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Abstract. Current biological theory has no commonly accepted view on the 
phenomenon of aging. On the one hand it is considered as an inescapable 
degradation immanent to complex biological systems and on the other hand as 
outcome of evolution. At the moment, there are three major complementary 
theories of evolutionary origin of senescence – the programmed death theory, 
the mutation accumulation theory, and the antagonistic pleiotropy theory. The 
later two are rather extensively studied theoretically and computationally then 
the former one is paid less attention. Here we present computer multi-agent 
model of aging evolution compatible with theories of programmed death and 
mutation accumulation. In our study we test how presence of aggression and 
kin-recognition affects evolution of age dependent suicide which is an analog of 
programmed death in the model. 
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Introduction 

One of the fundamental problems of biology is the problem of phenomenon of aging 
[1,2]. There are two alternative approaches to the explanation of senescence. The first 
assumes that the aging is an immanent feature of all living matter. For example, the 
disposable soma theory [3,4,5] considers senescence as decline in somatic 
maintenance and repair. The second approach to the problem of aging is constituted 
by the evolutionary theories. 

Evolutionary theory has no straightforward account for the aging. It is obvious that 
the death makes reproduction and, as a consequence, further proliferation of 
organism’s genes in a population impossible. Therefore, selection should favor 
increase of an organism’s lifespan leading to a more numerous progeny. Quoting the 
pioneer of aging research August Weismann: 

“This brings us face to face with one of the most difficult problems in the 
whole range of physiology,-the question of the origin of death. As soon as we 
thoroughly understand the circumstances upon which normal death depends in 
general, we shall be able to make a further inquiry as to the circumstances 
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which influence its earlier or later appearance, as well as to any functional 
changes in the organism which may produce such a result.” [6 p.20]. 

Weismann put forward the theory of evolutionary emergence of death known today 
as the theory of programmed death or phenoptosis [7]. His hypothesis is: 

“I consider that death is not a primary necessity, but that it has been 
secondarily acquired as an adaptation. I believe that life is endowed with a 
fixed duration, not because it is contrary to its nature to be unlimited, but 
because the unlimited existence of individuals would be a luxury without any 
corresponding advantage.” [6 p.24]. 

The hypothesis of programmed death is difficult to test; moreover Weismann 
proposed no plausible evolutionary scenario for emergence of “suicidal” adaptation. 

At the middle of the 20th century other theories of senescence evolution were 
proposed. In accordance with the Medawar’s theory of mutation accumulation [8-12] 
the aging is a result of accumulation of deleterious mutations which reveal their effect 
only in an old age. It is supposed that this kind of mutations is weakly affected by 
selection due to mortality caused by external factors. The other evolutionary theory of 
aging is the antagonistic pleiotropy theory suggested by Williams [13]. This theory 
relates aging to accretion of mutations which have the positive effect in a young age 
and the negative in an old age. 

Theories of Weismann, Medawar and Williams propose independent causes of the 
senescence evolution. The hypothesis of programmed death assumes that phenoptosis 
itself has adaptive value. Mutation accumulation theory rests on the neutrality of 
senescence mutations. In the antagonistic pleiotropy theory a “death” side of mutation 
hitch-hike on an adaptive young age side. All three mechanisms are not incompatible 
and may comprise the holistic picture of aging evolution. 

There are some theoretical studies of the senescence evolution based on the 
mutation accumulation and antagonistic pleiotropy approaches [2,11-12,14-18] but no 
recent studies in the framework of programmed death theory. We propose an 
evolutionary model of aging which allows exploration of the hypotheses of 
programmed death and mutation accumulation by means of computer simulations. In 
our model possible actions of individuals are independently affected by age, hence 
antagonistic pleiotropy is impossible. In the original formulation the theory of 
programmed death relates adaptiveness of senescence with cooperation, i.e. with 
“giving way” for new generations. Therefore, if this theory is accepted then evolution 
of aging should be affected by the strength of selection towards cooperation. So, we 
simulate evolution with varying strength of selection and ability for kin cooperation to 
observe their effect on plausibility of programmed death strategies emergence in the 
model. 

Model 

This computer model is a development of the previous one which was used for 
simulation of social evolution [20] and cooperation [19,21]. 

The two-dimensional artificial world in our model is divided into cells, which 
either contain a resource bundle or are empty. An empty cell can acquire a resource 
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bundle with a certain probability per time step and lose it when resource is consumed 
by an agent. Agents are characterized by a set of receptors and effectors connected by 
a neural net. Each effector is responsible for a particular action. Agents can do 
nothing (rest), consume the resource bundle if it is present (eat), produce offspring 
(divide), go forward to a neighbour cell (move), make a turn to left or right (turn), 
attack another agent if present in the same cell (attack), and commit suicide (die). All 
actions spend energy taken from the agent’s internal store. If internal energy is 
completely depleted, the agent “naturally” dies. The least energetically demanding 
action is rest, the most demanding is attack. Consumption of resource increases the 
internal store of energy subject to an upper limit (the maximum energy that can be 
stored). When an agent divides, one offspring is created and placed in the same cell as 
the parent. The parent then transfers half of its energy to the offspring. When one 
agent hits another, the victim loses an amount of energy, which is gained by the 
attacker (energetic costs of actions provided in the table 2). 

Sensory inputs of agents include its internal store of energy, whether there are 
resources in the agent’s field of vision (the cell it is in, the neighbour cell in front of 
the agent, and the cells on the right and left), and how many other agents are in the 
field of vision. Each agent has external phenotype that is coded by a vector of integer 
values (markers). The markers do not influence behaviour but function only as 
indicators of similarity. The euclidian distance between an agent’s markers and the 
markers of another agent in the cell (a potential subject for attack) is also a sensory 
input. An agent perceives its own age. Value of an age input grows with actual age of 
an agent until it reaches maximum at double average population age. After the value 
of age sensory input remains constant. Behaviour of an agent is controlled by a simple 
one-layer neural net. Both weights of the neural net and external markers are inherited 
by the offspring when an agent divides, subject to a set rate of mutation. 

Behaviour of agents is governed by a simple control system in which each output 
associated with a specific action is connected to sensory inputs from the environment 
or the internal state of the agent. The control system is linear and functions similarly 
to a feed-forward neural network with no hidden layer. To calculate the output vector 
O of values, the input vector I is multiplied by a matrix of weights W, which are 
constrained to lie in the range [−Wmax,Wmax]: 

,j i j i
i

O w I= ∑ . (1) 

At each time step, the agent performs the action associated with the maximum 
output value (note that the order in which agents act is randomly shuffled every step). 
The input vector I is populated with information about the presence of resource and 
other agents in the field of vision (the cell where the agent is, the neighbour cell in 
front of the agent, and the cells on the right and left), the level of internal resource, the 
euclidean distance between marker vectors of the agent and its partner for potential 
interaction, and own age. A full list of input variables and their definitions are given 
in Table 1. At the start of simulation, an initial population was formed from the agents 
with the same matrix of weights W. All the weights in this matrix were set to zero 
except for three that defined the following simple strategy: move if a resource bundle 
is in the forward cell; eat if a resource is in the current cell; divide otherwise. 
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Correspondence between outputs and actions, and how changes of the internal 
resource r depend on actions are summarized in Table 2. 

To speed up simulations, all variables were integers. For all simulations, the size of 
the world was 900 cells, Wmax was 1,000, rmax was 5,000, the dimension of the marker 
vector was 10, and its values were bounded by [−Wmax,Wmax]. 

If the agent executes the action ‘divide’, its offspring is placed in the same cell. 
The genome of the offspring is constructed in the following way: first, for every 
weight of the control system, a random value uniformly distributed on the interval 
[−0.03Wmax,0.03Wmax] is added; (2) for every component of the marker, a random 
value uniformly distributed on the interval [−0.15 Wmax,0.15Wmax] is added. 

 

 
Fig. 1. Dependence of value of age sensory input on actual age of an agent. 

Table 1. List of input variables and their definitions 

Input 
variable* 

Value 

I1 Bias constant, k  

I2, I3, I4, I5 
k if there is resource bundle in the field of agent’s vision; 0 in the 
opposite case 

I6, I7, I8, I9 
cNc, where c is a constant, Nc is the number of agents in the given 
cell of the field of agent’s vision 

I10 Value of internal resource, r 
I11 rmax−r 
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*Note that I1 is a constant and that I2 to I5 are binary variables (k is a functional analogue of 
unity and was set equal to rmax, where rmax is the maximal possible value of stored internal 
resource minus the energy storage capacity). 

Table 2. The energetic costs of an agent’s actions* 

Output 
vector Action Change of internal resource r†  

O0 Rest −0.001rmax 
O1 Turn left −0.002rmax 
O2 Turn right −0.002rmax 

O3 
Consume the 
resource bundle +0.04rmax‡ 

O4 Move −0.004rmax 
O5 Divide −0.004rmax§ 

O6 
Fight (randomly 
chosen agent in the 
cell) 

The cost of attack is 0.1 rmax;  
the gain is +0.2rmax if internal resource of the 
victim is rn≥0.2rmax and +rn otherwise; 
the victim loses −0.2 rmax. 

O7 Die r = 0 
*Note that rmax is the energy storage capacity. 
†This scheme of setting parameter values reflects our assumption that the energetic cost of 
movement (move, turn left, and so on) is greater than the cost of resting, whereas the cost of 
attack is much greater than the cost of movement. Note that energetic losses are indicated with 
a minus sign and gains with a plus sign. 
‡Food appears in the cell with the constant probability of 1/80 and the amount of resource in 
the bundle was 0.04rmax. 
§When the agent divides it spends 0.004rmax; half of the remaining energy is then transferred to 
the offspring. 

Results 

To study how strength of selection and ability to cooperate affect the evolution of 
aging we have conducted simulations with four modifications of the basic model. 
These four variants were produced by combination of variation in selection pressure 
implemented by switching on or off attacking action and ability to cooperate by 
switching on or off kin recognition. 

With each modification of the model a series of runs were conducted. At the 
beginning of every run the world was populated with the same initial population (as 
described in the previous section) but with different seeds for random number 
generator. All the weights from self-age input and to “die” action were set to zero, so 
there were no bias in the population toward any particular age dependent and death 
strategy. Amount of the resources in the world allows population density up to ~0.75 
agent per cell. 

During the runs every agent executing “die” action was monitored. This allowed to 
locate runs in which the ages of suicides were accreted to the close range around 
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double average age in the population. Particular example of such run is presented on 
the figure 2. There is no correlation between the age of action “die” execution and 
double average age in the population at the on set of evolution. Then after a short 
transient around 3 106 time step the death strategy emerges. Now the agents usually 
murder themselves at ages about double average population age, i.e. about maximal 
individually perceivable age (see fig.1). It is notable that the suicide strategy persists 
during considerable amount of evolutionary time which indicates presence of 
stabilizing evolutionary mechanisms. 

The runs where the death strategy was evolved can be clearly identified by plotting 
distribution of suicide ages normalized to the double average population ages. Typical 
distributions for runs with emerged senescence, with no age related strategy and for 
the control run with disabled age input are presented on figure 3. Distribution for the 
run where no age dependent suicide evolved is similar to the run without possibility to 
perceive self-age and hence control behavior appropriately. On the other hand 
distribution for the case with evolved suicide strategy has remarkable peak at the 
maximal individually perceivable age. 

With the aid of suicide ages distribution we found how many runs for each of four 
model modifications demonstrate evolution of death strategy (see fig. 4). The 
modification with attack action and kin recognition enabled had the highest 
plausibility of death strategy evolution (7 out of total 11 runs). When agents can fight 
each other but can not recognize kin the suicide strategy evolved in smaller fraction of 
runs (6 out of total 13 runs). The rest two “peaceful” modifications of the model had 
lowest proportion of outcomes with evolved senescence (6 out of total 13 runs). 

 

 

Fig. 2. The dynamics of suicide ages (circles) and double average population age (solid line). 
The age scale is logarithmic. 
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Fig. 3. Distributions of suicide ages normalized to the double average population age for the 
model without age input (crosses), for the run without evolved death strategy (triangles), for the 
run with evolved death strategy (solid circles). 
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Fig. 4. Simulations outcomes for four modifications of the model. Each bar represents total of 
runs with evolved suicide strategy (grided area) and without it (dotted area). There is number of 
runs inside each area. 
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Discussion 

The results of simulations can be outlined as follows: 
• Age dependent death strategy evolved in the simulations without any 

predisposition or bias with only basic assumptions of agent’s abilities to perceive 
self-age and commit suicide. 

• Evolved death strategy demonstrated persistence over evolutionary time, i.e. 
evolutionary stability. 

• Plausibility of death strategy emergence in the course of evolution in the model 
depends on the selection pressure (on agents’ possibility to fight each other) and 
possibility of cooperation (through kin recognition). 
The first result means that age dependent suicide strategy can invade population of 

immortal individuals, and the only prerequisite is presence of some mechanisms for 
determining self-age and phenoptosis. 

The second result is a sign of presence of evolutionary processes stabilizing death 
strategy. These can be some evolutionary advantage for aging agents and neutral 
mutation accumulation. Analysis of simulation runs strongly supports the claim of 
adaptivness because the number of agents committing suicide is rather large which 
means that there should be selection against suicide, and, hence, the death strategy 
cannot be neutral in this case. The other thing which plays not in favor of neutrality is 
that evolution of age dependent suicide in the model is affected by aggression and 
cooperation which theoretically should have no direct impact on the process of neutral 
mutation accumulation. 

Simulations results for different modifications of the model demonstrate that 
strongest factor affecting the evolution of senescence in our set up is an aggression. 
As we expected, two model’s modifications with enabled attack action have 
significantly higher fraction of runs with emergence of death strategy. We also 
anticipated the strong effect of ability to cooperate; here the outcome is more 
controversial. If aggression is present in the population then kin recognition seems to 
increase plausibility of senescence evolution, else it has no or small effect. It should 
be noted that simulations were conducted with rather low population density which is 
a condition for weak selection toward cooperation in the model as was found in the 
previous work [21]. Higher population densities (>2) should provide stronger kin-
selection and might increase effect of cooperation on evolution of age dependent 
suicide in the model. We plan to test it in our future work as continue with more 
detailed analysis of evolved death strategies. 
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