.. (<>)

( The Solution of the Nonlinear Monotonized K.I.Babenko ('square') Difference Scheme
Preprint, Inst. Appl. Math., the Russian Academy of Science)

..
(T.G.Elenina)

. ..

, 2002

.. ('') . , , , . .

Abstract

The paper is dedicated to construction of the solution of the nonlinear monotonized K.I.Babenko difference scheme for 1D advection equation with sign-alternative velocity. The analysis has shown that the solution exists and is unique. The formula of the exact solution has been obtained.

1.    

 

, , ,

, (1)

, ,

, , ,

, ,

[1] . . () [2]. . .

1. , , :

. (2)

2. , , :

. (3)

3. , , , , , ( (, +)):

,

. (4)

4. , , , , , ( (+, )):

(5)

, , , , , , [1]

, , . , , .

. .

 

 

2.    

 

2.1. , ,

,

. - :

& , | . , .

2.2. , ,

,

,

:

.

 

3.     (, +)

 

, , , , ,

,

,

:

, , .

 

4.     (+, )

 

(+, ) ,

,

. (6)

, . .

1.      .

2.      .

3.      .

4.      .

5.      (+, ).

 

4.1.

(6), ,

(7)

:

(8)

. 1: ) ; b) ; c) , ; d) ; e) ; f) .

,

. (9)

() (). . . .



(9) ( (7))

(10)

(11)

 

4.2.

1. , . (5) :

, . (12)

2. , . :

1) , ;

2) , ;

3) , ;

4) , ;

5) , .

( ) 1, 2, 3, 4, 5, 1) 5).

1. ,

, (13)

.

(13) (5) (12).

2 5 , , , .

3.

. (14)

3 1) 4):

1) , , , ,

;

2) , , , ,

;

3) , , , ,

;

4) , , , ,

.

2 3 :

(15)

.

3 4 :

(16)

1) 4) 3:

, (17)

5.

. (18)

5 1) 4):

1) , , , ,

;

2) , , , ,

;

3) , , , ,

;

4) , , , ,

.

4 5 :

(19)

.

1) 4) 5

, (20)

2

, (21)

2 21/3, 22, 24, .

(22)

21/3.

1) , , , ,

;

2) , , , ,

.

,

, (23)

.

1) , , , ,

;

2) , , , ,

, (24.1)

, (24.2)

. (24.3)

22,

, , , ,

.

22. ,

, (25)

24,

, , , ,

.

24

, (26)

4. 4

, (27)

4 46/8, 47, 49, .

(28)

46/8. 46/8 :

1) , , ,

,

;

2) , , ,

,

.

46/8

, (29)

.

:

1) , , , ,

;

2) , , , ,

, (30.1)

, (30.2)

(30.3)

47

, (31)

49

, (32)

. 2 (14), (18), (22), (24.1), (24.2), (30.1), (30.2) , .

3. , .

 

4.3.

 

, . : 1) ; 2) ; 3) ; 4) ; 5) . . , 1, 3, 5 (5) ( ), 2 4 .

1. ():

.

2. :

,



,

(33)

, , .

(33)

, . (34)

, .

, (35.1)

. (35.2)

:

, . (36)

, . (35) (36).

3. (5) :

,

:

5: . (37)

4. :

,

, (33)

, , .

: (38)

,

, . (39)

(38)

, (40)

(39)

, (41.1)

. (41.2)

(38) :

,, . (42)

(40). (41) (42).

5. :

,

,

10: . (43)

. 2 4.

 

4.4.

 

2 4 , (5) 2, 3, 4, 5.

2. 2 3 ( ) (). (34), (35) ((35), (36)) ( )

( ).

, () ( ) ( ). , 2 :

(44)

4. 3 4 ( ) (). (39), (41) ((41), (42))

( ). , () 4 ( ) ( ).

4 5 ( ) (). 4 . 4 :

(45)

 

4.5.

 

1 5 . (5) , , , , 1 5 , , , .

1. (7), (8) , . , . (5) (12)

*

:

, (46.1)

& ( | ), (46.2)

& ( | ). (46.3)

(46) 1 , (. . 3).

2. (5) 2 1, 2, 3, 4, , , :

, , , (47.1)

, , , (47.2)

, , , (47.3)

, , . (47.4)

2 3 :

, , , , (48)

, , , , (49)

, , , , (50)

, , , . (51)

(48) (51) , :



(52)

.

3. (5) 3 5:

,

, ,

(53.1)

, , , (53.2)

, , ,

(53.3)

, , . (53.4)

3 4 :

, (54)

, , ,

, , ,

, (55)

, , ,

, , .

(54), (55) , :

(56)

.

4. (5) 4 6, 7, 8, 9, , , :

(57.1)

(57.2)

(57.3)

(57.4)

4 5 :

, , , (58)

, , , (59)

, , , (60)

, , . (61)

(58) (61) , :

(62)

.

5. (5) 5 10:

,

() , (, ).

6. 21, 22, 23, 24 1 4 (47). .

6.1. (5) 1,

,

, .

6.2. (5) 2,

6.3. (5) 3,

,

6.4. (5) 4,

7. 5 (53). . 5 ,

,

,

,

.

8. 6 9 (57). .

8.1. (5) 6,

,

8.2. (5) 7, .

,

8.3. (5) 8, .

,

8.4. (5) 9, .

,

,

.

8.5. (5) 10,

,

,

,

.

. 4 1 10 , .

, (22), (24.1), (24.2), (14), (28), (30.1), (30.2), (18) 1, 2, 4, 5, 6, 7, 9, 10 .

, , (5). .


, . , .

.. .

 

1.     . . , . . . . . () . . . . , 4, 2002, 26 .

2.     . . , . . . .// , 1961, . 1, 6, . 1051 - 1060.


 


. 1. .

 

 



. 2. ( )

2 5 .

 



. 3. 1 .

2, 3, 4, 5.