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Abstract
R. Denk and L. Volevich1. A priori estimates for mixed order

parameter-elliptic boundary value problems.

In this paper boundary value problems are studied for systems with
large parameter, elliptic in the sense of Douglis–Nirenberg. We restrict
ourselves on model problems acting in the half-space. It is possible to
define parameter-ellipticity for such problems, in particular we formulate
Shapiro–Lopatinskii type conditions on the boundary operators. It can
be shown that parameter-elliptic boundary value problems are uniquely
solvable and that their solutions satisfy uniform a priori estimates in
parameter-dependent norms. We essentially use ideas from Newton’s
polygon method and of Vishik–Lyusternik boundary layer theory.

1The second author was supported by the Russian Foundation of Basic Research,
Grant 00-01-00387.
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1 Introduction

The paper is devoted to the study of boundary value problems with large
parameter:

A(x,D)u(x)− λu(x) = f(x), x ∈M, (1-1)

B(x′, D)u(x′) = g(x′), x′ ∈ ∂M, (1-2)

where A(x,D) is a matrix partial differential operator elliptic in the sense
of Douglis–Nirenberg (mixed order system), and its symbol for each fixed
x satisfies the parameter-ellipticity condition of [11] (see [4] and [14] for
equivalent conditions). In the case where M is a manifold without bound-
ary, equation (1-1) was studied in [4] and [14] where the Newton polygon
of the symbol P (x, ξ, λ) := det(A(x, ξ) − λI) played an essential role.
Boundary value problems of general type for a class of scalar polynomial
pencils including the pencil corresponding to P (x, ξ, λ) were studied in
[7]. Here the analog of the Shapiro–Lopatinskii (or, more accurately, the
Agmon–Agranovich–Vishik) condition was formulated. This analog in
some sense was suggested by the deep connection of mixed order prob-
lems with large parameter to the Luysternik–Vishik theory of boundary
layers, developed for elliptic problems containing a small parameter in
leading derivatives.

In this paper we restrict ourselves to the case where M is the half-
space and the operator matrices A and B have constant coefficients and
no lower-order terms. We define Shapiro–Lopatinskii type conditions for
the problem (1-1)–(1-2), investigate in detail the ODE problem obtained
after Fourier transform in the tangential direction and prove the basic a
priori estimate for the problem (1-1)–(1-2). Since these estimates are two-
sided the standard localization and small perturbation technique permits
to extend them to the case of variable coefficients and problems on a
manifold with boundary. Moreover, using the results of Section 5 it is
not difficult to construct the right parametrix of (1-1)–(1-2) and prove
unique solvability of this problem for large |λ|.

It should be mentioned that Kozhevnikov considered in [12] the case
where A is elliptic in the sense of Petrovskii (and satisfies the parameter-
ellipticity condition of [11]). The matrix B of boundary operators is
supposed to be upper triangular. In this case the L2 → L2 realization of
the problem (1-1) under zero boundary conditions (1-2) is investigated.
Supposing unique solvability of some auxiliary boundary value problems
similar to the original problem (but containing a smaller number of un-
known functions), the author established for sufficiently large λ the exis-
tence of a bounded L2 → L2 inverse. Explicit Shapiro–Lopantinskii type
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conditions on boundary operators are not formulated.

2 Parameter-elliptic boundary value prob-
lems

2.1 Notation

Let A(D) =
(
aij(D)

)
i,j=1,...,N

be an N ×N -matrix of partial differential

operators with constant coefficients. We assume that A is a system of
mixed order, i.e. there exist integers sj and tj such that

ord aij(D) ≤ si + tj (i, j = 1, . . . , N) . (2-1)

Here aij(D) =
∑
|α|≤si+tj aijαD

α where we used the standard multi-

index notation Dα := (−i)|α|(∂/∂x1)α1 . . . (∂/∂xn)αn . For simplicity,

we assume that aij(D) coincides with its principal part a
(0)
ij (D) :=∑

|α|=si+tj aijαD
α (note that a

(0)
ij (D) = 0 if ord aij(D) < si+tj). We im-

pose the additional condition that the numbers s1, . . . , tN can be chosen
nonnegative.

We set ri := si+ ti and Ri := (r1 + · · ·+ri)/2 (under the assumptions
formulated below, the numbers Ri will be integer). We also set R := RN
and R0 := 0. We index the lines and columns of A such that the sequence
ri is nonincreasing. To simplify the notation, we will also assume that

r1 > · · · > rN > 0 . (2-2)

The operator A(D) will act in the half-space Rn+ := {(x′, xn) ∈ Rn :
xn > 0} and will be supplemented by a matrix B(D) :=

(
bij(D)

)
i=1,...,R
j=1,...,N

of boundary operators of general form. Denoting mi := maxj(ordBij −
tj), we have

ord bij(D) ≤ mi + tj (i = 1, . . . , R; j = 1, . . . , N). (2-3)

We suppose that either Bij is a homogeneous operator of order mi + tj ,
or it is identically zero. We index the boundary conditions such that
the sequence m1, ...,mR is nondecreasing. In addition, we suppose that
following conditions are satisfied:

mR` < mR`+1, ` = 1, ..., N − 1 . (2-4)
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2.2 Parameter-ellipticity condition for the inner
symbol

In standard theory of elliptic systems the inner symbol is the principal
part with coefficients freezed at an inner point of the manifold. In the
standard case of systems with large parameter some weight is assigned to
the parameter, and after this the parameter is included into the principal
part. In the case where (2-2) holds this procedure cannot be realized
and should be replaced by a more general procedure where all possible
quasi-homogeneous principal parts obtained by assigning various weights
r > 0 to the parameter are introduced.

For κ = 1, . . . , N we introduce submatrices Aκ(ξ)− λEκ where

Aκ(D) :=
(
aij(D)

)
i,j=1,...,κ

and Eκ is the κ×κ-matrix which differs from the zero matrix only in the
element at position (κ, κ) which equals 1. Adjusting the weight rκ to the
parameter λ we obtain a matrix which determinant is quasi-homogeneous.
Now under an inner symbol we will understand the set of matrices Aκ(ξ)−
λEκ.

Definition 2.1. (see [11] and [4], [14]) Let L be a closed sector in the
complex plane with vertex at the origin. The matrix-symbol A(D)− λI
is called parameter-elliptic with parameter in L if the following condition
holds:
(i) For all κ = 1, . . . , N , all ξ ∈ Rn \ {0} and all λ ∈ L we have

det
(
Aκ(ξ)− λEκ

)
6= 0 . (2-5)

This definition was introduced by Kozhevnikov [10], [11] and elabo-
rated further in [4] and in [14] where several equivalent conditions for
parameter-ellipticity of A(D)− λ were discussed. In particular, the con-
dition of parameter-ellipticity is equivalent to the estimates of elements
of

G(ξ, λ) := (Gij(ξ, λ))i,j=1,...,N :=
(
A(ξ, λ)− λI

)−1
.

They are of the form

Gij(ξ, λ) ≤ const(|ξ|+ |λ|1/ri)−ti(|ξ|+ |λ|1/rj )−sj . (2-6)

Let us make some comments on the above definition. Setting λ = 0 in
(2-5) we obtain that all submatrices Aκ are elliptic in the sense of Douglis–
Nirenberg. Their determinants are homogeneous elliptic polynomials in
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ξ of order 2Rκ. From the ellipticity of these polynomials it follows that
the algebraic equation

detAκ(ξ′, z) = 0 (2-7)

has no real roots for ξ′ 6= 0 and the number m±κ of roots in C+ := {z ∈
C : Im z > 0} and C− := −C+ is independent of ξ′. It is customary to
call the polynomial properly elliptic if m+

κ = m−κ . From this follows that
m±κ = Rκ and Rκ is integer. Note that for n > 2 the proper ellipticity
condition is automatically satisfied.

The matrix A(ξ) − λI satisfying Definition 2.1 is called properly
parameter-elliptic, if for κ = 1, . . . , N the polynomials detAκ(ξ) are prop-
erly elliptic.

In what follows we will need

Lemma 2.2. Assume that A(D)− λ is properly parameter-elliptic in L.
Then for all λ ∈ L \ {0} the polynomial det(Aκ(0, ·) − λEκ) has exactly
rκ/2 roots with positive imaginary part, κ = 1, . . . , N .

Proof. Due to the Douglis–Nirenberg structure, the matrix Aκ(0, τ) has
the form (cijτ

si+tj )i,j with complex coefficients cij . Therefore

det(Aκ(0, τ)− λEκ) = detAκ(0, τ)− λ detAκ−1(0, τ)

= τ2Rκ−1
(
τ rκ detCκ − λ detCκ−1

)
,

where we have set Cκ := (cij)i,j=1,...,κ. Due to condition (2-5) we have
detCκ 6= 0 and det(Aκ(0, τ)−λEκ) 6= 0 for all τ ∈ R\{0} and λ ∈ L\{0}.
As the number rκ is even, the assertion follows.

2.3 Parameter-ellipticity condition for boundary
symbol

In the standard theory of elliptic systems the boundary symbol is an
ODE problem on a half-line obtained after Fourier transform in tangential
directions in principal parts of the system and boundary operators freezed
at some point of the boundary. In the case of parameter-ellipticity the
parameter is included in the boundary symbol.

In our case the role of the boundary symbol is played by two groups
of ODE problems. The first group is(

Aκ(ξ′, Dt)− λEκ
)
w(t) = 0 (t > 0),

B1..κ(ξ′, Dt)w(0) = g,

w(t)→ 0 (t→∞).

(2-8)
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Here
B1..κ(D) :=

(
bij(D)

)
i=1,...,Rκ
j=1,...,κ

.

If we pose εrκ = 1/λ and divide the last equation in the system(
Aκ(ξ′, Dt) − λEκ

)
w(t) = 0 by λ we obtain an ODE system with small

parameter in front of the highest derivatives. We will need the study of
solutions as ε → 0. The Vishik–Lyusternik method suggests to consider
following problems(

Aκ(0, Dt)− λEκ
)
v(t) = 0 (t > 0),

Bκ(0, Dt)v(0) = h,

v(t)→ 0 (t→∞),

(2-9)

where
Bκ(D) :=

(
bij(D)

)
i=Rκ−1+1,...,Rκ
j=1,...,κ

.

Definition 2.3. Let L be a closed sector in the complex plane with vertex
at the origin. The problem

(
A(D)−λI,B(D)

)
is called parameter-elliptic

with parameter in L if for all κ = 1, . . . , N the following conditions hold:
(i’) A(D)− λI is properly parameter-elliptic in L.
(ii) For all ξ′ ∈ Rn−1 \ {0}, all λ ∈ L and all g ∈ CRκ the ODE

problem (2-8) in R+ has a unique solution w = (w1, . . . , wκ)>.
(iii) For all h ∈ Crκ/2 and all λ ∈ L \ {0} the ODE problem in R+

(2-9) has a unique solution v = (v1, . . . , vκ)>.

If we set λ = 0 in condition (ii) of this definition, we obtain as a
corollary condition

(iv) For each κ = 1, . . . , N the boundary value problem
(
Aκ, B1..κ

)
satisfies the standard Shapiro–Lopatinskii condition.

Remark 2.4. Boundary value problems of the form{
Aκ(D)− λEκ, B1..κ(D)

}
(2-10)

were studied in [6]. The problem was called weakly parameter-ellipticity
if conditions (i)–(iv) were satisfied. In other words, the problem

(
A(D)−

λ,B(D)
)

is parameter-elliptic if for κ = 1, . . . , N problems (2-10) are
weakly parameter-elliptic in L.
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3 Main results

3.1 Functional spaces

Now we want to introduce parameter-dependent norms for the classical
L2-Sobolev spaces for which the parameter-elliptic boundary value prob-
lem

(
A(D)− λ,B(D)

)
has a realization as a bounded operator which is

invertible with bounded inverse for large λ. Here and in the following, by
a bounded operator in parameter-dependent Sobolev spaces we under-
stand a continuous operator whose norm can be estimated by a constant
independent of the parameter. The definitions below are very close to
Subsection 3.2 in [7].

For a fixed tuple σ = (σ1, . . . , σN ) ∈ RN we set

Ψσ(ξ, λ) :=

N∏
j=1

(|ξ|+ |λ|1/rj )σj

and define the parameter-dependent norm in Hσ1+···+σN (Rn) by

‖v‖σ,Rn := ‖FΨσ(ξ, λ)Fv(ξ)‖L2(Rn), (3-1)

where F stands for the Fourier transform in Rn. We will write Hσ(Rn)
for Hσ1+···+σN (Rn) with norm (3-1). For the definition of Hσ(Rn−1) we
replace Ψσ(ξ, λ) by Ψσ(ξ′, λ) := Ψσ(ξ′, 0, λ).

The space Hσ(Rn+) is defined as the quotient space Hσ(Rn)/Hσ(Rn)−
where Hσ(Rn)− stands for the subspace of all distributions in Hσ(Rn)
whose support is contained in the set {x ∈ Rn : xn ≤ 0} and is endowed
with the standard quotient norm ‖ · ‖σ,Rn+ .

In what follows we will use norms equivalent to (3-1). To define them

we need “shifted” functions Ψ
(−τ)
σ which are defined for σ ∈ Rn with

σi ≥ 0 for i = 2, . . . , N and for τ > σ1 by

Ψ(−τ)
σ (ξ, λ) := (|ξ|+ |λ|1/rK )σ1+···+σK−τ

N∏
j=K+1

(|ξ|+ |λ|1/rj )σj

where the index K is chosen such that

σ1 + · · ·+ σK−1 < τ ≤ σ1 + · · ·+ σK

(with obvious modifications for τ > σ1 + · · · + σN ). In the case τ ≤ σ1

we pose

Ψ(−τ)
σ (ξ, λ) := (|ξ|+ |λ|1/r1)σ1−τ

N∏
j=2

(|ξ|+ |λ|1/rj )σj .
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Denote by H
(−τ)
σ (Rn−1) the space corresponding to the shifted weight

function Ψ
(−τ)
σ (ξ′, λ).

Remark 3.1. The definition of the “shifted” function has a “geomet-
rical” interpretation (see [5]). Suppose Γ is a convex polygon in R2

(p,q)

with vertices (pj , qj), j = 0, . . . , N , where pj , qj are nonnegative. We
correspond to Γ the function

ΞΓ(ξ, λ) :=

N∑
j=0

|ξ|pj |λ|qj .

Suppose the components of σ ∈ RN are nonnegative and Γ is the polygon
with vertices

(0, 0),
(

0,
σ1

r1
+ · · ·+ σN

rN

)
,
(
σ1,

σ2

r2
+ · · ·+ σN

rN

)
, . . . , (σ1 + · · ·+ σN , 0).

In this case ΞΓ(ξ, λ) ≈ Ψσ(ξ, λ). If we denote by Γ−r the shift of Γ to
the left parallel to the abscissa, then ΞΓ−r (ξ, λ) ≈ Ψ−rσ (ξ, λ).

If σ1 + · · ·+ σN ∈ N, the norm in Hσ(Rn+) is equivalent to the norm

‖v‖σ,Rn+ :=
( σ1+···+σN∑

`=0

∫
Rn−1

(
Ψ(−`)
σ (ξ′, λ)

)2‖D`
t(F
′v)(ξ′, ·)‖2L2(R+) d ξ′

)1/2

,

(3-2)
where F ′ stands for the partial Fourier transform with respect to the first
n − 1 variables (cf. [5]). In the following, we will only deal with norm
(3-2) in the case of Rn+.

Now let us consider the trace operator γ0 mapping a function v defined
in Rn+ to x′ 7→ v(x′, 0). Throughout the following, the letter C stands for
an unspecified constant. The following result is taken from [5].

Lemma 3.2. Let σ1 + · · ·+ σN > 1
2 . Then we have for every λ0 > 0

‖γ0v‖(−1/2)
σ,Rn−1 ≤ C‖v‖σ,Rn+ (v ∈ Hσ(Rn+), |λ| ≥ λ0) .

3.2 Realization of problem (1-1)–(1-2) as a bounded
operator

Now we want to show that a boundary value problem (A − λ,B) of the
structure discussed in Section 2 has a realization as a bounded operator
in these Sobolev spaces. Here no ellipticity is assumed. In the following,
ei stands for the i-th unit vector in CN .
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Proposition 3.3. Let the matrix operators (A,B) satisfy (2-1), (2-3).
Then for every σ ∈ RN with σ2, . . . , σN ≥ 0 and σ1 + · · ·+σN > mR + 1

2
and every λ ∈ C with |λ| ≥ λ0 > 0 the operator

(A−λ,B) :

N∏
i=1

Hσ+tiei(Rn+)→
N∏
i=1

Hσ−siei(Rn+)×
R∏
j=1

H
(−mj−1/2)
σ (Rn−1)

is continuous.

Proof. We first consider A(D)−λ acting in Rn. Denote f = (A(D)−λ)u.
The inequality

N∑
i=1

‖fi‖σ−siei,Rn ≤ C
N∑
j=1

‖uj‖σ+tjej ,Rn

is obviously equivalent to the uniform boundedness of the norm of the
matrix

diag
(
Ψσ−s1e1 , . . . ,Ψσ−sNeN

)
(A(ξ)−λ) diag

(
Ψ−σ−t1e1 , . . . ,Ψ−σ−tNeN

)
.

This fact follows from the inequality∣∣aij(ξ)− λδij∣∣ ≤ C(|ξ|+ |λ|1/ri)si(|ξ|+ |λ|1/rj )tj .

To show the continuity of A(D)−λ acting in the half-space, we use a con-
tinuous extension operator E from Hσ+tiei(Rn+) to Hσ+tiei(Rn). (Such
an operator can be defined using the standard Hestenes construction.)

Let u ∈
∏N
i=1Hσ+tiei(Rn+) and f := (A−λ)u. Setting Ef := (A−λ)Eu,

we obtain

N∑
i=1

‖fi‖r−siei,Rn+ ≤ C
N∑
i=1

‖(Ef)i‖r−siei,Rn ≤ C
N∑
i=1

‖(Eu)i‖r+tiei,Rn

≤ C
N∑
i=1

‖ui‖r+tiei,Rn+ ,

which shows the continuity of A(D)− λ acting in the half-space. In the
same way, if we consider B(D) as an operator acting in the half-space

(without taking the trace), it is continuous from
∏N
i=1Hσ+tiei(Rn+) to∏R

j=1Hσ−mje1(Rn+). Indeed,

Bjk(D)uk ∈ Hσ−(mj+tk)e1+tkek(Rn+) ⊂ Hσ−mje1(Rn+)



11

if uk ∈ Hσ+tkek(Rn+). Taking the trace and applying Lemma 3.2, we see
that

B(D) :

N∏
i=1

Hσ+tiei(Rn+)→
R∏
j=1

H
(−1/2)
σ−mje1

(Rn−1)

is continuous.
But by definition of the “shifted” function and σ1 + · · ·+σN > mR +

1/2 we have Ψ
(−1/2)
σ−mje1

≡ Ψ
(−mj−1/2)
σ , and we obtain the continuity of the

operator

B(D) :

N∏
i=1

Hσ+tiei(Rn+)→
R∏
j=1

H
(−mj−1/2)
σ (Rn−1).

3.3 The inverse of the operator related to (1-1)–(1-2)
and its estimates

We now come to the main result of the present paper which states that
for a parameter-elliptic boundary value problem the operator of Propo-
sition 3.3 has a bounded inverse for large values of λ.

Theorem 3.4. Let L be a closed sector in the complex plane with vertex
at the origin and let σ ∈ RN be fixed satisfying

σ1 + · · ·+ σk ∈ [mRk + 1/2,mRk+1 + 1/2] (k = 1, . . . , N − 1),

σ1 + · · ·+ σN > mR + 1/2
(3-3)

For simplicity, let σ1 + · · ·+ σN ∈ N.
(a) Let the boundary value problem (A(D) − λ,B(D)) be parameter-

elliptic in L. Then there exists a λ0 > 0 such that for every λ ∈ L with
|λ| ≥ λ0 and for every

f ∈
N∏
i=1

Hσ−siei(Rn+) and g ∈
R∏
j=1

H
(−mj−1/2)
σ (Rn−1)

the boundary value problem

(A(D)− λ)u = f in Rn+,
B(D)u = g on Rn−1

(3-4)
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has a unique solution u ∈
∏N
i=1Hσ+tiei(Rn+), and the (two-sided) a priori

estimate

N∑
i=1

‖ui‖σ+tiei,Rn+ ≤ C
( N∑
i=1

‖fi‖σ−siei,Rn+ +

R∑
j=1

‖gj‖
(−mj−1/2)

σ,Rn−1

)
(3-5)

holds for all λ ∈ L, |λ| ≥ λ0, with a constant C independent of u or λ.
(b) If the boundary value problem (3-4) is uniquely solvable for large

λ ∈ L in the sense above and the a priori estimate (3-5) holds, then
conditions 2.1 (i) and 2.3 (ii), (iii) are satisfied.

The proof of part (a) is based on the main technical result of the
paper.

Theorem 3.5. Let (A(D) − λ,B(D)) be parameter-elliptic in L and
assume that σ satisfies (3-3). Then there exists a λ0 > 0 such that for
all ξ′ ∈ Rn, all λ ∈ L, |λ| ≥ λ0 and all h ∈ CR the ODE problem

(A(ξ′, Dt)− λ)w(t) = 0 (t > 0), (3-6)

B(ξ′, Dt)w(0) = h ∈ CR, (3-7)

|w(t)| → 0 (t→∞)

has a unique solution w(t, ξ′, λ) =
(
wi(t, ξ

′, λ)
)
i=1,...,N

satisfying for ` =
0, 1, . . .

N∑
i=1

Ψ
(−`)
σ+tiei(ξ

′, λ)‖D`
twi(·, ξ′, λ)‖L2(R+) ≤ C

R∑
j=1

Ψ
(−mj−1/2)
σ (ξ′, λ) |hj | .

(3-8)

We first derive Theorem 3.4 (a) from Theorem 3.5.

Proof of Theorem 3.4 (a).
As in the proof of Proposition 3.3 we first consider the inverse of

A(D)−λ acting in Rn. It follows from (2-6) that for sufficiently large |λ|
the norm of the matrix

diag
(
Ψσ+t1e1

, . . . ,Ψσ+tNeN

)
G(ξ, λ) diag

(
Ψ−σ+s1e1

, . . . ,Ψ−σ+tNeN

)
is uniformly bounded. From this the a priori estimate

N∑
j=1

‖uj‖σ+tjej ,Rn ≤ C
N∑
i=1

‖fi‖σ−siei,Rn
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follows where f = (A(D)− λ)u.
Now we define v := F−1(A(ξ)−λ)−1F (Ef)(ξ) where Ef denotes the

Hestenes extension of f , and u(1) = v
∣∣
Rn+

. Then

N∑
j=1

‖u(1)
j ‖σ+tjej ,Rn+ ≤

N∑
j=1

‖vj‖σ+tjej ,Rn

≤ C
N∑
i=1

‖(Ef)i‖σ−siei,Rn ≤ C
N∑
i=1

‖fi‖σ−siei,Rn+ .

(3-9)

Now we consider u(2) := u − u(1). Taking partial Fourier transform
w(t, ξ′, λ) := (F ′u(2))(ξ′, t), we see that for almost all ξ′ ∈ Rn−1 equations
(3-6)–(3-7) hold with

h = h(ξ′, λ) := (F ′g)(ξ′)− (F ′Bu(1))(ξ′, λ) .

Due to Proposition 3.3 and (3-9), we have for j = 1, . . . , R(∫
Rn−1

[
Ψ

(−mj−1/2)
σ (ξ′, λ)|hj(ξ′, λ)|

]2
dξ′
)1/2

≤ C
( N∑
i=1

‖fi‖σ−siei,Rn+ + ‖gj‖
(−mj−1/2)

σ,Rn−1

)
.

Now we apply Theorem 3.5, choosing λ ∈ L large enough, to obtain that
(3-6)–(3-7) has a unique solution w(t, ξ′, λ), and we can define u2(x′, t) :=
(F ′)−1w(t, ξ′, λ). Using the norm (3-2) and the estimate (3-8), we see

‖u(2)
i ‖σ+tiei,Rn+ ≤ C

( σ1+···+σN∑
`=0

∫
Rn−1

[
Ψ

(−`)
σ+tiei(ξ

′, λ)‖D`
tw(·, ξ′, λ)‖L2(R+)

]2
d ξ′
)1/2

≤ C
( R∑
j=1

∫
Rn−1

[
Ψ

(−mj−1/2)
σ (ξ′, λ)|hj(ξ′, λ)|

]2
d ξ′
)1/2

≤ C
R∑
j=1

‖hj‖
(−mj−1/2)

σ,Rn−1

≤ C
( N∑
i=1

‖fi‖σ−siei,Rn+ +

R∑
j=1

‖gj‖
(−mj−1/2)

σ,Rn−1

)
.

From this inequality and (3-8) we obtain inequality (3-5) for u = u(1) +
u(2). According to its construction the vector-function u is the solution
of the problem (3-4). The uniqueness follows from (3-5).
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From this and (3-9) we obtain the solvability of the boundary value
problem (3-4) for large λ ∈ L in the spaces indicated in the theorem and
the a priori estimate (3-5). The uniqueness of the solution follows from
unique solvability of (3-6)–(3-7).

Altogether, we have shown that the assertions of (a) follow from
parameter-ellipticity of

(
A(D) − λ,B(D)

)
. The proof of the necessity

(part (b)) will be done in Section 6.

3.4 Plan of further exposition

Sections 4–5 are devoted to the proof of Theorem 3.5. To prove this
theorem, we construct the so-called fundamental system of solutions of

the problem (3-6)–(3-7), i.e the solutions w(k)(t, ξ′λ) = (w
(k)
1 , . . . , w

(k)
N )>

corresponding to h = ek, k = 1, . . . , R, where ek are unit vectors in CR.
For the components of these solutions the main inequality (3-8) can be
rewritten as

‖D`
tw

(k)
i (·, ξ′, λ)‖L2(R+) ≤ C

Ψ
(−mk−1/2)
σ (ξ′, λ)

Ψ
(−`)
σ+tiei(ξ

′, λ)
. (3-10)

Solutions of the system (3-6) are expressed in terms of the roots
τ(ξ′, λ) of the algebraic equation

P (ξ′, τ, λ) := det(A(ξ′, τ)− λIN ) = 0. (3-11)

These roots are algebraic functions of several variables, their behaviour
is rather complicated and deeply connected with the Newton polygon of
the polynomial P . This question will be discussed in the next section
where we also will formulate in algebraic form conditions (ii) and (iii) of
Definition 2.3.

4 Some auxiliary results

4.1 Remarks on boundary value problems for ODE
systems in R+

Let A(τ) be an N × N matrix which elements are polynomials in τ of
order not greater than some natural number σ. Suppose the contour
γ ⊂ C+ does not intersect with the set of zeros of the algebraic equation

detA(τ) = 0. (4-1)
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Denote by Mγ the subspace of solutions on the half-line of the ODE
system

A(Dt)v(t) = 0, t > 0, (4-2)

which can be represented in the form

v(t) =
1

2πi

∫
γ

eiτtA−1(τ)C(τ)dτ (4-3)

with a vector C(τ) whose components are polynomials in τ of order not
greater than σ − 1.

It should be mentioned that in the case where γ encloses all zeros of
(4-1) in C+, an arbitrary solution v(t) of (4-2) belongs to the subspace
Mγ if and only if |v(t)| → 0, t→ +∞.

Suppose γ contains R zeros of (4-1) (counted according multiplicities).
Then dimMγ = R, so we assume that we have R boundary conditions
at t = 0:

B(Dt)v(0) = g (4-4)

Here B(τ) is an R×N polynomial matrix.

Proposition 4.1. [13] For the problem (4-2), (4-4) the following condi-
tions are equivalent.

(i) The problem (4-2), (4-4) has a unique solution v(t) ∈Mγ for arbitrary
g ∈ CR.

(ii) The rank of the Lopatinskii matrix

Λ :=
1

2πi

∫
γ

B(τ)A−1(τ)(IN , τIN , . . . , τ
σ−1IN ) d τ

is maximal (i.e. equals R).

(iii) There exists an N ×R polynomial matrix N(τ) such that

1

2πi

∫
γ

B(τ)A−1(τ)N(τ)dτ = IR. (4-5)

If one of these conditions holds, the unique solution is given by

w(t) =
( 1

2πi

∫
γ

eitτA−1(τ)N(τ) d τ
)
g (4-6)

where N(τ) is any matrix satisfying (4-5).
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Remark 4.2. Denote by Λ∗ the Hermitian adjoint of Λ. Then Λ has
maximal rank if and only if the product ΛΛ∗ is a nonsingular matrix.
(Indeed, denote by Λk, k = 1, . . . , R, the lines in Λ treated as vectors in
CR. Then ΛΛ∗ will be the Gram matrix of this system of vectors.) In
this case an explicit formula for a matrix N(τ) satisfying (4-5) is given
by

N(τ) = (IN , τIN , . . . , τ
σ−1IN )Λ∗(ΛΛ∗)−1.

Remark 4.3. Condition (ii) in Proposition 4.1 may be replaced by the
equivalent and formally more general condition where Λ is replaced by

Λ′ :=
1

2πi

∫
γ

QB(τ)A−1(τ)(H, (τ/q)H, . . . , (τ/q)σ−1H)dτ.

with arbitrary number q and arbitrary nonsingular R×R matrix Q and
nonsingular N ×N matrix H. In fact, Λ′ is the matrix corresponding (in
the sense of Proposition 4.1) to the problem obtained from (4-2), (4-4)
by the substitution t′ = qt and u = Hv (note that the invertible matrix
Q has no effect on the rank).

Now we apply the results of this subsection to the problems (2-8)
and (2-9) where we assume

(
A(D)− λ,B(D)

)
to be properly parameter-

elliptic in L. Due to this condition, the polynomial det(Aκ(ξ′, ·)− λEκ)
has exactlyRκ roots in C+ which we denote by τ0

1,κ(ξ′, λ), . . . , τ0
Rκ,κ

(ξ′, λ).

Let γ0
κ(ξ′, λ) ⊂ C+ be a closed contour enclosing these zeros.

Similarly, by Lemma 2.2 the polynomial det(Aκ(0, ·) − λEκ) has ex-
actly rκ/2 zeros in C+ which will be denoted by τ1

Rκ−1+1(λ), . . . , τ1
Rκ

(λ).

We choose a closed contour γ1
κ(λ) ⊂ C+ enclosing these zeros. Now con-

ditions (ii) and (iii) of Definition 2.1 can be formulated in the following
form, where we set σ := maxi,j ord aij .

Lemma 4.4. a) For all κ = 1, . . . , N , all ξ′ ∈ Rn−1 \ {0} and all λ ∈ L
the Rκ × σκ-matrix

M0
κ(ξ′, λ) :=

1

2πi

∫
γ0
κ(ξ′,λ)

B1..κ(ξ′, τ)(Aκ(ξ′, τ)−λEκ)−1(Iκ, . . . , τ
σ−1Iκ) d τ

has rank Rκ (i.e. maximal rank).

b) For all κ = 1, . . . , N and all λ ∈ L \ {0} the rκ/2× σκ-matrix

M1
κ(λ) :=

1

2πi

∫
γ1
κ(λ)

Bκ(0, τ)(Aκ(0, τ)− λEκ)−1(Iκ, . . . , τ
σ−1Iκ) d τ

has rank rκ/2.
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4.2 The roots of det(A(ξ′, ·)− λ)
Now we turn to the study of the behaviour of the roots τ(ξ′, λ) of the
algebraic equation (3-11) which belong to the upper half-plane of the
complex plane. As it was shown in [4] the matrix A(ξ)−λIN is parameter-
elliptic in the sense of Definition 2.1 if and only if the polynomial in (3-11)
is N-elliptic with parameter in the sense of [4], Definition 2.1 (see also [7],
Definition 2.2). In particular, for large enough |λ|

|det(A(ξ)− λI)| ≥ C
N∏
j=1

(|ξ|rj + |λ|) (4-7)

It follows from (4-7) that the equation in z ∈ C

det
(
A(ξ′, z)− λI

)
= 0. (4-8)

has no real roots for large enough |λ| and the number m± of roots in
C+ := {z ∈ C : Im z > 0} and C− := −C+ is independent of (ξ′, λ).
Replacing (ξ′, z) by (ρξ′, ρz), dividing both sides of (4-8) by ρR and
taking the limit ρ → ∞, we obtain that numbers m± coincide with the
corresponding numbers for equation (2-7) with κ = N . In the case of
proper parameter-ellipticity we obtain that m± = R.

Hence for the study of the zeros of (3-11) we can use the results of
[7], Section 4. We only have to note that the edge principal parts Pκ
and Qκ, which play an important role in [7], can be calculated explicitly
in terms of the matrices Aκ(ξ′, τ) − λEκ (see [4], Section 3 for detailed
exposition). As a result we have

Pκ(ξ′, τ, λ) = det
(
Aκ(ξ′, τ)− λEκ

)
,

Qκ,λ(τ) =
detAκ(0, τ)

detAκ−1(0, τ)
− λ.

The roots we are investigating essentially depend on the parameters
(|ξ′|, |λ|). Following [9] and [7], we introduce a partition of the space
of all ξ′ and λ depending on two parameters ρ, δ > 0 defined by

G(ρ) := Rn−1 × {λ ∈ L : |λ| ≥ ρ} =

N⋃
κ=1

Gκ(ρ, δ) ∪
N⋃
κ=0

G̃κ(ρ, δ), (4-9)

where we set

Gκ(ρ, δ) := {(ξ′, λ) ∈ G(ρ) : δ|ξ′|rκ ≤ |λ| ≤ δ−1|ξ′|rκ (κ = 1, . . . , N),
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G̃0(ρ, δ) := {(ξ′, λ) ∈ G(ρ) : δ−1|ξ′|r1 < |λ|},

G̃κ(ρ, δ) := {(ξ′, λ) ∈ G(ρ) : δ−1|ξ′|rκ+1 < |λ| < δ|ξ′|rκ} (κ = 1, . . . , N − 1),

G̃N (ρ, δ) := {(ξ′, λ) ∈ G(ρ) : |λ| < δ|ξ′|rN }.

For formal reasons, we set G0(ρ, δ) := ∅. If ρ and δ satisfy

ρ > δ−(rκ+rκ+1)/(rκ−rκ+1) (κ = 1, . . . , N − 1) (4-10)

the sets Gκ(ρ, δ), G̃κ(ρ, δ) are mutually disjoint. For an interpretation of
this partition in terms of the Newton polygon, we refer the reader to [9]
and [7].

The zeros of det(A(ξ′, ·) − λ) will be compared with the zeros of of
the quasi-homogeneous polynomials Pκ and Qκ. The following result is
taken from [7], Section 4.

Theorem 4.5. a) For every ε > 0 there exists a δ0 > 0 such that for all

κ = 0, . . . , N and all (ξ′, λ) ∈ G̃κ(1, δ0) there exists an indexing of zeros
τ1(ξ′, λ), . . . , τR(ξ′, λ) of det(A(ξ′, ·)− λ) satisfying

|τk(ξ′, λ)− τ0
κ,k(ξ′, 0)| ≤ ε|ξ′| (k = 1, . . . , Rκ),

|τk(ξ′, λ)− τ1
k (λ)| ≤ ε|λ|1/r` (k = R`−1 + 1, . . . , R`; ` = κ+ 1, . . . , N).

b) For every ε > 0 and δ > 0 there exists a ρ0 > 0 such that for all
κ = 1, . . . , N and all (ξ′, λ) ∈ Gκ(ρ0, δ) there exists an indexing of zeros
τ1(ξ′, λ), . . . , τR(ξ′, λ) of det(A(ξ′, ·)− λ) satisfying

|τk(ξ′, λ)− τ0
κ,k(ξ′, λ)| ≤ ε(|ξ′|+ |λ|1/rκ) (k = 1, . . . , Rκ),

|τk(ξ′, λ)− τ1
k (λ)| ≤ ελ1/r` (k = R`−1 + 1, . . . , R`; ` = κ+ 1, . . . , N).

4.3 Decomposition of the space of stable solutions of
system (3-6)

According to Theorem 4.5 for (ξ′, λ) ∈ G̃κ ∪ Gκ with specially chosen ρ
and δ we can define a system of contours γ0

κ(ξ′, λ), γ1
` (λ), ` = κ+1, . . . , N

with following properties:
1) these contours belong to C+ and the distances between them are

strictly positive;
2) if the roots of (4-8) are indexed according to Theorem

4.5, then γ0
κ(ξ′, λ) encloses τ1(ξ′, λ), . . . , τRκ(ξ′, λ) and γ1

` (λ) encloses
τR`−1+1(λ), . . . , τR`(λ) for ` = κ+ 1, . . . , N .
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With the notation of Subsection 4.1, we consider the spaces Mγ0
κ
(ξ′, λ)

and Mγ1
`
(λ) of stable solutions of (3-6) which can be represented in the

form (4-3) with A(τ) being replaced by A(ξ′, τ)−λ and γ being replaced
by γ0

κ(ξ′, λ) and γ1
` (λ), respectively.

Note that the space M+(ξ, λ) of all stable solutions is, for (ξ′, λ) ∈
G̃κ ∪Gκ, the direct sum of the above subspaces:

M+(ξ, λ) = Mγ0
κ
(ξ′, λ) + Mγ1

κ+1
+ · · ·+ Mγ1

N
. (4-11)

Note that elements of the right-hand side subspaces exponentially
decrease as t → +∞. More accurately, the elements of these spaces are

O(e− const(|ξ′|+|λ|1/rκ )), and O(e− const |λ|1/rκ+1
), . . . , O(e− const |λ|1/rN ), re-

spectively. As under our conditions

|ξ′|+ |λ|1/rκ � |λ|1/r` , ` = κ+ 1, . . . , N,

the elements of Mγ1
κ+1

, . . . ,Mγ1
N

can be treated as exponential boundary

layers.
In fact, in the next section we will follow in the Vishik–Lyusternik

method and use conditions (ii) and (iii) to construct the solution of the
problem (3-6)–(3-7).

5 Proof of Theorem 3.5

5.1 Basic solutions

Theorem 3.5, in fact, contains two statements:
1) unique solvability of the problem (3-6)–(3-7) for a fixed ξ′ ∈ Rn−1

and sufficiently large λ ∈ L and
2) estimate of this solution in terms of the parameters (ξ′, λ).
As it was stated in the preceding section, according to (4-9) the space

of parameters can be covered by domains, connected with edges and
vertices of the Newton polygon of P . Thus, without loss of generality, we
can suppose below that

(ξ′, λ) ∈ Gκ(ρ, δ) ∪ G̃κ(ρ, δ) (5-1)

with ρ and δ chosen below. In this case the direct decomposition (4-11)
takes place. In view of Theorem 4.5, in the domain (5-1) it is natural to
define the function

µj(ξ
′, λ) :=


|ξ′|+ |λ|1/rκ if j ≤ Rκ and (ξ′, λ) ∈ Gκ(ρ, δ),

|ξ′| if j ≤ Rκ and (ξ′, λ) ∈ G̃κ(ρ, δ),

|λ|1/r` if R`−1 < j ≤ R` for some ` > κ.



20

(For simplicity of notation, we omit the dependence of µj on κ.)
According to the decomposition of the space of all stable solutions

of (3-6), we will look for solutions w̃j = (w̃1j , . . . , w̃Nj)
> = w̃j(t, ξ

′, λ)
satisfying the system

(A(ξ′, Dt)− λ)w̃j(t, ξ
′, λ) = 0 (t > 0), (5-2)

and belonging to the following κ+ 1 groups:

w̃1, . . . , w̃Rκ ∈Mγ0
κ
(ξ′, λ), (5-3)

w̃R`−1+1, . . . , w̃R` ∈Mγ1
`
(λ), ` = κ+ 1, . . . , N. (5-4)

For the solutions from group (5-3) we pose Rκ boundary conditions

N∑
k=1

bik(ξ′, Dt)w̃kj(0, ξ
′, λ) = δij(µj(ξ

′, λ))mj , i, j = 1, . . . , Rκ (5-5)

and for the solutions from group (5-4) we pose boundary conditions

N∑
k=1

bik(ξ′, Dt)w̃kj(0, ξ
′, λ) = δij(µj(ξ

′, λ))mj , i, j = R`−1 + 1, , . . . , R`.

(5-6)
These solutions will be called basic solutions of system (5-2). We intro-
duce the matrix

H(ξ′, λ) = (hij(ξ
′, λ))i,j=1,...,R :=

(
B(ξ′, Dt)w̃1(0), . . . , B(ξ′, Dt)w̃R(0)

)
.

We shall prove the existence of basic solutions and the invertibility of H.
These facts immediately imply linear independence of the basic solutions
w̃1, . . . , w̃R and unique solvability of the ODE problem (3-6)–(3-7) with
h := ek ∈ CR with solution w(k)(ξ′, λ, t).

As it was mentioned at the end of the last section, basic solutions (5-4)
of (5-2), (5-6) can be treated as boundary layer solutions. In the case
N = 2 we have one group of boundary layers and our approach resembles
the one of Frank [8] to general elliptic problems with small parameter. In
the case N > 2 we come to an hierarchy of boundary layers and dealing
with them we will use some results from [7] where the similar situation
was treated in the case of scalar operators.

The main step in proving Theorem 3.5 is

Proposition 5.1. Let (A(D)− λ,B(D)) be parameter-elliptic in L and
suppose (5-1) holds. Let δ > 0 be sufficiently small and ρ = ρ(δ) > 0 be
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sufficiently large. Then for j = 1, . . . , N there exists a unique solution
w̃j = (w̃1j , . . . , w̃Nj)

> of the system (5-2), belonging to one of the groups
(5-3), (5-4) and satisfying boundary conditions (5-5) (respectively (5-6)).
For these solutions following estimates hold

‖Dr
t w̃ij(·, ξ′, λ)‖L2(R+) ≤ C(µj(ξ

′, λ) + |ξ′|+ |λ|1/ri)−ti (µj(ξ
′, λ))r−1/2

(5-7)

(i = 1, . . . , N ; j = 1, . . . , R; r = 0, 1, 2, . . . )∣∣∣ N∑
k=1

bik(ξ′, Dt)w̃kj(0, ξ
′, λ)

∣∣∣ ≤ C(µj(ξ
′, λ))mi (i, j = 1, . . . , R). (5-8)

Corollary 5.2. Under the conditions of Proposition 5.1 the basic solu-
tions are linearly independent.

Proof. Due to the boundary conditions (5-5) the groups of solutions
{w̃1, . . . , w̃Rκ} and {w̃R`−1+1, . . . , w̃R`}, ` = κ+ 1, . . . , N , respectively,
are linearly independent. As the direct sum of subspaces Mγ0

κ
(ξ′, λ) and

Mγ1
`
(λ), ` = κ + 1, . . . , N , is M+ (see (4-11)) we obtain the state-

ment.

Corollary 5.3. Under the conditions of Proposition 5.1 elements
hij(ξ

′, λ) of matrix H satisfy

|hij(ξ′, λ)| ≤ C (µj(ξ
′, λ))mi (i, j = 1, . . . , R)

hij(ξ
′, λ) = δij(µj(ξ

′, λ))mj

if 1 ≤ i, j ≤ Rκ or if R`−1 < i, j ≤ R` for some ` > κ.
(5-9)

The proof of Proposition 5.1 is rather long and cumbersome. In the
proof, we will separately consider the cases

j = 1, . . . , Rκ, (ξ′, λ) ∈ G̃κ(ρ, δ) (5-10)

j = 1, . . . , Rκ, (ξ′, λ) ∈ Gκ(ρ, δ) (5-11)

and

j = Rκ + 1, . . . , RN , (ξ′, λ) ∈ G̃κ(ρ, δ) ∪Gκ(ρ, δ). (5-12)

But before we will deal with the proof Proposition 5.1, we deduce the
proof of the main Theorem 3.5.
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5.2 Proof of Theorem 3.5

Still assuming parameter-ellipticity for the boundary value prob-
lem (A(D) − λ,B(D)), we now consider the fundamental system
{w(1), . . . , w(R)} of solutions of (3-6) and want to prove (3-10). Through-
out this section, we fix σ ∈ RN satisfying (3-3).

The proof of Theorem 3.5 uses the following result from [7], Section 5.

Lemma 5.4. Suppose (5-1) holds for some κ ∈ {0, . . . , N}. Let H(ξ′, λ)
be an R×R matrix whose coefficients hij satisfy estimates (5-9).

Then H(ξ′, λ) is invertible for large λ, and for the coefficients of the

inverse matrix H−1(ξ′, λ) =:
(
h̃ij(ξ

′, λ)
)
i,j=1,...,R

the estimate

|h̃ij(ξ′, λ)| ≤ Cµ−mii

Ψ
(−mj−1/2)
σ (ξ′, λ)

Ψ
(−mi−1/2)
σ (ξ′, λ)

holds.

Proof of Theorem 3.5. We fix sufficiently small δ > 0 and ρ > 0 and
consider (ξ′, λ) ∈ Gκ(ρ, δ) ∪ G̃κ(ρ, δ) for some κ. From Corollary 5.3 we
know that the matrix H(ξ′, λ) satisfies the assumptions of Lemma 5.4.
The invertibility of H implies unique solvability of the ODE problem
(3-6)–(3-7) with h := ek ∈ CR with solution w(k)(ξ′, λ, t). By definition
of the matrix H we have w(k) = (w̃1, . . . , w̃R)H−1ek. Thus we have to
estimate∥∥D`

tw
(k)
i (ξ′, λ, ·)

∥∥
L2(R+)

≤
R∑
j=1

∥∥D`
t w̃ij(ξ

′, λ, ·)
∥∥
L2(R+)

·|h̃jk(ξ′, λ)|. (5-13)

We estimate the norms on the right-hand side of (5-13) by means of (5-7)
and the term |hjk(ξ′, λ)| by means of Lemma 5.4. As a result, we estimate
the left-hand side of (5-13) by

R∑
j=1

µ
`−mj−1/2
j (µj + |ξ′|+ |λ|1/ri)−ti Ψ

(−mk−1/2)
σ (ξ′, λ)

Ψ
(−mj−1/2)
σ (ξ′, λ)

.

Now inequality (3-10) is a consequence of the following technical lemma.

Lemma 5.5. Suppose (3-3) and (5-1) take place. Then

Ψ
(−`)
σ+tiei(ξ

′, λ)

Ψ
(−mj−1/2)
σ (ξ′, λ)

≤ constµ
mj+1/2−`
j (µj + |ξ′|+ |λ|1/ri)ti .
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Proof. We introduce the numbers L and J by the conditions

σ1 + · · ·+ σL−1 < ` ≤ σ1 + · · ·+ σL,

σ1 + · · ·+ σJ−1 < mj +
1

2
≤ σ1 + · · ·+ σJ .

We will distinguish the cases 1) i < L and 2) i ≥ L.
In case 1) we define the index L′ ≤ L by

σ1 + · · ·+ σL′−1 + ti < ` ≤ σ1 + · · ·+ σL′ + ti.

According to the definition in Subsection 3.1, we have

Ψ
(−`)
σ+tiei

Ψ
(−mj−1/2)
σ

=
(|ξ′|+ |λ|1/rL′ )σ1+···+σL′+ti−`

∏N
k=L′+1(|ξ′|+ |λ|1/rk)σk

(|ξ′|+ |λ|1/rJ )σ1+···+σJ−mj−1/2
∏N
k=J+1(|ξ′|+ |λ|1/rk)σk

.

(5-14)
Again we have two cases: 1.1) L′ > J and 1.2) L′ ≤ J . In case 1.1) the
right-hand side of (5-14) is equal to

(|ξ′|+ |λ|1/rL′ )σ1+···+σL′−1+ti−`
L′−1∏
k=J+1

(|ξ′|+ |λ|1/rk)−σk

× (|ξ′|+ |λ|1/rJ )−σ1−···−σJ+mj+1/2.

(5-15)

The first factor has a negative exponent, so we can estimate it from above
by replacing |ξ′|+ |λ|1/rL′ by |ξ′|+ |λ|1/rJ . In the same way in each factor
in the product we replace |ξ′|+ |λ|1/rk by |ξ′|+ |λ|1/rJ . We obtain

(|ξ′|+ |λ|1/rJ )mj+1/2+ti−` = µ
mj+1/2+ti−`
j .

In case 1.2) the right-hand side of (5-14) is equal to

(|ξ′|+ |λ|1/rL′ )σ1+···+σL′+ti−`
J−1∏

k=L′+1

(|ξ′|+ |λ|1/rk)σk

× (|ξ′|+ |λ|1/rJ )−σ1−···−σJ−1+mj+1/2.

(5-16)

The first factor has a positive exponent, so we can estimate it from above
by replacing |ξ′|+|λ|1/rL′ by |ξ′|+|λ|1/rJ . In the same way in the product
we replace |ξ′|+ |λ|1/rk by |ξ′|+ |λ|1/rJ . We again obtain

(|ξ′|+ |λ|1/rJ )mj+1/2+ti−` = µ
mj+1/2+ti−`
j .
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Now consider case 2). From our definition we have

Ψ
(−`)
σ+tiei(ξ

′, λ) = Ψ(−`)
σ (ξ′, λ) · (|ξ′|+ |λ|1/ri)ti ,

and our statement will follow from the estimate

Ψ
(−`)
σ (ξ′, λ)

Ψ
(−mj−1/2)
σ (ξ′, λ)

≤ (|ξ′|+ |λ|1/rJ )mj+1/2+ti−` = µ
mj+1/2+ti−`
j .

The proof is repetition of the proof in the case 1), see also [7] where this
inequality is also proved.

5.3 Proof of Proposition 5.1 in the case (5-10)

According to Proposition 4.1, unique solvability of (5-2), (5-3) and (5-5)
will follow from

Proposition 5.6. Let conditions (i’) and (ii) of Definition 2.3 be satisfied
and let (5-10) hold. Then we can choose ρ and δ that there exists a con-
tour γ0

κ(ξ′, λ) in C+ enveloping the first Rκ roots of (4-8) (see Theorem
4.5) such that the rectangular matrix

1

2πi

∫
γ0
κ(ξ′,λ)

B1..κ,N (ξ′, τ)(A(ξ′, τ)− λI)−1(I, (τ/q)I, . . . , (τ/q)σ−1I)dτ

has maximal rank Rκ under suitable choice of q. Here we used the nota-
tion B1..κ,N :=

(
bij
)
i=1,...,Rκ
j=1,...,N

.

Proof. By Remark 4.3, we can equivalently prove that the rectangular
matrix

1

2πi

∫
γ0
κ(ξ′,λ)

QB1..κ,N (ξ′, τ)(A(ξ′, τ)−λI)−1(H, (τ/q)H, . . . , (τ/q)σ−1H)dτ

(5-17)
has maximal rank Rκ under suitable choice of q,Q,H.

The main idea of the proof is to define q,H,Q and contour γ0
κ(ξ, λ)

such that for small δ the matrix (5-17) will be a small perturbation of
M0
κ(ξ′, λ) in Lemma 4.4 (a). In this case the proposition follows from

this Lemma.
In the following, we will fix a real number rκ > r > rκ+1 and s′, t′ ∈

RN satisfying

s′j = sj , t
′
j = tj (j = 1, . . . , κ)

s′j > sj , t
′
j > tj , s

′
j + t′j = r (j = κ+ 1, . . . , N).

(5-18)
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We also set

ε := min{s′j − sj , t′j − tj : j = κ+ 1, . . . , N}

and introduce for z > 0 and a ∈ RN the diagonal matrix

∆a(z) := diag(za1 , . . . , zaN ).

Note that ∆−1
a (z) = ∆−a(z).

Substituting τ 7→ |ξ′|τ in (5-17), we obtain an integral over a bounded
contour γ̃0

κ(ξ′, λ) which can be deformed into the contour γ̃0
κ independent

of (ξ′, λ). (Here we used Theorem 4.5.) In (5-17) we set

q := |ξ′|, ξ′ = qω′, Q := 2πiq−1∆−m(q), H := ∆s′−a(q) (5-19)

where a := (a1, . . . , aN ) with ai := 0 for i ≤ κ and ai := r − rκ+1 if
i ≥ κ+ 1. We also set ∆m(q) := diag(qm1 , . . . , qmRκ ).

According to Theorem 4.5 and (5-10) we can choose a contour γ0
κ(ξ′)

enclosing the roots of detAκ(ξ′, z) belonging to C+. As these roots are
homogeneous functions, the contour γ0

κ(ξ′) can be deformed into contour
|ξ′|γ̃0

κ, where γ̃0
κ is independent of (ξ′, λ).

Using the homogeneity of B, we obtain that (5-17) equals∫
γ̃0
κ

B1..κ,N (ω′, τ)∆t(q)
[
A(qω′, qτ)− λ

]−1
∆s′−a(q)(IN , . . . , τ

σ−1IN ) d τ .

(5-20)
The following lemma can be shown by straightforward calculation.

Lemma 5.7. Let rκ > r > rκ+1 and suppose that s′ and t′ satisfy (5-18).

Suppose (ξ′, λ) ∈ G̃κ(1, δ). Then

A(qω′, qτ)−λIN = ∆s′(q)

[(
Aκ(ω′, τ) 0

0 λq−rIN−κ

)
+O(q−ε + δ)

]
∆t′(q) .

Corollary 5.8. If δ and q−ε are small enough, then

[A(qω′, qτ)− λIN ]−1

= ∆−t′(q)

[(
Aκ(ω′, τ))−1 0

0 λ−1qrIN−κ

)
+O(q−ε + δ)

]
∆−s′(q).

With these results, we can finish the proof of Proposition 5.6. In
(5-20) we substitute the representation of Corollary 5.8 and obtain∫

γ̃0
κ

B1..κ,N (ω′, τ)∆t−t′(q)

[(
Aκ(ω′, τ) 0

0 qrκ+1λ−1IN−κ

)

+O(q−ε + δ)

]
(IN , . . . , τ

σ−1IN ) d τ.

(5-21)
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According to the definition of G̃κ(ρ, δ) we have |λ|−1qrκ+1 < δ. Further
note that

B1..κ,N (ω′, τ)∆t−t′(q)→
(
B1..κ(ω′, τ) 0

)
for δ ↘ 0 where 0 denotes the Rκ × (N − κ) zero matrix. From this we
see that for δ ↘ 0 the matrix (5-21) tends to∫
γ̃0
κ

(
B1..κ(ω′, τ) 0

)(
Aκ(ω′, τ)−1 0

0 0

)
(IN , τIN , . . . , τ

σ−1IN ) d τ

=

∫
γ̃0
κ

(
B1..κ(ω′, τ)Aκ(ω′, τ)−1 0

)
(IN , τIN , . . . , τ

σ−1IN ) d τ.

It is easily seen that Lemma 4.4 a) with λ = 0 implies that the rank of
the last matrix is maximal. Therefore for sufficiently small δ > 0 the
rank of the matrix (5-21) and thus (5-17) is maximal, too.

Proposition 5.6 permits us not only to prove unique solvability of the
problem (5-2), (5-3) and (5-5), but establishes the estimates (5-7) and
(5-8). Indeed, according to Proposition 5.6 and Remark 4.3 matrix (5-17)
has maximal rank. Again using the substitutions (5-19) with H = ∆s(q)
we obtain than matrix∫

γ̃0
κ

B1..κ,N (ω′, τ)∆t(q)
[
A(qω′, qτ)− λ

]−1

∆s(q)(IN , . . . , τ
σ−1IN ) d τ

(5-22)
has maximal rank Rκ. Now we use (2-6) to see that the element at posi-

tion (i, j) of the matrix ∆t(q)
[
A(qω′, qτ) − λ

]−1
∆s(q) can be estimated

by
Cqti+sj (q + q|τ |+ |λ|1/ri)−ti(q + q|τ |+ |λ|1/rj )−sj .

This means ∣∣∣∆t(q)
[
A(qω′, qτ)− λ

]−1
∆s(q)

∣∣∣ ≤ C,
and therefore the matrix in (5-22) with ∆s′(q) replaced by ∆s(q) is
bounded by a constant (and depends continuously on (q, ω′, λ)). From
Proposition 4.1 we know that there exists a matrix N(q, ω′, λ, τ) such
that

1

2πi

∫
γ̃0
κ

B1..κ,N (ξ′, τ)∆t(q)
[
A(ξ′, qτ)−λ

]−1

∆s(q)N(q, ω′, λ, τ) d τ = ∆m(q)IRκ .

(5-23)
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holds. Due to the explicit construction of N(τ) in Remark 4.2 we may
assume that N(q, ω′, λ, τ) is bounded, too. We set for j = 1, . . . , Rκ

w̃j(t, ξ
′, λ) :=

[
1

2πi

∫
γ̃0
κ

eitqτ
[
A(qω′, qτ)− λ

]−1

∆s(q)N(q, ω′, λ, τ) d τ

]
ej .

Then obviously (A(ξ′, Dt)−λ)w̃j(t) = 0 and, by (5-23) and homogeneity
of A and B,

B1..κ,N (ξ′, Dt)w̃j(0) = diag(qmi)i=1,...,RκIRκej = qmjej = µ
mj
j ej ,

i.e. w̃j is the unique solution of (5-2)–(5-5).
Again by homogeneity of A and B we can estimate∣∣∣∆−m(q)B(ξ′, Dt)w̃j(0)

∣∣∣
=

∣∣∣∣∣ 1

2πi

∫
γ̃0
κ

∆−m(q)B1..κ,N (qω′, qτ)
[
A(qω′, qτ)− λ

]−1

∆s(q)N(q, ω′, λ, τ) d τ ej

∣∣∣∣∣
≤ C

which shows (5-8). To prove (5-7) we again use (2-6) and obtain∣∣∣D(q, λ)
[
A(qω′, qτ)− λ

]−1
∆s(q)

∣∣∣ ≤ C (5-24)

for all (ξ′, λ) ∈ G̃κ(ρ, δ) and τ ∈ γ̃0
κ with q := |ξ′|, ω′ = ξ′/q and

D(q, λ) := diag
(

(q + |λ|1/ri)ti
)
i=1,...,N

.

Therefore the estimate∣∣∣D(q, λ)Dr
t w̃j(t)

∣∣∣ ≤ Cqr length(γ̃0
κ) exp(−dist(γ̃0

κ,R)qt)

holds. Integration with respect to t leads to∥∥∥D(q, λ)Dr
t w̃j

∥∥∥
L2(R+)

≤ Cqr−1/2

which is equivalent to (5-7). This finishes the proof of Proposition 5.1 in
the case (5-10).
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5.4 Proof of Proposition 5.1 in the cases (5-11),(5-12)

For (ξ′, λ) ∈ G̃κ, the case j > Rκ can be treated in a similar way as
the case j ≤ Rκ, so we only indicate the necessary changes. For κ ∈
{0, . . . , N}, ` > κ and j ∈ {R`−1 + 1, . . . , R`} we now have to show that
the matrix

1

2πi

∫
γ1
` (λ)

QB`,N (ξ′, τ)
[
A(ξ′, τ)− λ

]−1

(H, (τ/q)H, . . . , (τ/q)σ−1H) d τ

(5-25)
has maximal rank r`/2, where we set B`,N :=

(
bij
)
i=R`−1+1,...,R`
j=1,...,N

. We

now fix r with r` > r > r`+1 and choose s′ and t′ satisfying (5-18) with
κ replaced by `.

In (5-25) we set

q := |λ|1/r` , ξ′ = qω′, Q := 2πiq−1∆−m(q), H := ∆s′(q) .

After transformation τ 7→ qτ and deformation of the resulting contour
into a bounded contour γ̃1

` independent of λ, we obtain instead of (5-20)
the matrix∫

γ̃1
`

B`,N (ω′, τ)∆t(q)
[
A(qω′, qτ)− λIN

]−1

∆s′(q)(IN , . . . , τ
σ−1IN ) d τ.

(5-26)
Instead of Lemma 5.7 we now have

A(qω′, qτ)− λIN

= ∆s′(q)

[(
A`(ω

′, τ)− q−1λE` 0
0 λ−1qrIN−`

)
+O(q−ε

′
+ δε

′′
)

]
∆t′(q)

with positive constants ε′, ε′′.
Let us first assume κ ≥ 1. By definition of G̃κ we have

|ω′| = |ξ
′|
q

= |ξ′| |λ|−1/r` ≤ |ξ′| |λ|−1/rκ+1 < δ1/rκ+1

and for |ξ′| ≥ 1

|λ|−1qr = |λ|(r−r`)/r` ≤
( |ξ′|
|λ|1/r`

)r`−r
≤
( |ξ′|
|λ|1/rκ+1

)r`−r
< δ(r`−r)/rκ+1 .

(5-27)
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From this we see that for δ ↘ 0 the matrix (5-26) tends to∫
γ̃1
`

(
B`(0, τ)(Aκ(0, τ)− |λ|−1λEκ)−1 0

)
(IN , . . . , τ

σ−1IN ) d τ

which has rank r`/2 by Lemma 4.4 b). Note that up to now we have found

a small δ > 0 such that the desired results hold for (ξ′, λ) ∈ G̃κ(1, δ)
Now let us consider the case κ = 0. Here we replace (5-27) by

|λ|−1qr = |λ|(r−r`)/r` ≤ ρ(r−r`)/r`
0

which holds for (ξ′, λ) ∈ G̃0(ρ0, δ) with sufficiently large ρ0.
Finally, let us assume that for κ ∈ {1, . . . , N} we have (ξ′, λ) ∈

Gκ(ρ, δ). For j ≤ Rκ the construction of the basic solutions follows
in the same way as in above, now setting r := rκ and q := |ξ′| + |λ|1/rκ
which finally leads to the matrix(

(Aκ(ω′, τ)− λq−rκ)−1 0
0 0

)
instead of the matrix appearing in Corollary 5.8. In a similar way the
case j > Rκ can be treated as a small modification of the case (ξ′, λ) ∈
G̃κ(ρ, δ).

6 Proof of the necessity

Now we want to show that parameter-ellipticity is necessary for unique
solvability of (3-4) and the a priori-estimates (3-5). So the aim of the
present section is to prove the following result.

Theorem 6.1. Suppose for a fixed σ ∈ RN satisfying (3-3) the esti-
mate (3-5) with right-hand sides (3-4) holds. Then conditions (i)-(iii) of
Definition 2.3 are satisfied.

The proof of the theorem is based on the same ideas as the correspond-
ing proof in [5], Section 4. Necessity of (i), in fact, is already contained
in [4]. The proof of Theorem 6.1 is derived from a priori estimates given
below. To simplify their formulation, we introduce some weight functions
which are closely related to the definition of Ψσ in Section 3. For fixed
κ ∈ {1, . . . , N} we set

Φσ(ξ, λ) := |ξ|σ1+···+σκ−1(|ξ|+ |λ|1/rκ)σκ , (6-1)
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Φ̃σ(ξ, λ) := (|ξ′|+ iξn)σ1+···+σκ−1(|ξ′|+ iξn + |λ|1/rκ)σκ . (6-2)

Moreover, we define Φ̃σ(ξ′, λ) := Φ̃σ(ξ′, 0, λ) and the shifted weight func-
tion by

Φ̃(−a)
σ (ξ′, λ) :=

{
|ξ′|σ1+···+σκ−1−a(|ξ′|+ |λ|1/rκ)σκ , a ≤ σ1 + · · ·+ σκ−1,

(|ξ′|+ |λ|1/rκ)σ1+···+σκ−a, a > σ1 + · · ·+ σκ−1.

(6-3)
Throughout this section, the vector σ ∈ RN is assumed to be fixed with
σi > 0 for i = 2, . . . , N and satisfying (3-3). We will write ‖ · ‖ instead of
‖ · ‖L2(Rn).

Remark 6.2. The functions (6-1), (6-2) and (6-3), in fact, depend only
on σ1, . . . , σκ and are independent of σj for j > κ. Nevertheless, to
simplify cumbersome notation we do not include κ in the notation.

Proposition 6.3. Suppose the a priori estimate (3-5) holds and κ ∈
{1, . . . , N} is fixed. Then following statements hold.

(i) there exists a constant C > 0 such that for all u(κ) ∈ (C∞0 (Rn))κ

and λ ∈ L the following estimate holds.

κ∑
i=1

‖Φσ+tiei(D,λ)u
(κ)
i ‖ ≤ C

κ∑
i=1

‖Φσ−siei(D,λ)f
(κ)
i ‖. (6-4)

here f (κ) := (Aκ − λEκ)u(κ).
(ii) for σ ∈ Rκ there exists a constant C > 0 such that for all u(κ) ∈

(C∞0 (Rn+))κ and all λ ∈ L the following inequality holds.

κ∑
i=1

‖Φ̃σ+tiei(D,λ)u
(κ)
i ‖L2(Rn+) ≤ C

( κ∑
i=1

‖Φ̃σ−siei(D,λ)f
(κ)
i ‖L2(Rn+)

+

Rκ∑
j=1

‖Φ̃(−mj−1/2)
σ (D′, λ)g

(κ)
j ‖L2(Rn−1)

)
.

(6-5)
Here we have set f (κ) := (Aκ − λEκ)u(κ) and g(κ) := B1..κu

(κ).
(iii) there exists a C > 0 such that for all u(κ) ∈ (C∞0 (Rn+))κ and all

λ ∈ L the following estimate holds.

κ∑
i=1

‖Φ̃σ+tiei(0, Dn, λ)ui‖L2(Rn+)

≤ C
[ κ∑
i=1

‖Φ̃σ−siei(0, Dn, λ)f
(κ)
i ‖L2(Rn+)
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+

Rκ∑
j=Rκ−1+1

‖Φ̃(−mj−1/2)
σ (0, λ)g

(κ)
j ‖L2(Rn−1)

]
where we have set f (κ) := (Aκ − λEκ)u(κ) and g(κ) := Bκu

(κ).

Proof of the Theorem.

Necessity of condition (i). Changing the constants, we may replace
each norm in (6-10) by its square. We choose u(κ)(x) = ϕ(x)h with
ϕ ∈ C∞0 (Rn), h ∈ Cκ. Taking the Fourier transform in Rn, we obtain

0 ≤
∫
|ϕ̂(ξ)|2

[
κ∑
i=1

(
Φσ+tiei(ξ, λ)

)2|hi|2−
− C ·

κ∑
i=1

(
Φσ−siei(ξ, λ)

)2∣∣∣ κ∑
j=1

(Aij(ξ)− λδijδiκ)hi

∣∣∣2]dξ
=

∫
Rn

Φσ(ξ, λ)
)2|ϕ̂(ξ)|2

[
κ∑
i=1

(|ξ|+ δiκ|λ|1/ri)2ti |hi|2

− C
κ∑
i=1

(|ξ|+ δiκ|λ|1/ri)−2si
∣∣∣ κ∑
j=1

(Aij(ξ)− δijδiκλ)hj

∣∣∣2]dξ.

(6-6)

As ϕ is an arbitrary C∞0 -function the expression in [· · · ] must be nonpos-
itive for all ξ ∈ Rn, λ ∈ L and h ∈ Cκ. From this we obtain

det(Aκ(ξ)− λEκ) 6= 0 (ξ ∈ Rn \ {0}, λ ∈ L).

Indeed, if this condition is not satisfied, then for some ξ0 6= 0, λ0 ∈ L
there exists a nontrivial solution h0 ∈ Cκ of the equation

(Aκ(ξ0)− λ0Eκ)h0 = 0.

For such ξ0, λ0 and h0 we have

κ∑
j=1

(Aij(ξ)− δijδiκλ)h0
j = 0

for i = 1, . . . , κ and

κ∑
i=1

(|ξ|+ δiκ|λ|1/ri)2ti |hi|2 > 0,
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and the bracket in (6-6) would be positive.

Necessity of condition (ii). As in the proof of (i), we replace
each term in (6-10) by its square. Now we choose u(x) = ϕ(x′)v(xn)

with ϕ ∈ C∞0 (Rn−1), v = (v1, . . . , vκ)
>

. Taking Fourier transform with
respect to x′ and using that ϕ is arbitrary we derive for v the following
inequality on the half-line.

κ∑
i=1

‖Φ̃σ+tiei(ξ
′, Dn, λ)vi‖2L2(R+)

≤ C

[
κ∑
i=1

‖Φ̃σ−siei(ξ′, Dn, λ)

κ∑
j=1

(Aij(ξ
′, Dn)− δijδiκλ)vj‖2L2(R+)

+

Rκ∑
j=1

∣∣∣Φ̃(−mj−1/2)
σ (ξ′, λ)

κ∑
i=1

Bji(ξ
′, Dn)vi

∣∣∣2].
From this it follows that if ξ′ 6= 0 and v ∈ L2(R+) is a solution of

(Aκ(ξ′, Dn)− λEκ)v(xn) = 0 (xn > 0), (6-7)

B1..κ(ξ′, Dn)v(xn)|xn=0 = 0

then v vanishes identically.
From the uniqueness of the solution we see that the Lopatinskii matrix

of the ODE system (6-7) with boundary conditions

Bκ(ξ′, Dn)v = (c1, . . . , cRκ)
>

(6-8)

has maximal rank and the problem (6-7)–(6-8) has a unique stable solu-
tion for arbitrary (c1, . . . , cRκ) ∈ Crκ . Thus condition (ii) is proved.

Necessity of condition (iii). Repeating the proof of (ii) we obtain
from Proposition 6.3 (iii) for λ ∈ L, |λ| = 1, the inequality on the half-line

κ∑
i=1

‖Φ̃σ+tiei(0, Dn, λ)vi‖2L2(R+)[
κ∑
i=1

‖Φ̃σ−siei(0, Dn, λ)

κ∑
j=1

Aij(0, Dn)vj‖2L2(R+)

+

Rκ∑
j=Rκ−1+1

∣∣∣ κ∑
k=1

Bjk(0, Dn)vk

∣∣∣2].
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From this inequality it follows that if v ∈ L2(R+) and

(Aκ(0, Dn)− λEκ)v(xn) = 0 (xn > 0),

Bκ(0, Dn)v(xn)|xn=0 = 0

then

0 =

κ∑
i=1

‖Φ̃σ+tiei(0, Dn, λ)vi‖2L2(R+)

=

κ−1∑
i=1

‖Dσ1+···+σκ+ti
n vi‖R+

+ ‖Dσ1+···+σκ
n (iDn + 1)tivκ‖R+

.

From this we see that the components vi are polynomials. As they belong
to L2(R+), they are identically zero. From this follows condition (iii)
which finishes the proof of the necessity.

We still have to prove Proposition 6.3.

Proof of Proposition 6.3, Part (i).

If we take an infinitely smooth vector function u : Rn+ → RN with
support in Rn+ and apply to it inequality (3-5) we obtain, setting f :=
(A− λ)u,

N∑
i=1

‖Ψσ+tiei(D,λ)ui‖ ≤ C
N∑
i=1

‖Ψσ−siei(D,λ)fi‖ . (6-9)

Since this inequality is invariant under shifts in Rn we can suppose that
u is an arbitrary vector function with components belonging to C∞0 (Rn).

Following [4], we replace for ρ > 0 in (6-9) λ by ρrκλ and u(x) by

uρ(x) = (u1ρ(x), . . . , uNρ(x)), ujρ(x) = ρ
n
2−aκ−tj(κ)uj(ρx), (6-10)

where
aκ = σ1 + · · ·+ σκ + rκ

(σκ+1

rκ+1
+ · · ·+ σN

rN

)
and

tj(κ) = tj , for j ≤ κ, tj(κ) = ε+ tj
rκ
rj
, for j > κ (6-11)
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for some fixed ε > 0. After a natural change of variables we come to the
inequality

N∑
i=1

‖ρ−aκ−ti(κ)Ψσ+tiei(ρD, ρ
rκλ)ui‖ ≤ C

N∑
i=1

‖ρ−aκΨσ−siei(ρD, ρ
rκλ)fρi‖,

(6-12)
where

fρi :=

N∑
j=1

ρ−tj(κ)Aij(ρD)uj − ρrκ−ti(κ)λui .

Denote by
Ji(ρ) := ‖ρ−aκ−ti(κ)Ψσ+tiei(ρD, ρ

rκλ)ui‖
the typical term on the left-hand side of (6-12) and by

Ii(ρ) := ‖ρ−aκΨσ−siei(ρD, ρ
rκλ)fρi‖

the typical term on the right-hand side of (6-12).
(a) We first consider Ji(ρ). We write

ρ−aκ−ti(κ)Ψσ+tiei(ρξ, ρ
rκλ)

=
(ρ|ξ|+ ρrκ/ri |λ|1/ri)ti

ρti(κ)
·
κ∏
j=1

(ρ|ξ|+ ρrκ/rj |λ|1/rj
ρ

)σj
·

N∏
j=κ+1

(ρ|ξ|+ ρrκ/rj |λ|1/rj
ρrκ/rj

)σj
.

(6-13)
Now we remark that for ρ→∞ we have

ρ|ξ|+ ρrκ/rj |λ|1/rj
ρ

−→

{
|ξ|, 1 ≤ j ≤ κ− 1,

|ξ|+ |λ|1/rj , j = κ,

ρ|ξ|+ ρrκ/rj |λ|1/rj
ρrκ/rj

−→ |λ|1/rj , j = κ+ 1, . . . , N.

(6-14)

For i ≤ κ we have ti(κ) = ti. Inserting the limits above into (6-13),
we get that for ρ→∞ the left-hand side of (6-13) tends to

|λ|
σκ+1
rκ+1

+···+σN
rN · Φσ+tiei(ξ, λ),

and thus

Ji(ρ) −→ |λ|
σκ+1
rκ+1

+···+σN
rN ‖Φσ+tiei(D,λ)ui‖ (i = 1, . . . , κ). (6-15)
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For i > κ we have ti(κ) = ε + tirκ/ri. Inserting this into (6-13) and
taking the limit ρ→∞, we obtain

lim
ρ→∞

ρ−aκ−ti(κ)Ψσ+tiei(ρξ, ρ
rκλ)

= Φσ(ξ, λ) · |λ|
σκ+1
rκ+1

+···+σN
rN · lim

ρ→∞

(ρ|ξ|+ ρrκ/ri |λ|1/rj )ti
ρε+tirκ/ri

= 0.

Therefore,
Ji(ρ) −→ 0 (i = κ+ 1, . . . , N). (6-16)

(b) Now let us consider Ii(ρ). In the same way as before, we write

ρ−aκΨσ−siei(ρξ, ρ
rκλ)

[ N∑
j=1

Aij(ρξ)ρ
−tj(κ) − ρrκ−ti(κ)λ

]
=
(ρ|ξ|+ ρrκ/ri |λ|1/ri

ρ

)−si
·
κ∏
j=1

(ρ|ξ|+ ρrκ/rj |λ|1/rj
ρ

)σj
·

N∏
j=κ+1

(ρ|ξ|+ ρrκ/rj |λ|1/rj
ρrκ/rj

)σj
·
[ N∑
j=1

ρ−si−tj(κ)Aij(ρξ)− ρ−si−ti(κ)+rκλ
]
.

(6-17)

For i ≤ κ we use

N∑
j=1

ρ−si−tj(κ)Aij(ρξ) =

κ∑
j=1

Aij(ξ) +

N∑
j=κ+1

ρ−ε+tj(1−rκ/rj)Aij(ξ),

ρ−si+rκ−ti(κ)λ = ρrκ−riλ

and obtain that for ρ→∞ the left-hand side of (6-17) tends to

|λ|
σκ+1
rκ+1

+···+σN
rN Φσ−siei(ξ, λ)

( κ∑
j=1

Aij(ξ)− δiκλ
)
.

In the case i > κ we have(ρ|ξ|+ ρrκ/ri |λ|1/ri
ρ

)−si
→ 0 (ρ→∞)

and
ρ−si−ti(κ)+rκ = ρ(rκ−ri)(ti−ri)/ri−ε → 0 (ρ→∞),
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and the left-hand side of (6-17) tends to zero. Therefore

Ii(ρ) −→

{
|λ|

σκ+1
rκ+1

+···+σN
rN ‖Φσ−siei(D,λ)gi‖, i ≤ κ,

0, i > κ.
(6-18)

From (6-15), (6-16) and (6-18) the desired result follows.

Proof of Proposition 6.3, Part (ii).

In analogy to Φ̃σ, we define

Ψ̃σ(ξ, λ) :=

N∏
j=1

(|ξ′|+ iξn + |λ|1/rj )σj

and rewrite for u ∈ (C∞0 (Rn+))N the main estimate (3-5) in the form

N∑
i=1

‖Ψ̃σ+tiei(D,λ)ui‖L2(Rn+) ≤ C
( N∑
i=1

‖Ψ̃σ−siei(D,λ)fi‖L2(Rn+)

+

R∑
j=1

‖Ψ̃(−mj−1/2)
σ (D′, λ)gj‖L2(Rn−1)

)
,

(6-19)
where f := (A− λ)u and g := Bu.

As in the proof of Proposition 6.3, Part (i), we fix κ ∈ {1, . . . , N},
replace u by uρ defined in (6-10), replace λ by ρrκλ and take the limit ρ→
∞. Slightly modifying the arguments from the proof of Part (i), we see
that the left-hand side and the first sum on the right-hand side of (6-19)

tend to the corresponding terms in (6-5) multiplied by |λ|
σκ+1
rκ+1

+···+σN
rN .

Now we consider the typical term of the last sum on the right-hand side
of (6-19) (with u replaced by uρ and after change of variables),

Lj(ρ) := ρ−aκ+1/2
∥∥∥Ψ̃

(−mj−1/2)
σ (ρD′, ρrκλ)

N∑
i=1

ρ−ti(κ)bji(ρD)ui

∥∥∥
L2(Rn−1)

= ρ−aκ+mj+1/2
∥∥∥Ψ̃

(−mj−1/2)
σ (ρD′, ρrκλ)

×
[ κ∑
i=1

bji(D)ui +

N∑
i=κ+1

ρ−ε+ti(1−rκ/ri)bji(D)ui

]∥∥∥
L2(Rn−1)

.

(6-20)
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(a) Let j ∈ {R`−1 + 1, . . . , R`} with ` ≤ κ. According to the definition
of the shifted weight functions and (3-3), we can write

ρ−aκ+mj+1/2Ψ̃
(−mj−1/2)
σ (ρξ′, ρrκλ)

=
(ρ|ξ′|+ ρrκ/r` |λ|1/r`

ρ

)σ1+···+σ`−mj−1/2

·
κ∏

i=`+1

(ρ|ξ′|+ ρrκ/ri |λ|1/ri
ρ

)σi
·

N∏
i=κ+1

(ρ|ξ′|+ ρrκ/ri |λ|1/ri
ρrκ/ri

)σi
−→ |λ|

σκ+1
rκ+1

+···+σN
rN Φ̃

(−mj−1/2)
σ (ξ′, λ) (ρ→∞).

Here we took into account (6-14). Inserting this into (6-20), we see

Lj(ρ)→ ‖Φ̃(−mj−1/2)
σ (D′, 1)g

(κ)
j ‖L2(Rn−1) (j = 1, . . . , Rκ). (6-21)

(ii) Now let j ∈ {R`−1 + 1, . . . , R`} with ` > κ. In this case we have

ρ−aκ+mj+1/2Ψ̃
(−mj−1/2)
σ (ρξ′, ρrκλ)

= ρ−aκ+mj+1/2(ρ|ξ′|+ ρrκ/r` |λ|1/r`)σ1+···+σ`−mj−1/2

κ∏
i=`+1

(ρ|ξ′|+ ρrκ/ri |λ|1/ri
ρrκ/ri

)σi
.

In this expression the exponent of ρ equals

−aκ +mj + 1/2 +
rκ
r`

(σ1 + · · ·+ σ` −mj − 1/2) +

N∑
i=`+1

rκσi
ri

=
(rκ
r`
− 1
)

(σ1 + · · ·+ σκ −mj − 1/2) +
∑̀
i=κ+1

rκσi

( 1

ri
− 1

r`

)
< 0.

Inserting this into (6-20), we have

Lj(ρ)→ 0 (j = Rκ + 1, . . . , R).

Together with (6-21), this finishes the proof.

Proof of Proposition 6.3, Part (iii).
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We modify the proof of Part (ii) by substituting in (6-19) a vector
function of boundary layer type

uρ = (u1ρ, . . . , uNρ), ujρ(x) := ρ
n−1
2 θ+ 1

2−a(κ)−tj(κ) · uj(ρθx′, ρxn)

with θ satisfying the inequalities

rκ−1

rκ
< θ < 1.

The calculations of the limits for ρ → ∞ of the ‖ · ‖L2(Rn+)-norms follow

the same lines as in the proof of Part (ii), and we will not dwell on them.
For the boundary norms, we have to consider

Mj := ρ−a(κ)+mj+1/2
∥∥∥Ψ̃

(−mj−1/2)
σ (ρεD′, ρrκλ)·

N∑
i=1

ρti−ti(κ)Bji(ρ
θ−1D′, Dn)

∥∥∥.
(6-22)

To compute limρ→∞Mj(ρ), we choose ` ∈ {1, . . . , N} such that R`−1 +
1 ≤ j ≤ R`. We distinguish the cases ` < κ, ` = κ and ` > κ.

For ` < κ we have

ρ−a(κ)+mj+1/2Ψ̃
(−mj−1/2)
σ (ρθξ′, ρrκλ)

=
(ρθ|ξ′|+ ρrκ/r` |λ|1/r`

ρ

)σ1+···+σ`−mj−1/2

·
κ∏

i=`+1

(ρθ|ξ′|+ ρrκ/ri |λ|1/ri
ρ

)σi
·

N∏
i=κ+1

(ρθ|ξ′|+ ρrκ/ri |λ|1/ri
ρrκ/ri

)σi
.

(6-23)

As both products are bounded for ρ → ∞ and the first factor tends to
zero (note that θ < 1, rκ/r` < 1 and σ1 + · · · + σ` −mj − 1/2 > 0), the
right-hand side of (6-23) tends to zero for ρ→∞.

For ` = κ the left-hand side of (6-23) equals

(ρθ|ξ′|+ ρ|λ|1/rκ
ρ

)σ1+···+σκ−mj−1/2

·
N∏

i=κ+1

(ρθ|ξ′|+ ρrκ/ri |λ|1/ri
ρrκ/ri

)σi
→ |λ|(σ1+···+σκ−mj−1/2)/rκ+σκ+1/rκ+1+···+σN/rN

for ρ→∞. In the same way it is easily seen that for ` > κ the left-hand
side of (6-23) tends to zero as ρ→∞. Inserting these limits into (6-22)
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and taking into account the limits for the sums in (6-22), we obtain

Mj(ρ)→


0 if j ≤ Rκ−1 or j > Rκ,

|λ|(σ1+···+σκ−mj−1/2)/rκ+σκ+1/rκ+1+···+σN/rN

·
∥∥∥∑κ

i=1Bji(0, Dn)u
∥∥∥
L(Rn−1)

else

for ρ→∞.
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