

Satellite attitude control systems: problems and solutions

Dr. Stepan Tkachev

Keldysh Institute of Applied Mathematics

Keldysh Institute of Applied Mathematics

Was founded in 1953

Mathematical modeling for USSR Space program Atomic and fusion energetics program + Providing software for modeling

Mathematical modeling of physical processes From the approaches and tools development to the result visualization

Space systems dynamics study and control development

Mstislav Keldysh

Why control?

- Solar panels acquisition
- Payload and antennas pointing
- Thrust direction change

Flock (Planet Labs)

How control?

How control?

How control?

Magnetic attitude control

CubeSat magnetorquer

Geomagnetic field

- 1. Take magnetorquers 1-3 pieces
- 2. Take geomagnetic field 1 piece
- 3. ??????
- 4. PROFIT

Mathematical model

Dynamics

$$\mathbf{J}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega} = \mathbf{M}_{grav} + \mathbf{M}_{ctrl}, \ \mathbf{M}_{grav} = 3\frac{\mu}{R^3}\mathbf{e}_3 \times \mathbf{J}\mathbf{e}_3$$

Kinematics

$$\dot{\lambda}_0 = -\frac{1}{2} (\lambda, \boldsymbol{\omega})$$
$$\dot{\lambda} = \frac{1}{2} (\lambda_0 \boldsymbol{\omega} + \boldsymbol{\lambda} \times \boldsymbol{\omega})$$

Magnetic control torque

 $\mathbf{M}_{ctrl} = \mathbf{m} \times \mathbf{B} \Rightarrow \mathbf{M}_{ctrl} \perp \mathbf{B}$ underactuation problem!

The problem is having all of these make satellite move the way we want to!

Angular velocity damping

Angular velocity damping

 $\mathbf{m} = k\mathbf{\omega} \times \mathbf{B}$ $\mathbf{M}_{ctrl} = -k\mathbf{\omega}B^2 + k\mathbf{B}(\mathbf{\omega}, \mathbf{B})$

 $\mathbf{V} = \frac{1}{2} (\boldsymbol{\omega}, \mathbf{J}\boldsymbol{\omega}) \ge 0 \quad \text{Lyapunov function}$ $\dot{\mathbf{V}} = -k |\boldsymbol{\omega} \times \mathbf{B}|^2 \le 0$

As **B** rotates then $\dot{\mathbf{V}} < \mathbf{0}$

Here we neglect gravitational torque!

ect gravi
$$\bigcup_{\mathbf{\omega} \to 0}$$

-Bdot $\left(\frac{d\mathbf{B}}{dt}\right)_{aba} = \left(\frac{d\mathbf{B}}{dt}\right)_{aba} + \mathbf{\omega} \times \mathbf{B} \approx 0$ $\boldsymbol{\omega} \times \mathbf{B} = -\left(\frac{d\mathbf{B}}{dt}\right)$ $\mathbf{m} = -\left(\frac{d\mathbf{B}}{dt}\right)_{rel}$ \prod $\omega \rightarrow 1.8\omega$

Numerical modeling

M.Yu. Ovchinnikov, D.S. Roldugin, S.S. Tkachev, V.I. Penkov. B-dot algorithm steady-state motion performance // Acta Astronautica, 2018, V. 146, pp. 66-72.

One-axis stabilization

S-dot algorithm

$$\mathbf{m} = kB_0^2 \cos\alpha \left(\boldsymbol{\omega} \times \mathbf{S} \right)$$

Averaged equations

$$\begin{aligned} \frac{d\rho}{du} &= \varepsilon \frac{\cos\rho\cos\gamma - S_{3Z}}{\sin\rho} \Big[p\cos\gamma + S_{3Z}\cos\rho(q-p) \Big] \bigg(\cos^2\theta + \frac{C}{A}\sin^2\theta \bigg), \\ \frac{d\gamma}{du} &= -\varepsilon \sin\gamma \Big[p\cos\gamma + S_{3Z}\cos\rho(q-p) \Big] \bigg(\cos^2\theta + \frac{C}{A}\sin^2\theta \bigg), \\ \frac{dl}{du} &= -\varepsilon l \Big[p\sin^2\gamma + (q-p)(S_{3Z}^2 - S_{3Z}\cos\rho\cos\gamma) \Big] \bigg(\cos^2\theta + \frac{C}{A}\sin^2\theta \bigg), \\ \frac{d\theta}{du} &= \frac{1}{2}\varepsilon\lambda \Big[2\Big((1 - S_{3Z}^2) p + S_{3Z}^2 q \Big) - p\sin^2\gamma + (q-p)S_{3Z}(\cos\gamma\cos\rho - S_{3Z}) \Big] \sin\theta\cos\theta, \\ \lambda &= \frac{1}{2} \Big(1 - \frac{C}{A} \Big), \ p = \frac{1}{2}\sin^2\Theta, \ q = \cos^2\Theta, \ \varepsilon = \frac{kB_0^2}{\omega_0C} \end{aligned}$$

Result: The axis of the maximum moment of inertia coincides with the angular momentum vector in the asymptotically stable equilibrium

Flight results (Chibis-M)

Angular momentum attitude

S.O.Karpenko, M.Yu.Ovchinnikov, D.S.Roldugin, S.S.Tkachev. New one-axis one-sensor magnetic attitude control theoretical and in-flight performance // Acta Astronautica, V. 105, 2014, N 1, pp. 12-16

Gyroscopic systems

Cell phone vibration motor

 $\mathbf{H}=\mathbf{I}\boldsymbol{\Omega}$

Spacecraft reaction wheel

Principle of operation

Angular momentum exchange

 $\mathbf{K} = \mathbf{H} + \mathbf{J}\boldsymbol{\omega} = const$ $\mathbf{J}\dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega} = -\dot{\mathbf{H}} - \boldsymbol{\omega} \times \mathbf{H}$ Control torque

 $\mathbf{M}_{ctrl} = -\dot{\mathbf{H}} - \boldsymbol{\omega} \times \mathbf{H}$

You can create torque by accelerating or decelerating changing the angular momentum direction

Reaction wheels

Axis of rotation is fixed

Main dynamical properties: maximum torque maximum angular momentum or spin rate

Control algorithm

$$V_0 = \frac{1}{2} \left(\boldsymbol{\omega}_{rel}, \mathbf{J} \boldsymbol{\omega}_{rel} \right) + k_q \left(1 - q_0 \right)$$

 $\boldsymbol{\omega}_{rel} = \boldsymbol{\omega}_{abs} - \mathbf{A}\boldsymbol{\omega}_{ref}$

$$\mathbf{M}_{ctrl} = -\mathbf{M}_{ext} + \mathbf{\omega}_{abs} \times \mathbf{J}\mathbf{\omega}_{abs} + \mathbf{J}\mathbf{A}\dot{\mathbf{\omega}}_{ref} - \mathbf{J}[\mathbf{\omega}_{rel}]_{\times} \mathbf{A}\mathbf{\omega}_{ref} - \mathbf{k}_{q}\mathbf{q} - \mathbf{k}_{\omega}\mathbf{\omega}_{rel}$$

Global asymptotic stability of the *reference motion*

$$\begin{split} \left| \delta \alpha_{i} \right| \leq \begin{cases} \max \left(\left| \mathbf{M}_{dist} \right| \right) \frac{1}{2k_{a}}, \ k_{\omega}^{2} - 8k_{a}J_{ii} \geq 0, \\ \max \left(\left| \mathbf{M}_{dist} \right| \right) \coth \left(\frac{\pi k_{\omega}}{2\sqrt{8k_{a}J_{ii} - k_{\omega}^{2}}} \right) \frac{1}{2k_{a}}, \ k_{\omega}^{2} - 8k_{a}J_{ii} < 0, \\ \left| \delta \omega_{i} \right| \leq \begin{cases} \max \left(\left| \mathbf{M}_{dist} \right| \right) \frac{2}{\sqrt{2J_{ii}k_{a}}} \left(\frac{k_{\omega} + \sqrt{k_{\omega}^{2} - 8k_{a}J_{ii}}}{k_{\omega} - \sqrt{k_{\omega}^{2} - 8k_{a}J_{ii}}} \right)^{\frac{-k_{\omega}}{2\sqrt{k_{\omega}^{2} - 8k_{a}J_{ii}}}, \ k_{\omega}^{2} - 8k_{a}J_{ii} \geq 0, \\ \frac{\max \left(\left| \mathbf{M}_{dist} \right| \right)}{\sqrt{2J_{ii}k_{a}}} \exp \left[-\frac{k_{\omega}}{\sqrt{8k_{a}J_{ii} - k_{\omega}^{2}}} \arccos \left(\frac{k_{\omega}}{\sqrt{8k_{a}J_{ii}}} \right) \right] \left(1 + \operatorname{coth} \left(\frac{\pi k_{\omega}}{2\sqrt{8k_{a}J_{ii} - k_{\omega}^{2}}} \right) \right), \ k_{\omega}^{2} - 8k_{a}J_{ii} < 0. \end{cases} \end{split}$$

We need reference motion to calculate!

Remote sensing problem

Object «Resurs-P»

Route «Resurs-P»

Complex route tracking

Angular Motion Synthesis

Image Quality

- $\delta \mathbf{r}_p$ aiming point displacement (distance between desirable point the satellite looking at and real one)
- $\delta V_{2,3}$ image velocity error (causes image blur)

$$\begin{pmatrix} \delta \mathbf{r}_{p} \\ \delta V_{2} \\ \delta V_{3} \end{pmatrix} = \mathbf{D} \begin{pmatrix} \delta \boldsymbol{\alpha} \\ \delta \boldsymbol{\omega} \\ \delta \mathbf{r}_{s} \\ \delta \mathbf{V}_{s} \end{pmatrix} - \text{ angular velocity error} - \text{ center of mass position error} - \text{ center of mass velocity error}$$

Y.V.Mashtakov, M.Yu.Ovchinnikov, S.S.Tkachev, Study of the disturbances effect on small satellite route tracking accuracy // Acta Astronautica, 2016, V.129, pp.22-31.

Direction error

$$\delta \mathbf{r}_{p} = \left\{ \mathbf{e}_{1} \frac{(\mathbf{r}_{s}, \mathbf{e}_{1})(\mathbf{r}_{s}, \mathbf{e}_{3})}{\sqrt{(\mathbf{r}_{s}, \mathbf{e}_{1})^{2} - (\mathbf{r}_{s}^{2} - R^{2})}} + \mathbf{e}_{1}(\mathbf{r}_{s}, \mathbf{e}_{3}) - \mathbf{e}_{3} \mathbf{t} \right\} \delta \alpha + \left\{ \mathbf{e}_{2} \mathbf{t} - \mathbf{e}_{1} \frac{(\mathbf{r}_{s}, \mathbf{e}_{1})(\mathbf{r}_{s}, \mathbf{e}_{2})}{\sqrt{(\mathbf{r}_{s}, \mathbf{e}_{1})^{2} - (\mathbf{r}_{s}^{2} - R^{2})}} - \mathbf{e}_{1}(\mathbf{r}_{s}, \mathbf{e}_{2}) \right\} \delta \beta + \left\{ \mathbf{E}_{3\times3} - \mathbf{e}_{1} \mathbf{e}_{1}^{T} + \frac{\mathbf{e}_{1} \mathbf{r}_{s}^{T}}{\sqrt{(\mathbf{r}_{s}, \mathbf{e}_{1})^{2} - (\mathbf{r}_{s}^{2} - R^{2})}} - (\mathbf{r}_{s}, \mathbf{e}_{1}) \frac{\mathbf{e}_{1} \mathbf{e}_{1}^{T}}{\sqrt{(\mathbf{r}_{s}, \mathbf{e}_{1})^{2} - (\mathbf{r}_{s}^{2} - R^{2})}} \right\} \delta \mathbf{r}_{s}$$

 $|\delta \mathbf{r}_p| \approx |\delta \mathbf{r}_s| + \rho |\delta \psi|$

21/31

Image quality

$$\begin{split} \delta V_{\parallel} &= \left| \frac{f}{\rho} \mathbf{e}_{3}^{T} \left\{ ([\mathbf{\Omega} - \mathbf{A}^{T} \boldsymbol{\omega}]_{\times} \mathbf{D}_{1-3,1-3} + [\mathbf{\rho}]_{\times} \mathbf{A}^{T} [\boldsymbol{\omega}]_{\times} \mathbf{N}) \delta \mathbf{\psi} + [\mathbf{\rho}]_{\times} \mathbf{A}^{T} \delta \boldsymbol{\omega} + \right. \\ &+ ([\mathbf{A}^{T} \boldsymbol{\omega}]_{\times} + [\mathbf{\Omega} - \mathbf{A}^{T} \boldsymbol{\omega}]_{\times} \mathbf{D}_{1-3,7-9}) \delta \mathbf{r}_{s} - \delta \mathbf{V}_{s} \right\} + \frac{f}{\rho} \left\{ (\mathbf{V}_{rel}, \mathbf{e}_{1}) \delta \alpha - (\mathbf{V}_{rel}, \mathbf{e}_{2}) \delta \gamma \right\} \right| \\ &\delta V_{\perp} = \left| \frac{f}{\rho} \mathbf{e}_{2}^{T} \left\{ ([\mathbf{\Omega} - \mathbf{A}^{T} \boldsymbol{\omega}]_{\times} \mathbf{D}_{1-3,1-3} + [\mathbf{\rho}]_{\times} \mathbf{A}^{T} [\boldsymbol{\omega}]_{\times} \mathbf{N}) \delta \mathbf{\psi} + [\mathbf{\rho}]_{\times} \mathbf{A}^{T} \delta \boldsymbol{\omega} + \right. \\ &+ ([\mathbf{A}^{T} \boldsymbol{\omega}]_{\times} + [\mathbf{\Omega} - \mathbf{A}^{T} \boldsymbol{\omega}]_{\times} \mathbf{D}_{1-3,7-9}) \delta \mathbf{r}_{s} - \delta \mathbf{V}_{s} \right\} - \frac{f}{\rho} (\mathbf{V}_{rel}, \mathbf{e}_{1}) \delta \beta - \\ &+ (\mathbf{V}_{rel}, \mathbf{e}_{2}) \frac{f}{\rho^{3}} \mathbf{\rho}^{T} \delta \mathbf{r}_{s} - (\mathbf{V}_{rel}, \mathbf{e}_{2}) \frac{f}{\rho^{3}} \mathbf{\rho}^{T} \mathbf{D} \delta \mathbf{x} \right| \\ &\left| \left. \frac{\delta V}{|\mathbf{z}|\mathbf{z}|} \mathbf{f} \right| \delta \mathbf{\omega} \right| \end{split}$$

Case of restricted zones

Have one or several restricted directions **Problem:** perform slew maneuver and avoid restricted zones

Simulation results

24/31

Axis of rotation can change its direction

Single gimbal control momentum gyro (SGCMG)

Main dynamical properties:

flywheel angular momentum maximum gimbal spin rate

Dual gimbal control momentum gyro (DGCMG)

Single gimbal CMG

https://www.honeybeerobotics.com

Single gimbal CMG

Pyramid type

Attitude control system operation

Steering law & singularities

 $\boldsymbol{\tau} = \dot{\mathbf{H}} = \mathbf{F}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} \quad \dim \mathbf{F}(\boldsymbol{\theta}) = 3 \times n$

 \downarrow

Singularity avoidance algorithm

 $\dot{\boldsymbol{\theta}} = \left(\boldsymbol{\mu} \mathbf{E}_3 + \mathbf{F}^T \mathbf{F}\right)^{-1} \mathbf{F}^T \dot{\mathbf{H}} = \mathbf{F}^T \left(\mathbf{F} \mathbf{F}^T + \boldsymbol{\mu} \mathbf{E}_3\right)^{-1} \dot{\mathbf{H}}$

Numerical example

