systems// Advances in the Astronautical Sciences, Second IAA DyCoss'2014, V. 153. p. 132-153.

Linear quadratic regulator application

Collision avoidance

$$\mathbf{u}^{rep} = \sum_{j, j \neq i} \mathbf{u}_{ij}^{rep}, when \ d_{ij} < R_{rep}$$

Alignment

$$\mathbf{u}_{i}^{al} = \sum_{j, j \neq i} \mathbf{u}_{ij}^{al}, when \ R_{al} < d_{ij} < R_{at},$$

$$\mathbf{x}_{i}^{d} = \left[-\frac{\dot{y}}{2\omega_{0}} \ 0 \ 0 \ 0 \ 0 \ 0\right]$$

Attraction

$$\mathbf{u}^{rep} = \sum_{j, j \neq i} \mathbf{u}_{ij}^{rep}, when \ d_{ij} < R_{rep}$$

Equations of motion

$$\dot{\mathbf{x}}_i = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i,$$

Feedback control is

$$\mathbf{u}_i = -\mathbf{R}^{-1} \mathbf{B}^T \mathbf{P} \mathbf{e}_i,$$

where $\mathbf{e}_i = \mathbf{x}_i - \mathbf{x}_i^d$,

matrix Pis the solution

of Riccati equation

 $\mathbf{Q} - \mathbf{P}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{P} + \mathbf{P}\mathbf{A} + \mathbf{A}^T\mathbf{P} = \mathbf{0}.$

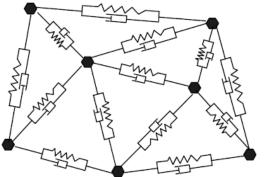
M. Sabatini, G. B. Palmerini. Collective control of spacecraft swarms for space exploration// Celest Mech Dyn Astr (2009) 105:229–244

D

D

Virtual structure control approach

- Imitation of the satellite system by a solid structure model
- Control law

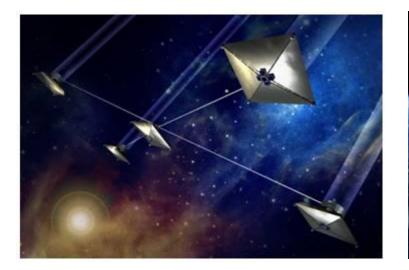


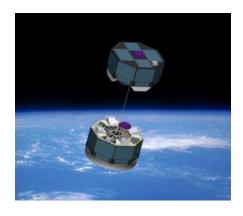
$$u_{i} = -\sum_{e_{k} \in E} k_{s} d_{ik} (\mathbf{p}_{k} - \mathbf{p}_{k}^{d}) - \sum_{e_{k} \in E} k_{d} d_{ik} \dot{\mathbf{p}}_{k}$$
Point masses connected by a spring-
Chen Q. et al. Virtual Spring-
Damper Mesh-Based Formation
Control for Spacecraft Swarms in
Potential Fields // J. Guid. Control.
Dyn. 2015. Vol. 38, No 3. P. 539-
546.
Dyn in thild time (t = 0 s)

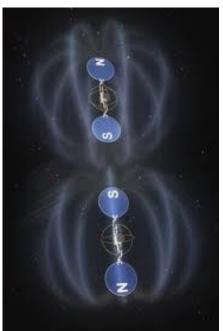
How to control?

Fuelless FF Control Concepts

- Tethered systems
- Aerodynamic drag
- Electro-magnetic interaction
- Solar pressure
- Momentum exchange

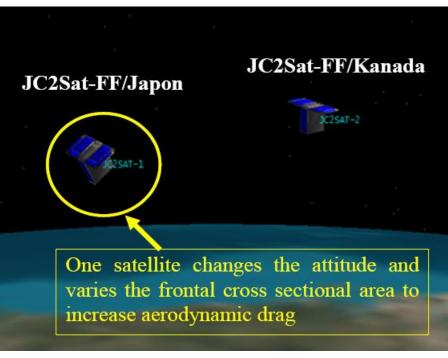






Aerodynamic drug based control

- Features:
 - Low Earth Orbit
 - Satellites with variable cross section area
- Shortcomings:
 - Short lifetime
 - Attitude control system is needed



JC2Sat Mission

LQR-based control algorithm

Aerodynamic drug force

 $\mathbf{f}_{i} = -\frac{1}{m}\rho V^{2}S\{(1-\varepsilon)(\mathbf{e}_{V},\mathbf{n}_{i})\mathbf{e}_{V} + 2\varepsilon(\mathbf{e}_{V},\mathbf{n}_{i})^{2}\mathbf{n}_{i} + (1-\varepsilon)\frac{\upsilon}{V}(\mathbf{e}_{V},\mathbf{n}_{i})\mathbf{n}_{i}\}^{*},$

 $\mathbf{n} = (\cos \alpha \cos \beta; \sin \beta; \sin \alpha \cos \beta).$ o Linear-quadratic regulator

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$,

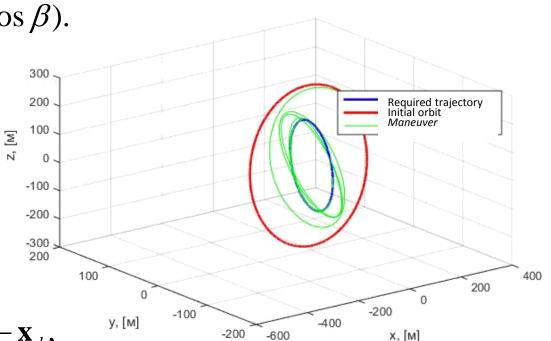
Minimising cost function

$$J = \int_{\tau}^{\infty} (\mathbf{e}^T \mathbf{Q} \mathbf{e} + \mathbf{u}^T \mathbf{R} \mathbf{u}) dt,$$

Feedback control is

$$\mathbf{u} = -\mathbf{R}^{-1}\mathbf{b}^T \mathbf{P}\mathbf{e}, \text{ where } \mathbf{e} = \mathbf{x} - \mathbf{x}_d$$

matrix P is the solution of Riccati equation $Q - PBR^{-1}B^TP + PA + A^TP = 0.$



Relative trajectories during the maneuver

Swarm control rules for differential drag control

• Most distant satellite drift elimination

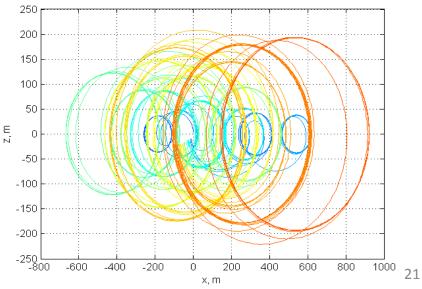
$$u_i^{\max R} = \frac{-\omega C_1^{iJ}}{\Delta T}, J = \arg\left(\max_j \left(R_{ij}\right)\right), j \in [1, \dots, N_{comm}], j \neq i, R_{ij} \leq R_{comm}$$

• Maximum drift elimination

$$u_i^{\max C_1} = \frac{-\omega C_1^{iJ}}{\Delta T}, J = \arg\left(\max_j \left(C_{ij}\right)\right), j \in [1, \dots, N_{comm}], j \neq i, R_{ij} \leq R_{comm}$$

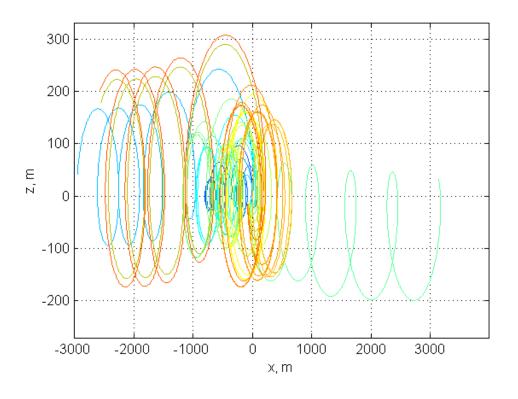
• Average drift elimination

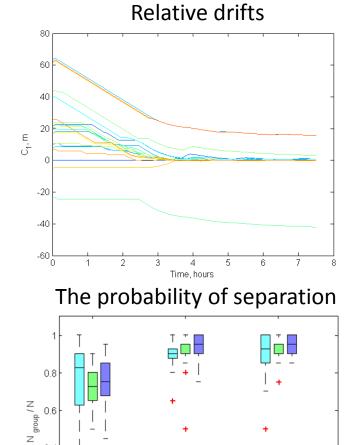
$$\overline{C}_{1}^{i} = \sum_{j=1}^{N_{comm}} C_{1}^{ij} / N_{comm} , \quad \overline{u}_{i} = \frac{-\omega \overline{C}_{1}^{i}}{\Delta T}$$



Separation of the swarm

Example of the relative motion trajectories in the case of separation of the swarm





Vost distant satellite drift elimination

1000

Average drift elimination

500

R_{comm}, m

Maximum drift elimination

0.4

0.2

100

Electro-magnetic interaction based control

Magnetic interaction

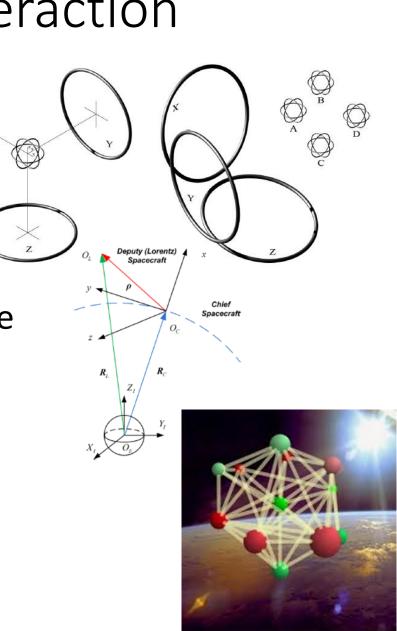
Youngquist R.C., Nurge M.A., Starr S.O. Alternating magnetic field forces for satellite formation flying // Acta Astronaut. Elsevier, 2013. Vol. 84. P. 197–205.

• Lorenz force of charged satellite

Peck M.A. et al. Spacecrat Formation Flying Using Lorentz Forces // J. Br. Interplanet. Soc. 2007. Vol. 60. P. 263–267.

Coulomb force interaction

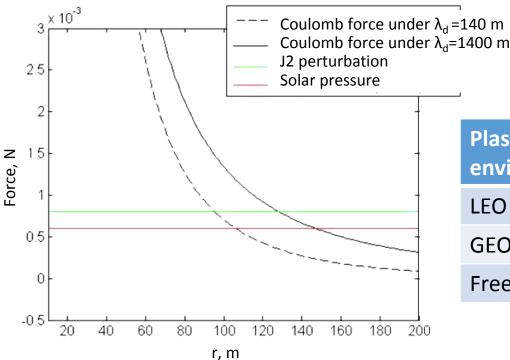
Schaub H. et al. Challenges and Prospects of Coulomb Spacecraft Formation Control of the Astronautical Sciences // J. Astronaut. Sci. 2004. Vol. 52. P. 169–193.

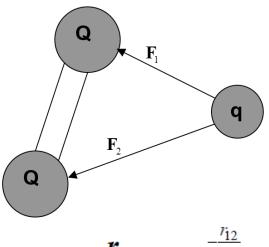


Coulomb force based control algorithm

○ Features:

- The charging device is required
- Small relative distances
- Charges are eliminating by plasma





$$f_{12} = k_c \frac{r_{12}}{r_{12}^3} q_1 q_2 e^{-\frac{\pi}{\lambda_d}}$$

Plasma environment	λ _{d min,} m	λ _{d max,} m
LEO	0.02	0.4
GEO	142	1496
Free space	7.4	24

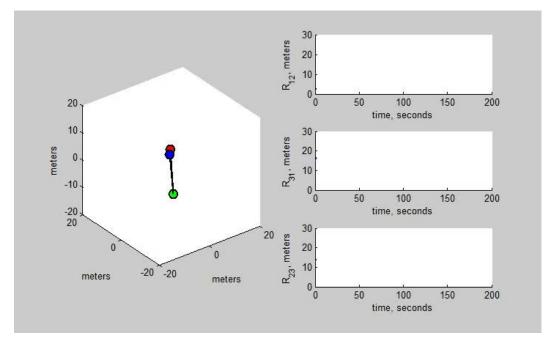
Sliding-mode control for three charged satellites

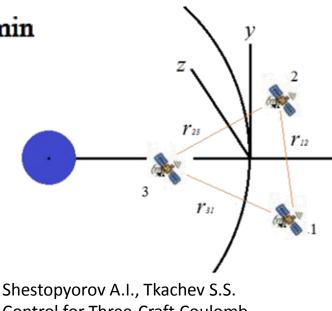
Lyapunov-candidate function

$$V = \frac{1}{2}\dot{r}_{12}^2 + \frac{1}{2}\dot{r}_{23}^2 + \frac{1}{2}\dot{r}_{31}^2 + \frac{1}{2}k_1(r_{12} - a_1)^2 + \frac{1}{2}k_2(r_{23} - a_2)^2 + \frac{1}{2}k_3(r_{31} - a_3)^2,$$

For negative sign should be:

$$\Phi = (q_1q_2 - \alpha_3)^2 + (q_2q_3 - \alpha_1)^2 + (q_1q_3 - \alpha_2)^2 \to \min$$





Control for Three-Craft Coulomb Formation// Preprints of Keldysh Institute for Applied Mathematics. 2018. № 5. 17 p.

Solar radiation pressure based control

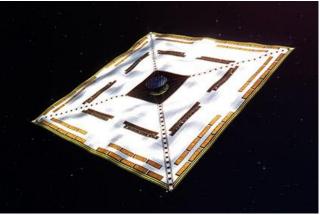
Solar sail with fixed orientation

Smirnov G.V., Ovchinnikov M.Y., Guerman A.D. Use of solar radiation pressure to maintain a spatial satellite formation // Acta Astronaut. 2007. Vol. 61, № 7-8. P. 724–728.

IKAROS Mission

Solar sail with variable reflection

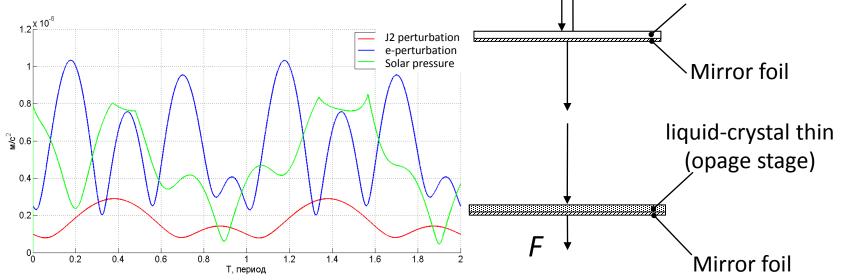
Mori O. et al. First Solar Power Sail Demonstration by IKAROS // Trans. Japan Soc. Aeronaut. Sp. Sci. Aerosp. Technol. Japan. 2010. Vol. 8, Nº ists27. P. To_4_25 – To_4_31.

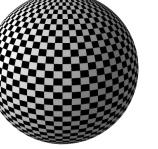


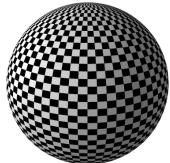
Solar radiation pressure based control

We consider:

- Spherical satellites
- Variable reflection on "pixel" surface
- Nearcircular orbits







liquid-crystal thin

(transparent state)

PD-controller-based control algorithm

• Motion equations:

$$\begin{cases} \dot{\boldsymbol{\rho}} = \mathbf{v}, \\ \dot{\mathbf{v}} = \mathbf{f}(\boldsymbol{\rho}, \mathbf{v}) + \mathbf{u}. \end{cases}$$

• PD-regulator:

$$\mathbf{u} = -k_{\rho}(\boldsymbol{\rho} - \boldsymbol{\rho}_{ref}) - k_{v}(\mathbf{v} - \mathbf{v}_{ref}) + \dot{\mathbf{v}}_{ref} - \mathbf{f}$$

where

$$k_{\rho}, k_{\nu} = \text{const} > 0$$
, choosen that $k_{\nu} = \frac{k_{\rho}^2}{4}$;

Solar pressure model

• The solar pressure force:

$$\mathbf{F} = -P_c \left(\int_{S^+} (1-k)(\mathbf{s},\mathbf{n}) \mathbf{s} dS + 2 \int_{S^+} k\mathbf{n}(\mathbf{s},\mathbf{n})^2 dS \right)$$

• The reflection function:

$$k(\varphi, \theta) = g(\varphi) \cdot h(\theta),$$

where
$$g(\varphi) = a_1 \cos(\varphi + \alpha) + a_0, \ h(\theta) = \frac{1}{2} + \frac{1}{2} \sin 4\theta.$$

$$a_0, a_1, \alpha - \text{Variable control parameters}$$

Restrictions are: $0 \le k \le 1.$

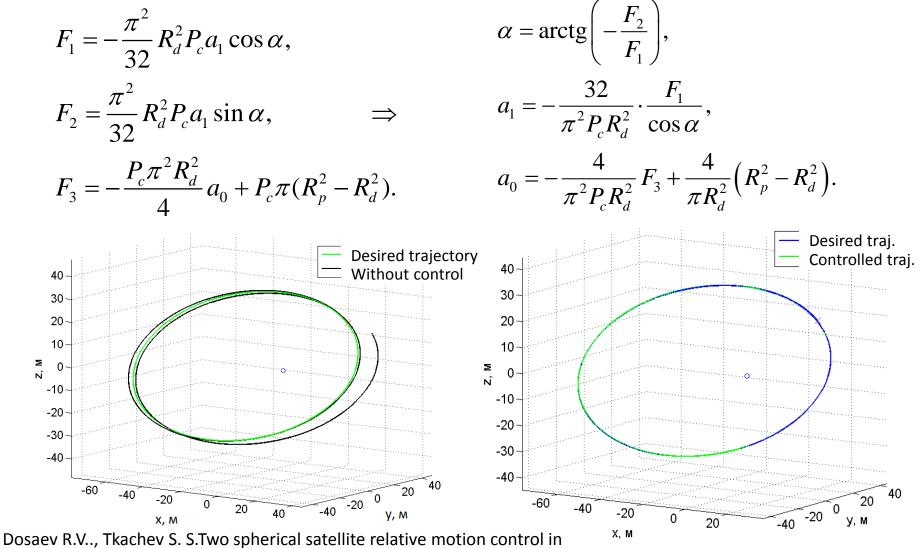
$$0 < (a_1 \cos(\varphi + \alpha) + a_0) \left(\frac{1}{2} + \frac{1}{2}\sin 4\theta\right) \le 1$$
$$0 \le a_1 \cos(\varphi + \alpha) + a_0 \le 1$$

 a_1

0.5

-0.5

Numerical example



formation flying via variable surface reflectivity// Preprints of Keldysh Institute for Applied Mathematics. 2016. № 107. 28 p.

30

The momentum exchange-based control

• The momentum from lasers for repulsive force

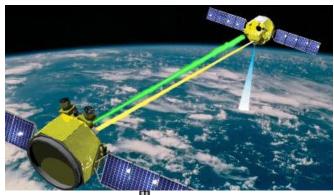
Y. K. Bae. A contamination-free ultrahigh precision formation flying method for micro-, nano-, and pico-satellites with nanometer accuracy. In Space Technology and Applications International Forum-Staif 2006, volume 813, pages 1213–1223, 2006.

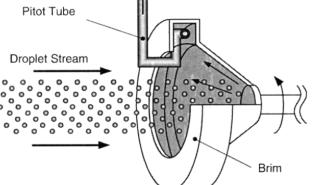
Continuous stream of mass travelling between the satellites

S. G. Tragesser. Static formations using momentum exchange between satellites. Journal of guidance, control, and dynamics, 32(4):1277 – 1286, 2009.

• Liquid droplet streams exchange

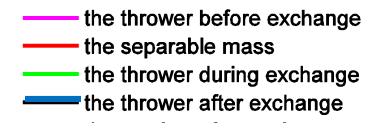
T. Joslyn and A. Ketsdever. Constant momentum exchange between microspacecraft using liquid droplet thrusters. In 46th joint Propulsion Conference, volume 6966, pages 25–28, 2010.





Single mass exchange control concept

- At command the single mass separates from the satellite
- The separated mass moves to the other satellite and impacts it absolutely inelastically
- After the whole mass transfer the resulting relative trajectory changes in adjustable way



The Problem Formulation

Boundary problem:

What is the initial relative velocity of the mass required to hit the thrower?

Initial conditions:

$$x_0 = x(t_0), y_0 = y(t_0), z_0 = z(t_0),$$

Thefinal position:

$$x_1 = x(t_1) = 0, y_1 = y(t_1) = 0, z_1 = z(t_1) = 0.$$

Hill - Clohessy - Wiltshire equations:

$$\ddot{x} + 2\omega \dot{z} = 0,$$

$$\ddot{y} + \omega^2 y = 0,$$

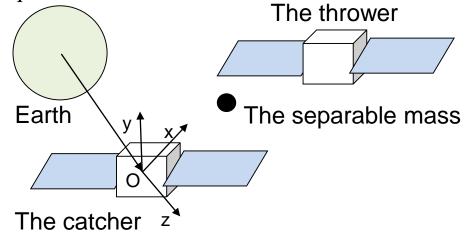
$$\ddot{z} - 2\omega \dot{x} - 3\omega^2 z = 0$$

The exact solution:

$$x = C_4 - 3C_1\omega t + 2C_2\cos\omega t - 2C_3\sin\omega t,$$

$$y = C_5\sin\omega t + C_6\cos\omega t,$$

$$z = 2C_1 + C_2\sin\omega t + C_3\cos\omega t$$



$$\begin{split} C_{1} &= 2z(t_{0}) + \frac{\dot{x}(t_{0})}{\omega}, C_{2} = \frac{\dot{z}(t_{0})}{\omega}, \\ C_{3} &= -3z(t_{0}) - \frac{2\dot{x}(t_{0})}{\omega}, C_{4} = x(t_{0}) - \frac{2\dot{z}(t_{0})}{\omega}, \\ C_{5} &= \frac{\dot{y}(t_{0})}{\omega}, C_{6} = y(t_{0}). \end{split}$$

The Analytical Problem Solution

Throwing mass relative velocity:

$$\delta \dot{x} = -\dot{x}_0 - 2z_0\omega + \frac{1}{\Delta} [x_0\omega \sin u + 2z_0\omega(\cos u - 1)],$$

$$\delta \dot{y} = -\dot{y}_0 - y_0 \omega \frac{\cos u}{\sin u},$$

$$\delta \dot{z} = -\dot{z}_0 - \frac{1}{\Delta} [2x_0 \omega (1 - \cos u) + z_0 \omega (3u \cos u - 4\sin u)],$$

where
$$u = \omega(t_m - t_e)$$
, $\Delta = 3u \sin u - 8(1 - \cos u)$.

The resulting thrower satellite velocity after mass throwing

$$\mathbf{v}_t = \mathbf{v}_{t,0} - \frac{m}{M} \,\delta \,\mathbf{v}.$$

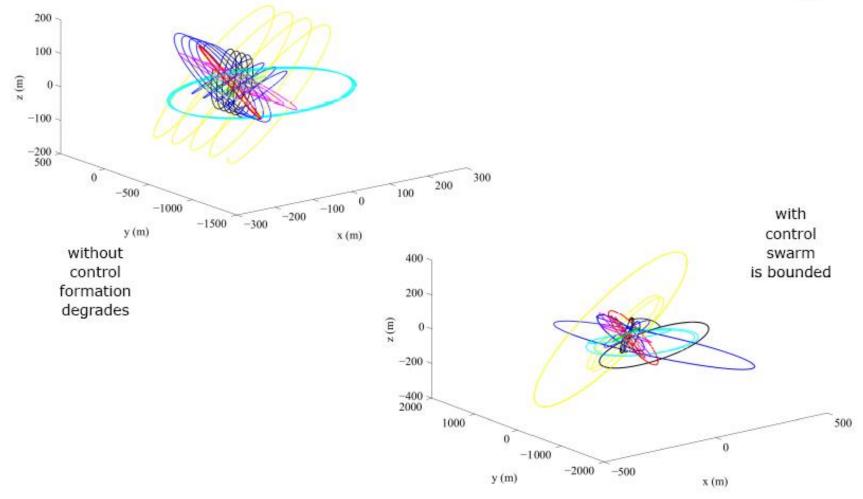
The resulting *catcher* satellite velocity after mass catching

$$\mathbf{v}_{c}(t_{m}) = \frac{m}{M+m} \mathbf{v}_{s}(t_{m}).$$

For instance, the final relative trajectory \tilde{C}_1 constant:

$$\tilde{C}_{1} = \left(2z_{0} + \frac{\dot{x}_{0}}{\omega}\right) + \frac{k(k+2)}{(k+1)^{2}} \cdot \frac{x_{0}\cos s - 2z_{0}\sin s}{8\sin s - 6s^{3}\cos s}$$

Sequence of mass exchanges for a swarm construction



Conclusion

- The swarm of the satellites is a new paradigm in space systems
- The fuelless control approaches are fitting small satellite restrictions, they are smart but challenging
- We should allow for the distributed system to be autonomous and self-organizing, but we must be watchful

Thank you for your attention!