

XII International Summer School dedicated to the 105th anniversary of the first passenger aircraft
Computer technologies of engineering mechanical problems (LMSU Institute of Mechanics, July 2 – August 10, 2018)

Review of direct low-thrust trajectory optimization methods

Anastasiia Tselousova, Maksim Shirobokov, Sergey Trofimov

Keldysh Institute of Applied Mathematics, Moscow, Russia

Content

- Problem statement
- Low thrust
- Direct optimization techniques
- Comparison of methods
- Conclusion

Problem statement

To obtain the fuel optimal Earth-Mars trajectory in the central gravitational field of the Sun

- Low thrust
- Limited thrust acceleration
- Constant exhaust velocity
- Russian engine SPT 100-V (80 mN, 1600 s)
- Ephemeris DE-432
- The mass of the spacecraft is 300 kg
- Time of flight varies from 432 to 711 days

4/16

Low thrust

The thrust is small if $\frac{a_{\tau}}{g} < 10^{-4}$

EDB Fakel: SPT-100V

Tethers Unlimited: HYDROS

Busek: BIT-3

Low-thrust trajectory optimization Indirect Direct

- Necessary optimality conditions (Pontryagin Maximum Principle)
- •Two point boundary value problem (TPBVP)

 Discretization of the control variables

 Nonlinear programming problem (NLP)

Low-thrust trajectory optimization

Indirect methods: Pontryagin maximum principle

- ✓ The necessary optimality conditions
- ✓ High accuracy
- X The convergence depends strongly on the initial guess
- X The necessary conditions have to be rederived for the perturbed problem
- X Costate variables are not physically intuitive

Direct methods: control discretization

- \checkmark The solution is close to the optimal
- X Medium accuracy
- \checkmark The solution is less sensitive to the initial guess
- \checkmark The methods can be easily applied for the disturbed motion
- ✓ Unknown control variables are more physically intuitive

Direct optimization techniques

 Optimization in terms of thrust acceleration variables

<u>Tang S., Conway B. A.</u> <u>1995</u>

- Approximation of the control and state variables by the interpolating polynomials and optimization of the expansion coefficients
- Optimization in terms of impulse variables

<u>Sims J., Flanagan S.</u> <u>1999</u>

Fahroo F., Ross I.M.

2002

Variables

- Thrust acceleration control ($\boldsymbol{\varepsilon}$)
- Perturbed Keplerian motion on each segment of trajectory

6

$$\ddot{\mathbf{r}} = -\frac{\mathbf{r}}{r^3} + \boldsymbol{\varepsilon}$$

• Search for optimal thrust acceleration control

- Thrusting is modeled as a series of impulses (ΔV)
- Keplerian model on each segment of the trajectory

$$\ddot{\mathbf{r}} = -rac{\mathbf{r}}{r^3}$$

- Search for optimal impulse control
- Transformation of the impulses to the thrust acceleration

Thrust acceleration control, shooting method

NLP:

$$\begin{cases} J = \sum_{i=1}^{N} |\varepsilon_i| \bigtriangleup t \longrightarrow \min \\ |\varepsilon_i| \le \varepsilon_{max}, i = \overline{1, N} \\ \mathbf{X}_{N+1} - \mathbf{X}_{f} = \mathbf{0} \end{cases} & 3N \text{ variables: } \varepsilon_1, \varepsilon_2, \dots, \varepsilon_N \\ 3N \text{ variables: } \varepsilon_1, \varepsilon_2, \dots, \varepsilon_N \end{cases}$$

where ε_{max} - the maximum value of the thrust acceleration,

 $\mathbf{X_0}\,,\,\mathbf{X_f}$ - the phase vectors of the planets,

 $\mathbf{X_{N+1}}$ - the phase vector of the spacecraft at the last node

Thrust acceleration control, multiple shooting method $X_0 \xrightarrow{X_1^{\Delta t}} \cdots \xrightarrow{X_{N-1}^{\Delta t}} X_f$

$$\begin{cases} J_1 = \sum_{i=1}^{N} |\boldsymbol{\varepsilon}_i| \Delta t \longrightarrow \min \\ |\boldsymbol{\varepsilon}_i| \leq \boldsymbol{\varepsilon}_{max}, i = \overline{1, N} \\ \mathbf{X}_1 - \mathbf{X}_0 = \mathbf{0} \\ \mathbf{X}_i^{\Delta t} - \mathbf{X}_{i+1} = \mathbf{0}, i = \overline{1, N-1} \\ \mathbf{X}_N^{\Delta t} - \mathbf{X}_f = \mathbf{0} \end{cases} \qquad 9N \text{ variables: } \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N \\ \boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \dots, \boldsymbol{\varepsilon}_N \\ N + 6(N+1) \text{ constraints} \end{cases}$$

 $\mathbf{L}_{\mathbf{2}}, \boldsymbol{\varepsilon}_{2}$

where $\sum_{i=1}^{N} |\boldsymbol{\varepsilon}_i| \Delta t = \Delta V_{\sum}$ - the relative velocity consumption,

 $\mathbf{X_{1},}arepsilon_{1}$

 $\mathbf{X}_i~$ - the phase vectors of the spacecraft at the control nodes,

 $\mathbf{X}_i^{\Delta t}$ -the phase vectors of the spacecraft after integration of the equations of motion on the ith segment

10/16

Impulse control, multiple shooting method ${ m X}_{{ m N}-1}^{{m \Delta}{ m t}}$ X₀ X_1 $\begin{cases} J_2 = \sum_{i=1}^N |\Delta \mathbf{v}_i| \longrightarrow \min \\ |\Delta \mathbf{v}_i| \leq \Delta v_{max}, i = \overline{1, N} \\ \mathbf{r}_1 - \mathbf{r}_0 = \mathbf{0} \\ \mathbf{r}_i^{\Delta t} - \mathbf{r}_{i+1} = \mathbf{0}, i = \overline{1, N-1} \\ \mathbf{r}_N^{\Delta t} - \mathbf{r}_f = \mathbf{0} \end{cases}$ 6N variables: $X_1, X_2, ..., X_N$ N + 3(N + 1) constraints

where $\Delta v_i = v_{i+1} - v_i^{\Delta t}$ the impulse on the ith segment, $\sum_{i=1}^{N} |\Delta \mathbf{v}_i| = \Delta V_{\Sigma}$ - the relative velocity consumption, $\mathbf{r}_0, \mathbf{r}_f$ - the radius vectors of the planets, \mathbf{r}_i - the radius vector of the spacecraft at the ith control node, Δv_{max} - the maximum value of the impulse

The optimal Earth-Mars trajectories (earth launch date: 01.01.2020, time of flight: 432 days)

Optimal trajectories

Launch date: 01.01.2020 Arrival date: 08.03.2021 Time of flight: 432 days Segments per orbit: 30 Relative velocity consumption: 6, 73 km/s Relative fuel consumption: 34, 75%

13/16 **13/14**

Computational comparison of methods

	Convergence region (times when the method converged)	Efficiency (average number of iterations)
Thrust acceleration control, shooting	<mark>X</mark> 239/280 (86%)	√ High (41 iterations)
Thrust acceleration control, multiple shooting	<mark>X</mark> 259/280 (93%)	√ High (55 iterations)
Impulse control, multiple shooting	√ 280/280 (100%)	X Medium (97 iterations)

- **Programming language:** MATLAB R2017a
- **Optimization algorithm:** fmincon, SQP (sequential quadratic programming)
- Time of flight varies from 432 to 711 days, N = 5

Computation time requirements

Thrust acceleration control, shooting	√4.6217 ± 2.1534 s
Thrust acceleration control, multiple shooting	<mark>X</mark> 65.8191 ± 6.2296 s
Impulse control, multiple shooting	√4.6809 ± 2.0532 s

• **Personal computer:** the operating system Windows 7, CPU Intel Core i3 -2377M, frequency 1.5 GHz, RAM 4.0 GB.

Conclusion

- The two direct low-thrust trajectory optimization methods were compared: the one based on optimization of the thrust acceleration and the one that optimizes the impulses that approximate the thrust arcs.
- The method based on optimization of the thrust acceleration and shooting technique is the most fast, but it has a small convergence region.
- The method that optimizes the impulses has the largest convergence region and acceptable computation time requirements.

The work is fully supported by the Russian Science Foundation (RSF) grant 17-71-10242.