# Modern means of spacecraft attitude control

Mashtakov Yaroslav, junior researcher

Keldysh Institute of Applied Mathematics of RAS

#### Contents

#### Introduction

- Different means of attitude control
  - Gravity-gradient stabilization
  - Thrusters
  - Magnetic torquers
  - Reaction wheels
- Control moment gyros
  - Control algorithms
  - Singularity problem
  - Avoidance algorithms

#### Introduction

A lot of different missions require to maintain a certain attitude in space:

- Astronomical satellite should be pointed to a certain star
- One of communication satellite's axis must be directed along the local vertical
- Antenna of interplanetary spacecraft must be pointed at Earth to provide information



#### Introduction

## Different missions – different accuracy

- Weather observation  $\pm 1^{\circ}$
- Astronomical observation up to 0,1 arc sec

To provide this extreme accuracy we have to know well current attitude of the satellite and provide even very small control torques.



#### Introduction

To determine current attitude different sensors can be used:

- Gyroscopes to determine angular velocity
- Sun sensor to find direction to the sun
- Star tracker to determine the attitude
- Magnetometers
- Earth sensors
- Etc.



Star tracker

### Gravity-gradient stabilization

Based on "Tidal Force": the upper end of satellite feels less gravitational pull than the lower end, so satellite's axis of minimum moment of inertia is aligned with the local vertical

Advantages:

- + Reliable
- + Simple
- + Doesn't consume any fuel/energy Drawbacks:
- Low accuracy
- Satellite's orientation is fixed



#### Thrusters

The most common mean of attitude control. They are often used with reaction wheels and CMG to minimize fuel consumption Advantages:

- + Reliable
- + Simple in use
- Drawbacks:
- Consume fuel (and a lot of energy if we use ion thrusters)



RCS blocks on the Apollo Lunar Module

### Magnetic torquers

Magnetic torquers include magnetic coils, permanent magnets and hysteresis rods. Usually used as a damper or with CMG and reaction wheels

Advantages:

- + Very light (important for small satellites)
- + Consume small amount of energy and no fuel

Drawbacks :

- Dependence on magnetic field (can be used only on low orbits)
- Provided torques are very limited
- Accuracy is far from satisfactory



#### **Reaction Wheels**

Very common mean of attitude control. Consist of a symmetrical rotor. We can change its spin velocity and thus change its angular momentum. Advantages:

- + Accuracy
- + Consume no fuel
- + Fast reorientation
- Drawbacks:
- Limited rotation speed (we need to cancel stored momentum)
- Other attitude control systems are necessary



### Control moment gyros

Consist of reaction wheel with tilting spin axis. There are different types of CMG:

- •Single-gimbal
- •Dual-gimbal
- •Variable speed

Advantages:

- + More power efficient than RW
- + All advantages of RW Drawbacks:
- Geometric singularity



#### Control algorithms

Changing of angular momentum of the satellite:

 $\frac{d\mathbf{K}}{dt} + \boldsymbol{\omega} \times \mathbf{K} = \mathbf{M}_{d}, \ \mathbf{K} = \mathbf{K}_{\text{sat}} + \mathbf{h}_{CMG}, \ \mathbf{h}_{CMG} = \sum_{i=1}^{N} \mathbf{h}_{i}(\theta_{i}(t))$ 

After substitution:

$$\frac{d\mathbf{K}_{sat}}{dt} + \boldsymbol{\omega} \times \mathbf{K}_{sat} = \mathbf{M}_{dist} + \mathbf{M}_{control}, \ \mathbf{M}_{control} = -\frac{d\mathbf{h}_{CMG}}{dt} - \boldsymbol{\omega} \times \mathbf{h}_{CMG}$$

 $\mathbf{M}_{control}$  can be obtained, for example, from Lyapunov function:

$$\mathbf{M}_{control} = -\mathbf{M}_{dist} + \mathbf{\omega} \times \mathbf{J}\mathbf{\omega} + \mathbf{J}\mathbf{W}_{rel}\mathbf{A}\mathbf{\omega}_0 + \mathbf{J}\mathbf{A}\dot{\mathbf{\omega}}_0 + k_a\mathbf{S} - k_\omega\mathbf{\omega}_{rel}$$

#### Control algorithms

Control law:

$$\mathbf{M}_{control} = -\frac{d\mathbf{h}_{CMG}}{dt} - \mathbf{\omega} \times \mathbf{h}_{CMG}, \frac{d\mathbf{h}_{CMG}}{dt} = \mathbf{J}(\mathbf{\theta})\dot{\mathbf{\theta}}$$
$$\mathbf{J} = \left(\frac{\partial\mathbf{h}_{1}}{\partial\theta_{1}} \cdots \frac{\partial\mathbf{h}_{N}}{\partial\theta_{N}}\right), \dot{\mathbf{\theta}} = \left(\frac{d\theta_{1}}{dt} \cdots \frac{d\theta_{N}}{dt}\right)^{T}$$

To simplify let's assume:

 $\boldsymbol{\tau} = \mathbf{J}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}$ 

Where  $\tau$  is a 3-vector, J( $\theta$ ) 3xN matrix and  $\dot{\theta}$  is N-vector. The question is: how we can find  $\dot{\theta}$  if we know  $\tau$ ?

#### Singularity problem

If J is a square matrix and  $det(J) \neq 0$  we can find  $\dot{\theta}$ :  $\dot{\theta} = J^{-1}(\theta)\tau$ 

But usually there are 4 or more CMGs, so we can't do that. If Rg(J) = 3 we can use so called pseudoinverse:

$$\dot{\boldsymbol{\theta}}_p = \mathbf{J}^+(\boldsymbol{\theta})\boldsymbol{\tau}, \ \mathbf{J}^+ = \mathbf{J}^T(\mathbf{J}\mathbf{J}^T)^{-1}$$

But there is a problem when Rg(J) < 3: det(JJ<sup>T</sup>) = 0
To avoid it we can use different methodic, for example null motion:

$$\dot{\boldsymbol{\theta}}_{Null}$$
:  $\mathbf{J}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}_{Null}=0$ 

#### Singularity problem

SVD: any matrix can be decomposed in

$$M_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}, U^{-1} = U^{T}, V^{-1} = V^{T},$$
  
$$\Sigma = diag(\sigma_{1}, \dots, \sigma_{m}), \sigma_{i} \ge \sigma_{i+1}, \sigma_{i} \ge 0$$

So we can obtain  $J^+$ :

$$\mathbf{J}_{3\times N} = U_{3\times 3} \boldsymbol{\Sigma}_{3\times N} V_{N\times N}^{T}$$
$$\mathbf{J}_{3\times N}^{+} = V \boldsymbol{\Sigma}^{+} U^{T}, \boldsymbol{\Sigma}^{+} = diag_{N\times 3}(\boldsymbol{\sigma}_{1}^{-1}, \boldsymbol{\sigma}_{2}^{-1}, \boldsymbol{\sigma}_{3}^{-1}).$$

If  $\sigma_3 = 0 \Leftrightarrow Rg(J) < 3$ , we cant calculate  $J^+$ .

#### Avoidance algorithms

But by adding some error in control law we can avoid that obstacle:

$$\boldsymbol{\Sigma}^{+} \rightarrow \boldsymbol{\Sigma}^{*} = diag((\boldsymbol{\sigma}_{1} + \boldsymbol{\alpha})^{-1}, (\boldsymbol{\sigma}_{2} + \boldsymbol{\alpha})^{-1}, (\boldsymbol{\sigma}_{3} + \boldsymbol{\alpha})^{-1})$$

Which is equal to

$$\dot{\boldsymbol{\Theta}} = \mathbf{J}^T \left( \mathbf{J} \mathbf{J}^T + \alpha \boldsymbol{I}_3 \right)^{-1} \boldsymbol{\tau}$$

Even when we are near the singularity (equal to  $det(JJ^T) \rightarrow 0$ ), we can calculate  $(JJ^T + \alpha I_3)^{-1}$  and find .

It can be shown that this expression solves the following minimization problem:

$$\min_{\boldsymbol{\theta}} \{ \frac{1}{2} \alpha \| \dot{\boldsymbol{\theta}} \| + \frac{1}{2} \| \mathbf{J} \dot{\boldsymbol{\theta}} - \boldsymbol{\tau} \| \}$$

### Conclusion

- Different missions require their own set of sensors and actuators: it doesn't necessary install precision star trackers and powerful CMGs on weather observation satellites
- All actuators have drawbacks and advantages