Н.В. Ёлкина, В.Д. Левченко

Алгоритм расчета тока для метода макрочастиц

Москва
2002
Н.В. Ёлкина, В.Д. Левченко

Алгоритм расчета тока для метода макрочастиц

Разработан эффективный алгоритм расчета заряда и то-ка в рамках метода макрочастиц-в-ячейках (PIC). Для рас-чета токов использован модифицированный локально-кон-сервативный ускоренный метод частиц. Предложен вариант гладкой функции влияния, имеющей малую область зави-симости. Понятие области зависимости является ключевым для метода локальной пространственно-временной деком-позиции (LSTD), используемого в распараллеливании ко-дов PIC. Обсуждается применение предложенного алгорит-ма расчета токов к построению двумерного метода LSTD.

N.V. Elkina, V.D. Levchenko

The algorithm of currents calculation for particle-in-cell method

The effective algorithm for calculation of charge and cur-rent in the framework of method particle-in-cell (PIC) was de-veloped. For calculation of currents the modified local conserv-ative accelerated algorithm of macroparticles was used. The variant of smoothed influence function, which have small re-gion of influence, was suggested. The region of influence is key idea in the method of local space-time decomposition (LSTD), which is used in parallelization of PIC codes. The application of algorithm of currents calculation is discussed for construction of 2D case of LSTD algorithm.
1 Введение

Традиционным методом кинетического моделирования плазмы является метод макрочастиц [1, 2]. Основная его идея заключается в замене реальной плазмы модельной плазмой макрочастиц гораздо меньшей плотности. Это делает возможным в рамках современного развития вычислительной техники исследование на кинетическом уровне явлений турбулентности, лазерного термоядерного синтеза, перезамыкания магнитных линий. Зачастую, для адекватного представления кинетики процессов в подобных задачах требуется $10^9 - 10^{12}$ макрочастиц.

Такие параметры диктуют необходимость разработки высокопроизводительных параллельных алгоритмов для решения уравнений движения макрочастиц, расчета самосогласованных электромагнитных полей, токов, плотности заряда в моделируемой системе.

Одной из центральных проблем моделирования методом макрочастиц является построение алгоритмов распределения заряда на сетке и интерполяции сеточной силы. Основные трудности здесь связаны с тем, что оба этих процесса сопровождаются числениыми погрешностями, и это приводит к неточности вычисления силы взаимодействия частиц по величине, кроме того, эти силы флуктуируют при смещениях частиц. Одним из способов уменьшить негативные сеточные эффекты является увеличение количества узлов, участвующих в распределении заряда. Однако, этот путь повышает численные затраты, и в свою очередь приводит к уменьшению участвующих в моделировании макрочастиц.

Другое существенное затруднение в построении алгоритма раздадчи заряда связано с проблемой разработки эффективного алгоритма распараллеливания задач кинетического моделирования. Однако, нужно учитывать, что эффективность распараллеливания зависит от размера области зависимости. Поэтому необходимо сделать область зависимости как можно меньше. Таким образом, повышение числа узлов, участвующих в распределении заряда очень плохо сказывается на возможности распараллеливания кода. Все это приводит к необходимости разработки метода распределения заряда, основанного на увеличении гладкости распределения заряда и как
можно меньшем количестве сеточных узлов, в которые распределется заряд каждой макрочастицы. Другими словами, необходимо таким образом подобрать форму функции распределения заряда в облаке макрочастицы, чтобы указанные численные погрешности были небольшими.

Основная цель этой работы состоит в том, чтобы построить алгоритм распределения заряда на сетке, лишенный перечисленных нежелательных свойств. При этом требуется сократить количество зависимых узлов, участвующих в распределении заряда от одной частицы. Это необходимо для развития алгоритма двумерной пространственно-временной декомпозиции, лежащей в основе эффективного распараллеливания кода. Одномерная локальная пространственно-временная декомпозиция развита в работе [3], и успешно применялась к релятивистским задачам взаимодействия коротких лазерных импульсов с плазмой. В частности в работе [4] рассмотрена задача образования канала в плазме при прохождении последовательности коротких лазерных импульсов [5, 6]. Применение одноименного алгоритма LSTD в данных задачах обусловлено наличием выделенного направления (вдоль которого в плазме распространяется лазерный импульс). В задачах, имеющих два выделенных направления (например, взаимодействие коротких лазерных импульсов с тонкими фольгами), необходимо применять метод LSTD по двум направлениям.

2 Математическая модель

Рассматривается случай высокотемпературной разреженной плазмы, для которой применимо приближение бесстолкновительной плазмы, описываемой системой уравнений Власова–Максвелла:

\[\frac{\partial f_{i,e}}{\partial t} + V \frac{\partial f_{i,e}}{\partial r} + e_{i,e} \left(E + \frac{1}{c} [V \times B] \right) \frac{\partial f_{i,e}}{\partial p} = 0 \] \hspace{1cm} (1)

\[\frac{1}{c} \frac{\partial B}{\partial t} = - \nabla \times E, \quad \frac{1}{c} \frac{\partial E}{\partial t} = \nabla \times B - \frac{4\pi}{c} j \] \hspace{1cm} (2)

\[\nabla \cdot E = 4\pi \rho, \quad \nabla \cdot B = 0. \] \hspace{1cm} (3)
Здесь f_i и f_e — функции распределения ионной и электронной компонент плазмы, зависящие от шести координат фазового пространства (r, p) и времени t, \(V = p/m\sqrt{1 + p^2/(mc^2)} \)— скорость частиц. Самосогласованные электромагнитные поля $E(r, t)$ и $B(r, t)$ зависят от ρ и \mathbf{j} — плотности заряда и тока, выражаемых через моменты функции распределения:

$$\rho(r, t) = \sum_\alpha e_\alpha \int f_\alpha dp, \quad \mathbf{j}(r, t) = \sum_\alpha \mathbf{V} f_\alpha dp \quad (4)$$

Данная система (в отличии от уравнений газо- и гидродинамики) замкнута и не требует введения дополнительных соотношений (например, уравнения состояния).

3 Метод макрочастиц

Как уже отмечалось, для решения уравнений (1-3) используем метод макрочастиц (particle-in-cell). Основная идея метода макрочастиц состоит в следующем: фазовое пространство (r, p) для электронной (ионной) компоненты плазмы в начальный момент времени $t = 0$ разбивается на N непересекающихся ячеек, а суммарные заряды и массы всех реальных частиц в каждой такой ячейке приписываются одной макрочастице. При этом непрерывная функция распределения электронов или ионов $f_{i,e}$ в уравнении Власова (1) заменяется дискретной:

$$f(r, p, t) = \sum_\alpha \Lambda(r, r_\alpha(t))\delta(p - p_\alpha(t)) \quad (5)$$

здесь α — номер макрочастицы, а $\Lambda(r, r_\alpha(t))$ — функция влияния, определяющая способ взвешивания макрочастиц на сетке.

Для нахождения фазовых траекторий макрочастиц необходимо решить уравнения Ньютона–Лоренца, учитывающие релятивистские
эффекты:

\[\frac{dr_\alpha}{dt} = V_\alpha \]
\[\frac{dp_\alpha}{dt} = e_\alpha E + V_\alpha \times B \]
где

\[V_\alpha = \frac{p_\alpha}{m_\alpha} \sqrt{1 + \frac{p^2_{\alpha}}{(m_\alpha c^2)}} \]

4 Численная схема

Запишем разностную схему для уравнений Максвелла и Ньютона–Лоренца. В первом случае используем метод описанный в работах [7, 3], в основе которого лежит конечно-разностный метод с перешагиванием, представленный в работе [8], центрированный по времени и по пространству:

\[\frac{E^{n+1} - E^n}{\Delta t} = \text{rot} B^{n+\frac{1}{2}} + J^{n+\frac{1}{2}} \]

\[\frac{B^{n+\frac{1}{2}} - B^{n-\frac{1}{2}}}{\Delta t} = -\text{rot} E^n \] \hspace{1cm} (6)

\[\nabla \cdot E^n = \rho^n \]

\[\nabla \cdot B^{n+\frac{1}{2}} = 0 \] \hspace{1cm} (7)

Компоненты полей на сетке распределены следующим образом (см. рис.1):

\[\rho = \rho_{i,j,k} \]

\[J = \left(J^x_{i+\frac{1}{2},j,k}, J^y_{i,j+\frac{1}{2},k}, J^z_{i,j,k+\frac{1}{2}} \right) \]

\[E = \left(E^x_{i+\frac{1}{2},j,k}, E^y_{i,j+\frac{1}{2},k}, E^z_{i,j,k+\frac{1}{2}} \right) \] \hspace{1cm} (8)

\[B = \left(B^x_{i,j+\frac{1}{2},k+\frac{1}{2}}, B^y_{i+\frac{1}{2},j,k+\frac{1}{2}}, B^z_{i+\frac{1}{2},j+\frac{1}{2},k} \right) \]
Для дискретизации уравнений Ньютона–Лоренца (6) используем схему с перешагиванием [9]:

\[
\frac{\mathbf{V}_\alpha^{n+1/2} - \mathbf{V}_\alpha^{n-1/2}}{\Delta t} = \frac{e_\alpha}{m_\alpha} (\mathbf{E}^n + \mathbf{V}^n \times \mathbf{B}^n)
\]

Здесь используются следующие безразмерные переменные: \(t \to \omega_0^{-1}t \), \(\mathbf{x} \to \lambda_0 \mathbf{x} \), \(\lambda_0 = c/\omega_0 \), \((\mathbf{E}, \mathbf{B}) \to (m_e c \omega_0 / e) (\mathbf{E}, \mathbf{B}) \).

5 Декомпозиция плотности заряда

Рассмотрим метод раздачи заряда макрочастиц на расчетной сетке, и соответственно, способ вычисления функции влияния \(\Lambda(x_\alpha, y_\alpha, z_\alpha) \).

Необходимо, чтобы для используемой в моделировании функции влияния выполнялись следующие условия [9]:

- На больших по сравнению с шагом сетки расстояниях, между частицами флуктуации должны становиться пренебрежимо малыми (т.е. погрешности должны быть локализованы в пространстве)

- При перемещении частицы по сетке заряд, распределяемый в сеточные узлы, и действующая на на нее сила, определяемая интерполяцией по сеточным значениям, должны изменяться гладко (т.е. флуктуации пространственно локализованных погрешностей должны быть малы)

Руководствуясь этими соображениями, мы предлагаем вид функции влияния и строим алгоритм расчета токов, возникающих при движении частиц.

Запишем уравнение непрерывности, выражающее закон сохранения заряда:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{j} = 0
\]

(10)
В конечно-разностном виде оно будет выглядеть следующим образом:

\[
\frac{\rho_{i,j,k}^{n+1} - \rho_{i,j,k}^{n}}{\Delta t} + \frac{J_{i+\frac{1}{2},j,k}^{x,n+\frac{1}{2}} - J_{i-\frac{1}{2},j,k}^{x,n+\frac{1}{2}}}{\Delta x} + \frac{J_{i,j+\frac{1}{2},k}^{y,n+\frac{1}{2}} - J_{i,j-\frac{1}{2},k}^{y,n+\frac{1}{2}}}{\Delta y} + \frac{J_{i,j,k+\frac{1}{2}}^{z,n+\frac{1}{2}} - J_{i,j,k-\frac{1}{2}}^{z,n+\frac{1}{2}}}{\Delta z} = 0
\]

(11)

В методе макрочастиц заряд есть сумма зарядов отдельных макро-частиц, имеющих функции влияния \(\Lambda(x_\alpha, y_\alpha, z_\alpha) \):

\[
\rho = \sum_\alpha \Lambda_{i,j,k}(x_\alpha, y_\alpha, z_\alpha)
\]

(12)

Из закона сохранения полного заряда следует:

\[
\sum_{i,j,k} \Lambda_{i,j,k}(x_\alpha, y_\alpha, z_\alpha) = 1, \forall \alpha
\]

(13)

Введем обозначение:

\[
\Delta \rho_{i,j,k} = \rho_{i,j,k}^{n+1} - \rho_{i,j,k}^{n}
\]

(14)

Тогда

\[
\Delta \rho_{i,j,k} = \sum_\alpha \left(\Lambda(x_\alpha^{n+1}, y_\alpha^{n+1}, z_\alpha^{n+1}) - \Lambda(x_\alpha^n, y_\alpha^n, z_\alpha^n) \right)
\]

(15)

Введем понятие перемещения частицы из точки \(r_1 = (x_1, y_1, z_1) \) в точку \(r_2 = (x_2, y_2, z_2) \):

\[
W_{r_1 \rightarrow r_2}^{\alpha} = (\Lambda(x_2, y_2, z_2) - \Lambda(x_1, y_1, z_1))
\]

(16)

Эту величину можно разбить на три перемещения вдоль осей координат:

\[
W_{r_1 \rightarrow r_2}^{\alpha} = (W_{x_1 \rightarrow x_2}^{\alpha} + e_y W_{y_1 \rightarrow y_2}^{\alpha} + W_{z_1 \rightarrow z_2}^{\alpha}),
\]

(17)

таким образом, чтобы \(W_{r_1 \rightarrow r_2}^{\alpha} = W_x^{\alpha} + W_y^{\alpha} + W_z^{\alpha} \) [10]. Тогда из уравнений (14-15) и (16) следует, что:

\[
\Delta \rho_{i,j,k} = \sum_\alpha \left(W_x^{\alpha} + W_y^{\alpha} + W_z^{\alpha} \right)
\]

(18)
Тогда уравнение (11) можно переписать в виде следующей системы:

\[
J^x_{i+rac{1}{2}j,k} - J^x_{i-rac{1}{2}j,k} = -\eta_x \sum_{\alpha} W^x_{x,i,j,k} \\
J^y_{i,j+rac{1}{2}k} - J^y_{i,j-rac{1}{2}k} = -\eta_y \sum_{\alpha} W^y_{y,i,j,k} \\
J^z_{i,j,k+\frac{1}{2}} - J^z_{i,j,k-\frac{1}{2}} = -\eta_z \sum_{\alpha} W^z_{z,i,j,k}
\]

Здесь введены обозначения:

\[
\eta_x = \frac{\Delta x}{\Delta t} \quad \eta_y = \frac{\Delta y}{\Delta t} \quad \eta_z = \frac{\Delta z}{\Delta t}
\]

6 Функция влияния

Выбранная нами 1D функция влияния частицы \(\alpha \) на ячейку \(i \) в общем виде выглядит следующим образом:

\[
\Lambda(X_i, X_\alpha) = \frac{1}{2} [1 + \cos \{\pi(X_i - X_\alpha)/\Delta x\}]
\]

\(|X_i - X_\alpha| < \Delta x \) Здесь \(X_\alpha \) и \(X_i \) — абсолютные координаты частицы \(\alpha \) и центра ячейки \(i \) соответственно, а \(\Delta x \) — шаг сетки по \(x \).

В нашем случае, после обезразмеривания, получаем для ячейки \(i \), которая содержит частицу \(\alpha \):

\[
\Lambda_i(x_\alpha) = \frac{1}{2} [1 + \cos \pi x_\alpha]
\]

Здесь \(x_\alpha \) — смещение частицы \(\alpha \) относительно центра ячейки \(i \). Описывает эта функция долю заряда частицы, принадлежащую данной ячейке. Кроме этого, оставшаяся часть заряда (а именно 1 — \(\Lambda(x_\alpha) \)) попадает в соседнюю ячейку. В трехмерном случае функция влияния определена как произведение одномерных функций по соответствующим координатам:

\[
\Lambda(x_\alpha, y_\alpha, z_\alpha) = \Lambda(x_\alpha)\Lambda(y_\alpha)\Lambda(z_\alpha)
\]
7 Анализ движения частицы

Рассмотрим более подробно движение одной частицы α за один временной шаг из точки (x_1, y_1, z_1) в точку (x_2, y_2, z_2). Используя закон сохранения заряда (13) и понятие перемещения, определенное выше, получаем:

$$W_x^\alpha + W_y^\alpha + W_z^\alpha = \Lambda(x_2, y_2, z_2) - \Lambda(x_1, y_1, z_1)$$ \hspace{1cm} (24)

Рассмотрим движение частицы вдоль оси x (см. рис. 2). Оно может быть представлено в виде суперпозиции четырех элементарных движений вдоль главной оси OX:

$$W_{x_1 \to x_2} = W_{x_1 \to x_2}^{y_1, z_1} + W_{x_1 \to x_2}^{y_1, z_2} + W_{x_1 \to x_2}^{y_2, z_1} + W_{x_1 \to x_2}^{y_2, z_2}$$ \hspace{1cm} (25)

В свою очередь слагаемые из правой части этого выражения выглядят так:

$$W_{x_1 \to x_2}^{y_1, z_1} = \Lambda(x_2, y_1, z_1) - \Lambda(x_1, y_1, z_1)$$ \hspace{1cm} (26)
$$W_{x_1 \to x_2}^{y_1, z_2} = \Lambda(x_2, y_1, z_2) - \Lambda(x_1, y_1, z_2)$$
$$W_{x_1 \to x_2}^{y_2, z_1} = \Lambda(x_2, y_2, z_1) - \Lambda(x_1, y_2, z_1)$$
$$W_{x_1 \to x_2}^{y_2, z_2} = \Lambda(x_2, y_2, z_2) - \Lambda(x_1, y_2, z_2)$$

Используя формулу (23), получаем:

$$W_{x_1 \to x_2} = \delta \times$$
$$\times \left(\Lambda(y_1)\Lambda(z_1) + \Lambda(y_2)\Lambda(z_2) + \frac{1}{2}\Lambda(y_1)\Lambda(z_2) + \frac{1}{2}\Lambda(y_2)\Lambda(z_1) \right)$$

Здесь введено обозначение:

$$\delta_{x_1 \to x_2} = \frac{1}{3} (\Lambda(x_2) - \Lambda(x_1))$$ \hspace{1cm} (27)

8 Вклады в сеточные компоненты тока от одной частицы

Рассмотрим вклады в компоненты тока, которые делает частица в процессе своего движения из точки (x_1, y_1, z_1) в точку (x_2, y_2, z_2).
Так как размер облака заряда частицы в нашем случае равен размеру ячейки, а шаг по времени связан с шагом по пространству условием Куранта для схемы расчета полей:

$$\frac{\Delta t}{\Delta x} \leq \frac{c}{2}$$

(28)

tо частица может внести вклад в изменение заряда в 27-ми ячейках, включая ту, в которой она движется. Вклады в компоненты токов от одной частицы равны:

$$j_x = \eta_x W_{x1 \rightarrow x2}$$
$$j_y = \eta_y W_{y1 \rightarrow y2}$$
$$j_z = \eta_z W_{z1 \rightarrow z2}$$

(29)

Здесь \(\eta \subset \{\eta_x, \eta_y, \eta_z\} \) (см. формулу (20)).

Чтобы упростить описание движения частицы, разделим ячейку на восемь одинаковых сегментов (см.рис. 3). Частица может двигаться в одном из этих сегментов и переходить в другой сегмент, а также пересекать границы ячейки. Каждый сегмент однозначно определяется узлом, к которому прилегает. Поэтому сегменты будем обозначать координатами соответствующего узла:

$$\begin{align*}
(h, h, h) & (h, -h, h) & (h, h, -h) & (h, -h, -h) \\
(-h, h, h) & (-h, -h, h) & (-h, -h, -h) & (-h, -h, -h)
\end{align*}$$

(30)

Сегмент, в котором движется частица определяется набором чисел \((s_x, s_y, s_z) \), таких, что:

$$s_x, s_y, s_z = \pm 1$$

Эти числа вычисляются следующим образом:

$$s_x = \text{sign}(x) \quad s_y = \text{sign}(y) \quad s_z = \text{sign}(z)$$

(31)

Итак, находясь в сегменте \(\{s_x, s_y, s_z\} \), частица дает вклады в компоненты токов на следующих гранях:
Чтобы учесть случай, когда частица переходит из одного сегмента в другой, запишем формулу (29) в виде суммы движений в соответствующих сегментах:

\[
\begin{align*}
 j_x &= \eta_x \left\{ W_{x1\to0} + W_{0\to x2} \right\} \\
 j_y &= \eta_y \left\{ W_{y1\to0} + W_{0\to y2} \right\} \\
 j_z &= \eta_z \left\{ W_{z1\to0} + W_{0\to y2} \right\}
\end{align*}
\]

(32)

Напомним, что, если частица остается в первоначальной сегменте, то расчет компонент токов производится по формулам (29). При этом при переходе частицы из данной ячейки в соседнюю выше-приведенные формулы не меняются, а координаты частицы отчитываются от центра начальной ячейки (т.е. той, в которой частица находилась в момент времени \(t = t^n \)).

Приведем более подробно схему расчета вкладов в ток для \(x \)-компоненты тока \(\mathbf{j} \). Расчет остальных компонент производится аналогично. Процесс движения частицы в поперечном направлении представлен на рис.4. Вклады в ток \(j_x(h,0,0) \) при различных положениях частицы показан на рис.5, здесь частица условно обозначена прямоугольником. В этом случае вклад в ток пропорционален площади пересечения частицы и ячейки. Выпишем явные выражения для вычисления токов. Здесь для сокращения записи введены обозначения:

\[
x = \begin{cases}
 x_1 & \text{если } W_{x1\to0}, \\
 x_2 & \text{если } W_{0\to x2}.
\end{cases}
\]

и:

\[
\delta = \frac{1}{3} \eta_x \times \begin{cases}
 \Lambda(0) - \Lambda(x_1) & \text{если } W_{x1\to0}; \\
 \Lambda(x_2) - \Lambda(0) & \text{если } W_{0\to x2}.
\end{cases}
\]
Теперь можно написать, что вклад в ток от одной частицы есть произведение:

\[
 j_x(s_x h, s_y, s_z) = \delta(x)\sigma(y, z)
\]

gде \(\delta(x)\) — есть вклад от продольного движения частицы (в данном случае это вдоль оси \(OX\)), а \(\sigma(y, z)\) — отвечает за поперечное движение частицы. При этом \(\sigma(y, z)\) представляет собой комбинацию функций влияния, зависящих от \(y\) и \(z\). Выражения для \(\sigma(y, z)\) на грань зависимых ячеек приведены в таблице:

<table>
<thead>
<tr>
<th>(s_x \subset (s_{x1}, s_{x2}))</th>
<th>(s_x h, 0, 0)</th>
<th>(s_x h, s_y, 0)</th>
<th>(s_x h, 0, s_z)</th>
<th>(s_x h, s_y, s_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s, s_1, s_z)</td>
<td>(\Lambda^1\Lambda^z)</td>
<td>((1-\Lambda^1)\Lambda^z)</td>
<td>(\Lambda^1(1-\Lambda^z))</td>
<td>((1-\Lambda^1)(1-\Lambda^z))</td>
</tr>
<tr>
<td>(s, s_2, s_z)</td>
<td>(\Lambda^2\Lambda^z)</td>
<td>((1-\Lambda^2)\Lambda^z)</td>
<td>(\Lambda^2(1-\Lambda^z))</td>
<td>((1-\Lambda^2)(1-\Lambda^z))</td>
</tr>
<tr>
<td>(s, s_1, s_z)</td>
<td>(\Lambda^1\Lambda^z)</td>
<td>((1-\Lambda^1)\Lambda^z)</td>
<td>(\Lambda^1(1-\Lambda^z))</td>
<td>((1-\Lambda^1)(1-\Lambda^z))</td>
</tr>
<tr>
<td>(s, s_2, s_z)</td>
<td>(\Lambda^2\Lambda^z)</td>
<td>((1-\Lambda^2)\Lambda^z)</td>
<td>(\Lambda^2(1-\Lambda^z))</td>
<td>((1-\Lambda^2)(1-\Lambda^z))</td>
</tr>
</tbody>
</table>

9 Вычисление уамч-компонент токов

В рассмотренном алгоритме на каждую частицу приходится 27 × 3 операций. Кроме того, зачастую в расчетах необходимо выполнение условия \(N_p \gg 1\), для сокращения количества операций при вычислении токов выгодно перенести часть операций с частиц на сетку. Такой ускоренный алгоритм метод частиц (УАМЧ) был впервые использован в работе [11] для электростатических задач. В работе [3, 4] этот метод был применен к электромагнитным задачам. В настоящей работе метод УАМЧ должен быть модифицирован из-за использования двумерной локальной пространственно-временной декомпозиции (метод 2D LSTD). При этом формулы для расчета УАМЧ компонент полей в \(x\) — направлении будет отличаться от формул для расчета компонент \(y, z\).
9.1 для y-компонент

Рассмотрим сначала вычисление y и z. Для вычисления y-компонент используем следующие токи:

$$
\begin{align*}
 j_y(0, h, 0) & \quad j_y(1, h, 0) \\
 j_y(0, h, 1) & \quad j_y(1, h, 1)
\end{align*}
$$

уамч-компоненты определены в серединах ребер в точках (см. рис. (6)) $(0, h, h)$ и $(1, h, h)$. Для $(0, h, h)$ имеем:

$$
\begin{align*}
 U J_y^-(0, h, h) & = j_y(0, h, 0) \\
 U J_y^+(0, h, h) & = j_y(0, h, 1)
\end{align*}
$$

для точки $(1, h, h)$:

$$
\begin{align*}
 U J_y^- (1, h, h) & = j_y(1, h, 0) \\
 U J_y^+ (1, h, h) & = j_y(1, h, 1)
\end{align*}
$$

С учетом этих формул получаем для тока через грань $(0, h, 0)$ ячейки $(0, 0, 0)$:

$$
J_y(0, h, 0) = U J_y^+(0, h, -h) + U J_y^-(0, h, h)
$$

9.2 для z-компонент

Для z-компонент алгоритм вычисления аналогичен предыдущему пункту. Запишем это явно:

$$
\begin{align*}
 j_z(0, 0, h) & \quad j_z(0, 1, h) \\
 j_z(1, 1, h) & \quad j_z(1, 0, h)
\end{align*}
$$

уамч-компоненты для $(0, h, h)$:

$$
\begin{align*}
 U J_z^- (0, h, h) & = j_z(0, 0, h) \\
 U J_z^+ (0, h, h) & = j_z(0, 1, h)
\end{align*}
$$
для точки \((1, h, h)\):
\[
U J_z^-(1, h, h) = j_z(1, 0, h) \\
U J_z^+(1, h, h) = j_z(0, 1, h)
\]
(39)

Тогда для тока через грань \((0, 0, h)\) ячейки \((0, 0, 0)\) получаем:
\[
J_z(0, 0, h) = U J_z^+(0, -h, h) + U J_z^-(0, h, h)
\]
(40)

9.3 для \(x\)-компонент

Как уже отмечалось, для вычисления \(x\)-компонента уамч-токов используется несколько другой алгоритм. Основное его отличие от вышеприведенного состоит в том, что ток собирается по четырем точкам вместо двух (см. рис. 7). Для построения уамч-компонента используются следующие компоненты токов от частиц:
\[
\begin{align*}
&j_x(h, 0, 0) & j_x(h, 1, 1) \\
&j_x(h, 1, 0) & j_x(h, 0, 1)
\end{align*}
\]
(41)

Тогда уамч-компоненты вычисляются так:
\[
\begin{align*}
&U J_x^-(h, h, h) = j(h, 0, 0) \\
&U J_x^-(h, h, h) = j(h, 1, 0) \\
&U J_x^+(h, h, h) = j(h, 1, 1) \\
&U J_x^+(h, h, h) = j(h, 0, 1)
\end{align*}
\]
(42)

Теперь можно получить ток через грань \((h, 0, 0)\):
\[
\begin{align*}
J_x(h, 0, 0) = U J_x^-(h, h, h) + U J_x^-(h, -h, h) + \\
&U J_x^+(h, -h, -h) + U J_x^+(h, h, -h)
\end{align*}
\]
(43)

10 Общий алгоритм расчета токов

Суммируя сказанное выше, построим общий алгоритм расчета вклада в ток от одной частицы. Входными данными для этого алгоритма являются значения координат в моменты времени \(t_1 = t\) и
$t_2 = t + \Delta t$, где Δt-временной шаг. Наборы координат частицы в эти моменты времени соответственно (x_1, y_1, z_1) и (x_2, y_2, z_2). Считаем, что в момент времени t_1 частица находится в ячейке $(0, 0, 0)$. Координаты соседних ячеек будем отсчитывать относительно данной ячейки. Для сокращения записи построим алгоритм расчета токов только для x-компонент. Для остальных компонент построения абсолютно аналогичны.

1. Вычисляем из (x_1, y_1, z_1) с помощью законов движения (x_2, y_2, z_2)

2. Вычисляем указатели сегментов ячеек, в которые частица сделала вклад в заряд при своем движении:

$$s_{x_1} = \text{sign}(x_1)$$
$$s_{y_1} = \text{sign}(y_1)$$
$$s_{z_1} = \text{sign}(z_1)$$
$$s_{x_2} = \text{sign}(x_2)$$
$$s_{y_2} = \text{sign}(y_2)$$
$$s_{z_2} = \text{sign}(z_2)$$

3. Проверяем, перешла ли частица из данной ячейки в соседнюю по направлению рассматриваемой оси (например, оси OX):

 (a) Если $s_{x_1} = s_{x_2}$ — частица осталаась в данном сегменте
 (b) Если $s_{x_1} \neq s_{x_2}$ — частица перешла в соседний сегмент

4. Вычисляем x-компоненты функций влияния:

 (a) Если переход произошел, то вычисляются:

$$\Lambda(0), \quad \Lambda(x_1), \quad \Lambda(x_2)$$

 (b) Если частица осталась, то:

$$\Lambda(x_2) \quad \Lambda(x_1)$$

5. Вычисляем δ

 (a) Если переход произошел, то:

$$\delta_1 = \frac{1}{3}\eta_x (\Lambda(0) - \Lambda(x_1)) \quad \delta_2 = \frac{1}{3}(\Lambda(x_2) - \Lambda(0))$$
(b) Если частица осталась:

\[
\delta = \frac{1}{3} \eta x (\Lambda(x_2) - \Lambda(x_1))
\]

6. Вычисляем остальные функции влияния:

\[
\Lambda(y_1) \quad \Lambda(z_1) \quad \Lambda(y_2) \quad \Lambda(z_2)
\]

7. Считаем вклады в ток на гранях зависимых ячеек, см. таблицу в разделе (8)

8. Вычисляем x-компоненту УАМЧ тока, как описано в разделе “Вычисление УАМЧ-компонент токов”

9. Вычисляем компоненту тока J_x

11 Заключение

Представленный алгоритм декомпозиции заряда на сетке, а также разработанный на его основе способ расчета токов через грани ячейки позволяют использовать меньшее количество макрочастиц из-за повышенной гладкости заряда частицы.

Положенная в основу алгоритма функция влияния позволяет избежать флуктуаций на больших по сравнению с пространственным шагом сетки. Также следует отметить, что при перемещении частицы по сетке заряд, распределяемый в сеточные узлы и сила, действующая на данную частицу меняется гладко.

Кроме того, в связи с малым диаметром функции влияния, а тем самым меньшим количеством зависимых узлов, этот алгоритм является подходящим для разработки на его основе двумерного метода LSTD, необходимого для эффективного распараллеливания PIC-кодов.
Литература

12 Подписи к рисункам

1. Расположение заряда \(\rho \), потенциала \(\phi \), компонент полей \(\mathbf{E} = (E_x, E_y, E_z) \), \(\mathbf{B} = (B_x, B_y, B_z) \) в ячейке сетки Йи (Yee)

2. Разбиение трехмерного движения крупной частицы из точки \((x_1, y_1, z_1)\) в точку \((x_2, y_2, z_2)\) на совокупность элементарных движений.

3. Разделение ячейки на сегменты.

4. Движение частицы в плоскости \(yz\).

5. Вычисление вкладов в ток.

6. Вычисление УАМЧ-компонент токов в направлении осей \(y\) и \(z\).

7. Вычисление УАМЧ-компонент токов в направлении оси \(x\)
Рис. 1. Расположение заряда \(\rho \), потенциала \(\phi \), компонент электромагнитного поля \(\mathbf{E} = (E_x, E_y, E_z) \), \(\mathbf{B} = (B_x, B_y, B_z) \) и тока \(\mathbf{J} = (J_x, J_y, J_z) \) в ячейке сетки Йи

Рис. 2. Разбиение трехмерного движения крупной частицы на совокупность элементарных движений
Рис. 3. Разделение ячейки на сегменты

Рис. 4. Движение частицы в плоскости yz из точки \((y_1, z_1)\) в точку \((y_2, z_2)\)
Рис. 5. Вклады в заряд окружающих ячеек при движении частицы в плоскости \(yz\). Центры ячеек, в которые частицы даёт вклады, помечены крестиком.

Рис. 6. Расположение УАМЧ-компонент в \(y\) и \(z\) направлении.
Рис. 7. Расположение УАМЧ-компонент тока в x-направлении