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Abstract

We consider grid adaptation based on an interpolation error estimate for the solu-

tion to a system of ordinary differential equations (ODE). Dealing with the interpo-

lation error estimates, the problem of adaptation to a vector solution is of particular

interest, since it is unclear how to choose a scalar key function for the adaptation.

In our work, the effective technique is developed to analyze a standard h-refinement
algorithm. This technique is implemented to study the grid refinement procedure for

the vector solution of ODE. We discuss how the results of the adaptation depend on

the choice of the key function. We show that the key function should be consistent

with the refinement criterion used in the problem. We also discuss how to render

the standard refinement procedure more effective in case that a quasiuniform grid is

generated as a result of the adaptation due to a wrong choice of the key function.



3

Introduction. 1

Advantages of adaptive grids are well known in numerical solution of

complex problems in science and engineering. Basically, the algorithm of

the solution adaptive grid generation includes two main steps. First, an

error estimator adequate to the given problem is determined. Then, a grid

adaptation strategy is elaborated to minimize the chosen error estimator over

the grid.

For many computational problems, interpolation error estimators based

of the knowledge of the Taylor series expansion for the approximate solution

are used successfully for adaptive grid generation (see [7] and the references

cited therein). The advantage of these estimators is that they can be com-

puted directly from the approximate solution. Since the interpolation error

estimates do not depend on the specific numerical method used in solution

of the problem they are attractive for a wide range of applications [1, 4, 6].

After the error estimates are calculated for a given approximate solution,

local grid refinement is a widespread approach to adapt the grid to the so-

lution [2, 11, 8, 3]. Cutting a grid element to decrease its size results in the

smaller error on the new grid. This adaptation strategy implies grid subdi-

vision to be ideally made only in the regions where the approximate solution

is not accurate enough. For a scalar solution, a refinement criterion applied

to the interpolation error estimate indicates correctly the regions where the

insertion of new nodes is required. The situation is worse, however, when

a vector solution is considered. The implementation of the adaptation cri-

terion generally requires that the vector interpolation error estimate arising

from the Taylor series expansion of the vector solution should be reduced

to a scalar estimate. One way to achieve this goal is to consider a scalar

function for the adaptation. Below we refer to the scalar function used to

adapt the grid to the vector solution as a key function. Usually the choice

of the key function serves the needs of the particular problem under consid-

eration. In practical calculations, one often extracts a solution component

which is dominant in the underlying physical process and assign it as a key

function [1, 4, 13]. Another idea is to calculate the norm of the vector er-

ror estimate that may be reduced to calculation of the norm of the vector

derivative [14, 10].

The main question arising in consideration of the key function is to what

extent the chosen scalar function is good to provide for each scalar component

of the solution the convergence rate compatible with that would be obtained

1 This work was supported by The Boeing Company under contract
No 104W and Russian Foundation for Basic Research, grant No 03-01-00063.
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on the adaptive grids if the scalar solution component were considered inde-

pendently. Despite the importance of this issue, a very little discussion on

the subject can be found in literature [5]. Meanwhile, the results of our work

demonstrate that even that the chosen function is reliable in the sense that it

captures the desired features of the vector solution, the refinement criterion

applied to such a function may lead to the grid refinement in a wrong region.

The problem of the key function requires a further careful study and should

be solved taking into account the adaptation strategy used to generate the

grid.

We present an efficient technique developed to analyze the refinement

procedure based on interpolation error estimators. This technique is imple-

mented to study the grid refinement procedure for the vector solution to a

system of ordinary differential equations (ODE). Particularly, we show that

the choice of the key function which is not consistent with the adaptation

criterion may dramatically slow down the convergence. We also discuss how

to modify the standard refinement procedure to make it more effective in the

case when a quasiuniform grid is generated as a result of the adaptation due

to the wrong choice of the key function.

1. The problem statement.

We consider a boundary problem for a system of ODE written in the

general form:

IDx(t) = g(t), (1)

where ID denotes a differential operator which form includes boundary con-

ditions. The K-vector solution x(t)=(x1(t), x2(t), ..., xK(t)) to the problem
(1) is defined on the closed interval Ω = [0, 1]. The function x(t) is assumed
to belong to the appropriate class of smooth functions.

The boundary problem (1) is solved numerically on a sequence of solution

adaptive grids. Let N be the number of grid elements. After introducing

the element partition of the region Ω =
NV
i=1

ei, ei = [t
i
0, t

i
1], 1 ≤ i ≤ N , and

a mesh stepsize hi = t
i
1 − ti0, the grid refinement procedure is used for grid

adaptation to the solution.

The adaptation approach considered in our work is based on interpolation

error estimates. For a scalar function x(t), interpolation error estimates are
derived from a Taylor series expansion. If the piecewise linear representation

is used for the approximate solution xh, the interpolation error is dominated
by the quadratic term in the Taylor series. The value

Ei = ẍih
2
i (2)
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calculated at the midpoint ti of the grid element ei can be considered as a
local error estimator on the element.

For the vector solution x(t), one should modify the interpolation error
estimate to deal with a scalar function instead of a vector derivative, since

the adaptation strategy usually requires a scalar quantity to be minimized

over the grid. Now the error estimate on the element reads

Ei = fih
2
i , (3)

where the scalar function f(t) is chosen to satisfy the requirements of the
particular problem under consideration. A reasonable choice of the scalar

key function for the adaptation is to use the norm of the derivative ẍ(t).
The consideration of the Euclidian norm yields the function

f(t) =

yxxw K[
k=1

ẍk(t)2. (4)

The key function (4) allows to interpret the value Ei in (3) as the Euclidian

norm Ei = ||Ei|| =
yxxw K[

k=1

E2ik of the vector error Ei = (Ei1, Ei2, ..., EiK) on

element ei, the vector components Eik = ẍk(ti)h
2
i , k = 1, ...,K being consid-

ered as local error estimators for each component of the vector solution x(t).
Thus, the approach (4) imitates, in a certain sense, the adaptation procedure

for each solution component.

After local error estimates (3) are calculated in each grid element, the

refinement strategy is defined by the value Emax:

Emax = max
1≤i≤N

{Ei}. (5)

The elements ej which error estimates satisfy the condition

Ej > τ ∗ Emax, (6)

where τ is a specified tolerance, 0 < τ < 1, are refined by cutting them

into halves. The approximate solution is then calculated over the new grid

and the procedure (3), (6) is repeated to meet the convergence with the

prescribed accuracy.

For a scalar solution, the criterion (6) applied to the error estimator (2)

correctly indicates the regions where the refinement is required. It is not

true, however, for a vector interpolation error estimate reduced to a scalar
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key function. Below we analyze the refinement procedure (3), (6) and show

that the refinement criterion (6) may not properly work even if the choice

(4) is reasonable.

2. The analysis of the field "u(t,N).
In this section we introduce a parametric family Eu of continuous error

functions on uniform grids. We will denote these functions as "u(t,N). Grid
adaptation based on the algorithm (3), (6) results in a nonuniform grid.

However, starting with a uniform initial grid ( that is a common choice

for many computational problems), the refinement procedure (3), (6) is fully

determined by the error on the uniform grids. The concept of the continuous

error functions appeared to be useful in the analysis of the behaviour of the

error (3) over the nonuniform grid.

Let N be the number of grid elements and hu = hu(N) = 1/N be a

mesh stepsize on a uniform grid Gu(N). For the given key function f(t), the
continuous function "u(t,N) ⊂ Eu is defined as

"u(t,N) = α(N)f(t), (7)

where α(N) = h2u.
The parametric family of the functions "u(t,N) generated by the function

f(t) is shown in fig.1 for a monotone function f(t). The field Eu is discrete
due to the integer parameter N in (7). The region, where the curves "u(t,N)
are located, has the function f(t) as its upper boundary. It follows from
the definition (7) that for any two curves "u(t,N1) and "u(t,N2) the relation
holds

"u(t,N2) = γ"u(t,N1), (8)

where γ = (N1/N2)
2
. Since γ → 0 when the number of grid elements

N2 → ∞, the curve "∞u (t), which coincides with the t-axis and represents
an equidistributed error on a uniform grid, is the lower boundary for the

field "u(t,N).
Suppose that the function f(t) is calculated from the exact solution. Ev-

idently, in this case the discrete error (3) over the uniform grid Gu(N) is

Ei ≡ "iu, 1 ≤ i ≤ N, (9)

where "iu is the value of the function "u(t,N) calculated at the midpoint ti of
the grid element. In the (t, "u(t))-plane, the error Ei, 1 ≤ i ≤ N considered

over the uniform grid is represented by a set of points distributed over the

curve "u(t,N).
Now the refinement procedure can be interpreted in terms of transition

between different curves "u(t,N) in the (t, "u(t))-plane (see fig.1). Let N0 be
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the number of grid elements on the uniform initial gridG(N0) which produces
the error "u(t,N0). According to the algorithm (5), (6), the error should be

reduced at the part ["0u, "
1
u] of the error curve "u(t,N0). The interval [t0, t1]

is subject to the refinement, as the segment ["0u, "
1
u] of the error curve corre-

sponding to the interval [t0, t1] lays inside the band [τ ∗ Emax, Emax]. Since
each grid element belonging to the interval [t0, t1] is cut into halves, the refine-
ment of [t0, t1] can be considered as generation of the uniform grid Gu(2N0)
with the grid stepsize hu = 1/2N0 over the interval. Thus, the refinement
(5), (6) results in a jump from the curve "u(t,N0) in the (t, "u(t))-plane to
the curve "u(t, 2N0) which corresponds to the error on the uniform grid with
the doubled number of grid elements 2 . The next steps of the refinement

procedure involve the curves "u(t, 4N0), "u(t, 8N0), etc., a nonuniform grid

being generated as a result.

The refinement process (5), (6) is fully controlled by the function "u(t,N0).
Suppose that the curve E : d1d2− c1c2− b1b2−a1a which represents the error
on the nonuniform grid G(N) is obtained after several refinement steps (see
fig.2a where the error curve E is shown in bold). At the current step of the
refinement the error is reduced at the parts c1c, b1b, and a1a of the curve E .
A jump from a higher level of the error to a lower one is shown schematically

by arrows. The curve E1: d1c3-cb3-ba3-a shown in fig.2b represents a new
error distribution after the refinement step. Let m ≡ mk be the number

of refinements made on the interval corresponding to the segment sk of the
error curve E1. Since the relation (8) holds, the error "ku(t,Nk) at the segment
sk reads

"ku(t,Nk) = γk"u(t,N0) =

�
N0
Nk

�2
"u(t,N0) =

1

22m
1

N2
0

f(t), (10)

where Nk = 2
mN0 is the number of grid elements at the interval. Provided

the uniform initial grid, the error E1 is only defined by the function f(t) and
the number N0 of grid elements on the uniform initial grid. Below we discuss
the two factors controlling the value of the interpolation error on adaptive

grids in more detail.

3. The choice of the initial grid.

The issue of the initial grid arises from the discrete nature of the error

estimate (3). Since the function f(t) is discretized to calculate (3), the initial
error curve "u(t,N0) governing the refinement process should be considered
as a discrete set of points. Since the position of the maximum defined over

2 For the sake of clarity, the distance between the curves is not properly
scaled in the figure.
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this discrete set may not coincide with the maximum point on the continuous

error curve, the refinement criterion (6) applied to the discrete error curve

may indicate the regions where the refinement is not actually needed.

An evident example associated with the estimate (10) is that the uniform

initial grid G(N0) may be not fine enough as to resolve the particular features
of the function f(t) on the initial curve "u(t,N0). The worst situation is that a
singularity is located near the endpoint opposite to that where the maximum

of f(t) is located. If the function f(t) on the nodes of the coarse grid G(N0)
does not bring any information about the location of the singularity, the

procedure (3), (6) will generate many odd refinement steps. In a situation

like this, the generation of the fine initial grid which indicates the location of

the singularity may appear to be a more effective approach than the excessive

refinement of the coarse grid.

Meanwhile, a fine grid is not always the optimal choice to start the re-

finement (3), (6). The following numerical example illustrates the impact of

the initial grid on the adaptation to the vector solution. We consider the

boundary problem for the model system of ODE with Dirichlet boundary

conditions on the region Ω = [0, 1]⎧⎪⎪⎪⎨⎪⎪⎪⎩
d2x1(t)

dt2
+ μx1(t) + γx2(t) = 0,

dx2
dt
+ δx2(t) = 0, t ∈ (0, 1).

x1(0) = 0, x1(1) = 1, x2(0) = 1.

(11)

Since in our numerical calculations we are interested in the study of the

refinement procedure rather than the physical aspects of the problem, the

system parameters are chosen γ = 0.0, μ = −100.0, δ = 20.0. The choice
γ = 0.0 makes the system decoupled giving us the opportunity to compare

the results of the adaptation to the vector solution with that obtained for

each equation considered independently.

The analytical solution to the decoupled boundary problem (11) is

x1(t) = A (exp (α1t)− exp (α2t)), x2(t) = exp (−δt), (12)

where α1,2 = ±
√−μ, A =

1

2sh
√−μ. The solution x(t) is shown in fig.3a.

Since the regions where either solution component has the steep gradient

are located near the opposite endpoints of the interval, one may expect two

nonoverlapping regions to be marked for the refinement. Suppose that each

equation in the system (11) is solved independently on a sequence of adaptive

grids, and Nk, k = 1, 2, is the number of grid elements required to obtain
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the solution error for the scalar solution component xk(t) with the given
accuracy. Let now N be the number of grid elements required to obtain the

same value of the error on the grid adapted to the vector solution. In the

latter case, the solution error is calculated, for instance, as the appropriate

norm of the vector solution error. For the decoupled boundary problem (11),

the most favorable choice of the function f(t) would be that providing the
estimate

N ≈ N1 +N2. (13)

The estimate (13) corresponds to the simultaneous refinement of both solu-

tion components in the nonoverlapping regions.

Consider the key function f(t) defined as the norm (4) of the vector deriva-
tive. Taking into account the vector solution (12), the function f(t) is cal-
culated as

f(t) =

t
ẍ1(t)

2
+ ẍ2(t)

2
=

t
μ2x1(t)

2
+ δ4x2(t)

2
(14)

The function f(t) scaled to one is shown in fig.3. It follows from (12), (14)

that f(t) ≈ x1(t), and f(t) ≈ x2(t) near the right and the left interval
endpoints, respectively. Thus, the continuous function f(t) seems to provide
the refinement scenario (13) as it captures the regions of steep gradient for

both solution components. However, the results of the adaptation depend

strongly on which initial grid is generated.

Our first numerical test is to study the convergence on adaptive grids,

provided the initial coarse grid is considered. The discrete function f(ti)
over the uniform coarse grid is shown in fig.3b. It can be seen from the figure
that for each solution component the whole region of its steep gradient lies

inside a single grid element. The refinement criterion (6) applied to the

initial error curve captures any region where the refinement is required for

either solution component.

To obtain the numerical solution to the problem, we use a standard finite

element method with a piecewise linear presentation of the approximate so-

lution on adaptive grids. The error estimate is computed directly from the

exact solution in order to eliminate the influence of approximate derivatives.

If the function f(t) is calculated numerically, false maximum points may ap-
pear at the curve "u(t,N) that may increase the number of refinement steps
needed to converge. We do not discuss this issue here, since it concerns the

choice of the error estimate rather than the refinement procedure.

The convergence history on adaptive grids is presented in fig.4 where the

results of the adaptation to the vector solution are compared with the solu-

tion error obtained on adaptive grids generated for each solution component
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considered separately. The curve I represents the solution error obtained
when the key function (14) is employed for the adaptation. The curves

II 3 and II 33 present the solution error calculated for the scalar function
xk(t), k = 1, 2 on grids generated as result of the adaptation to the solu-
tion component xk(t), k = 1, 2.
The error for the vector solution on element ei is defined to be consistent

with the choice of the key function. Namely, we calculate the norm of the

vector error

erri =
t
err2i1 + err

2
i2. (15)

Note that the error components errik are different from those calculated

to plot the curves II 3 and II 33. The scalar error errik, k = 1, 2 in (15) is
calculated for the k-th solution component over the grid obtained as a result
of the adaptation to the vector solution.

The error measured in the L2-norm is shown in the semilogarithmic scale.
In all cases considered in the test the uniform initial grid contains N0 = 5
nodes. It can be seen from the figure that, being in a good agreement with

the estimate (13), the convergence plots confirm the refinement scenario

discussed above.

The situation is worse, however, when the initial fine grid is generated.

In this case, the region of the steep gradient of the function x2(t) is already
resolved on the initial grid (see fig.3c) that makes the refinement criterion
(6) less effective. Now the criterion (6) is not sensitive to the behaviour of

the solution component x1(t). First steps of the procedure (5), (6) do not
capture the region where the refinement is required to resolve the function

x1(t). New nodes are only inserted near the left endpoint of the interval. At
each refinement step, the position of the maximum is shifted along the curve

"u(t,N0) until the error Emax is reduced to the value Emax ≈ Emax1. The local
maximum Emax1 corresponds to the maximum on the error curve generated

for the solution component x1(t). Only after the error Emax1 is reached, both
regions where the refinement is required lie inside the band [τ ∗Emax, Emax]
that ensures the simultaneous refinement for both scalar functions x1(t) and
x2(t).
In our computational experiments we compare the adaptation to the vec-

tor solution, starting with the coarse and fine grids. The function (14) is

employed as a key function for the adaptation. The curves I and II in fig.5
present the relative convergence rate for the coarse (the number of nodes

Nc = 5) and the fine (Nf = 50) uniform initial grids, respectively. The L2-
norm of the solution error (15) scaled by one is shown versus the number NR
of refinement cycles. The convergence plots demonstrate the slower conver-
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gence rate when the fine initial grid is generated for the grid adaptation. It

follows from the previous consideration that the refinement of the fine initial

grid reduces only the component erri2 of the solution error (15) over the grid,
while the solution adaptation initiated from the coarse grid impacts on both

of the components of the error.

The choice of the initial grid may be considered as the problem of the

initial discretization of the function f(t). Thus, the above difficulties asso-
ciated with the choice of the initial grid indicate that the key function (14)

is not consistent with the refinement criterion used in the problem. In the

next section we discuss the impact of the function f(t) on the results of the
adaptation.

4. The choice of the function f(t).
It follows from the error estimate (3) that, while solving a system of equa-

tions, one may expect a uniform grid obtained as a result of the refinement.

Actually, the condition

Ei = const ≡ C1, ∀i = 1, 2, ..., N
is sufficient for the uniform refinement of the whole domain Ω, provided the

algorithm (3), (6) is applied. Let the mesh stepsize on the uniform grid be

hu = const = C2. The function f(t) chosen as

f(t) = C1/C
2
2 ≡ C (16)

provides the refinement of each grid element ei, i = 1, ..., N . Note that the
constants C1 and C2 depend on the number of grid elements, while the value
C is always the same. Let the function f(t) be calculated as the norm (4) of
the vector derivative. Any vector function x(t) = {x1(t), x2(t)}, which holds
the condition

ẍ2(t) =

t
C − (ẍ1(t))2, (17)

keeps the grid uniform during the adaptation process (3), (6), provided the

uniform initial grid is generated.

It is interesting to compare the refinement for the vector solution (17) with

the procedure (2), (6) made for each solution component independently. Let

the solution derivatives be ẍ1(t) =
1

1 + t
, ẍ2(t) =

√
2t+ t2

1 + t
, then C = 1,

and Ei = h2u, ∀i = 1, ..., N . Meanwhile, each component of the solution,
considered separately, requires the refinement in a local region only. Since

the derivative x
(3)
1 (t) =

−1
(1 + t)2

< 0, ∀t ∈ [0, 1], is a monotone function,
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the maximum of the function ẍ1(t) is max
t∈[0,1]

ẍ1(t)=ẍ1(t0 = 0) = 1. For the

second solution component, x
(3)
2 (t) =

1

(1 + t)3/2
> 0,∀t ∈ [0, 1]; therefore,

max
t∈[0,1]

ẍ2(t)=ẍ2(t0 = 1) =
√
3/2. Thus, according to the algorithm (2), (6), a

uniform initial grid should be refined near the left and the right endpoints

of the interval [0, 1], respectively.
There are some formal ways to avoid the situation that the number of

the nodes is unnecessary doubled over the grid at each refinement step. For

instance, if the norm (4) yields a sloping function, it is possible to consider

another norm of the vector derivative in order to define the function f(t).
Another idea is to modify the interpolation error estimate by including higher

derivatives into consideration, provided the higher order polynomial presen-

tation of the approximate solution is used. However, we have no guarantee

that such modifications change the function f(t) as to provide the better
refinement. For instance, the solution to the equation

x
(k+1)
1 (t) =

u
C −

�
x
(k+1)
2 (t)

�2
gives us an example of the vector function x(t)={x1(t), x2(t)} which keeps
the grid uniform when the higher order interpolation error is used as an error

estimator.

The above results show us that a correction of the refinement algorithm

is needed for the function f(t) close to a constant. The standard refinement
criterion (6) applied to such a function produces the quasiuniform refinement

of the grid. Let us examine the refinement process for the sloping function

f(t) ≈ const which generates the initial error "u(t,N0) in the (t, "u(t,N)-
plane (see curve A in fig.6). The error after the refinement is presented by
the curve E : bb3-a3A in the figure. It can be seen from the figure that the

closer is the function f(t) to a constant value, the wider is the region [t0, t1]
to be uniformly refined. In the limiting case that the line τ ∗ Emax is an
asymptote for the function f(t), the number of grid elements is doubled over
the whole domain Ω, even if the vector x(t)=(x1(t), x2(t)) is not the solution
to the equation (17).

The correction of the refinement procedure is based on the observation

that the algorithm (3), (6) provides the convergence of the interpolation error

(3) to the final curve "f(t) in the L
∞-norm. (In practice, the final curve "f(t)

obtained as the result of the refinement process does not coincide with the

curve "∞u (t) but corresponds to the grid Gf , where the convergence to the
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solution is provided with the required accuracy. One can find the illustrative

examples of the distribution of the interpolation error over the final grid in

the work [12].) At each refinement step the maximum value Emax of the

current error is reduced by multiplying it with the factor
1

4
. However, the

requirement of the error reduction in the L∞-norm can be achieved without

transition to the error curve corresponding to the grid with the doubled

number of the nodes.

Implying the convergence in the L∞-norm, the obvious way to insert the
fewer number of new nodes into the grid is to use the curve "u(t,N1) (the
curve C in fig.8) instead of the curve "u(t, 2N0) (the curve B in the figure).

Now the distribution of the error after the refinement step is presented by

the curve Ecorr: cc3-a3A. It can be seen from the figure that the requirement

Enewmax ≤ τEmax

holds for the maximum Enewmax on the new error curve. The error (3) is reduced

in the L∞-norm, while the number of elements on the new grid N1 < 2N0.
The transition to the curve Ecorr may be reached as follows. The relation

(8) written for the curves "u(t,N0) and "u(t,N1) yields at the maximum point

Emax = (N1/N0)
2τEmax. (18)

It follows from (18) that the inequality N1 < 2N0 holds only for the refine-
ment parameter 1/4 < τ < 1. For the value τ < 1/4, the curve "u(t,N1)
lies under the curve "u(t, 2N0) that corresponds to the larger number of the
nodes inserted into the grid.

Let the parameter τ > 1/4 be defined for the refinement procedure. The
number of nodes corresponding to the curve E1 is obtained from (18) as

N1 = [(N0/
√
τ)], (19)

where the brackets denote the operation of taking the integer part of the

fraction. The number n1 of new nodes to be inserted into the segment [ti, ti+1]
marked for the refinement is calculated as

n1 = [N1hi] (20)

where hi = ti+1− ti. The new n1 nodes are equidistributed over the segment
[ti, ti+1].
The integer N1 obtained with (19) defines the curve "u(t,N1)

"u(t,N1) = α(N1)f(t), (21)
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where α(N1) = 1/N2
1 . Generally, the algorithm (19), (20) does not pro-

vide the maximum τEmax at the curve (21), since [(N0/
√
τ)] 9= (N0/

√
τ).

Nevertheless, the curve "u(t,N1) is the closest one to the curve

"u(t) = τ
1

N2
0

f(t), (22)

provided the distance between the curve (22) and any curve "u(t,N1) ⊂ Eu
is considered in the L∞-norm.
Let us notice again that the choice of a norm is crucial for the suggested

correction. If the refinement procedure required the convergence of the in-

terpolation error in the integral norm, we would not be able to use the curve

"u(t,N1). It can be seen from the figure that the norm of the error (3) mea-

sured as the area under the curve Ecorr is greater than that calculated for the
curve E .
The consideration above leads us to the conclusion that, staying within

the framework of the refinement algorithm (3), (6), it is impossible to reduce

the number of the nodes inserted into the grid. The transition to the curve

"u(t,N1) requires the redistribution of grid nodes. This appears from the

fact that for the procedure (3), (6) the number of new nodes added to the

grid at each refinement step depends on the number of nodes on the initial

grid. It follows from the estimate (10) that every initial grid produces its

own parametric family {"u(t,N)}. Hence, the refinement (5), (6) does not
allow the transition between any two curves "u(t,N1) and "u(t,N2) generated
starting from different initial grids.

In the one-dimensional case the node redistribution is not very expensive,

while for multidimensional grids the development of the algorithms similar

to that discussed above may be even more costly than the quasiuniform

refinement of the domain. Nevertheless, although the algorithm considered

in our work is far enough from being implemented in practical calculations,

we believe that this issue requires a further research work to estimate the

efficiency of the adaptation algorithms which combine refinement with node

redistribution.

5. Conclusions.

We have presented a new technique which appeared to be convenient for

the analysis of grid adaptation based on interpolation error estimators. The

analysis made in the work has shown that for vector solutions the results of

the adaptation depend strongly on the choice of the scalar key function f(t)
and the initial grid. Comparing these two factors, the problem of the key

function is more important, as the choice of the initial grid may be considered
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in terms of the initial discretization of the function f(t).
Solving the problem of adaptive grid generation, the issues of the error

estimate and the adaptation strategy are generally viewed as being indepen-

dent of each other. For instance, the standard refinement procedure (5), (6)

has been implemented with some slight variations by a number of authors

(e.g., see [4, 11, 9]), although the essentially different error estimators have
been exploited in their work. Meanwhile, the refinement criterion applied

to a scalar function chosen for the adaptation may indicate wrong regions

where grid enrichment is needed. In the latter case the convergence rate

obtained on adaptive grids is close to that on uniform grids, even though the

desired features of the solution to a given problem are taken into account in

the choice of the key function involved in the estimate.

One way to avoid the quasiuniform grid as a result of the refinement is to

adjust the adaptation strategy to the error estimator used in the problem.

Instead of seeking a key function which serves the needs of the considered

refinement algorithm, one can try to render the refinement procedure more

efficient for a given scalar field. There are no particular requirements to the

key function in this approach, since the idea is to change the refinement pro-

cedure in order to make it more sensitive to the behaviour of an arbitrary

function f(t). The formulation of the problem implies that any reasonable

choice of the function f(t) (e.g. the norm of the vector solution) is appropri-
ate for the purposes of the adaptation. For vector functions, this approach

to the adaptation may appear to be effective in the case when the standard

refinement criterion does not work for the chosen key function.
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Figure 1: Representation of the interpolation

error estimate in the (t, "u(t))-plane.
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Figure 2: The refinement procedure in the (t, "u(t))-plane. The interpo-
lation error curve (a) before and (b) after the refinement.
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Figure 3: (a) The components x1(t) and x2(t) of the vector solution to
the problem (11). The refinement scenario for the problem (11) on (a, b) the
coarse and (c) fine initial mesh.
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Figure 4: The convergence history on adaptive meshes for the problem

(11). The curve I presents the L2-norm of the solution error calculated on

grids adapted to the vector solution. The curves II 3 and II 33 present the L2-
norm of the solution error calculated for the solution component xk(t), k =
1, 2 on grids generated as a result of the adaptation to the scalar function
x1(t) and x2(t), respectively. N is the number of grid elements.
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Figure 5: The convergence history on adaptive meshes for the problem

(11). The relative solution error is calculated on adaptive grids obtained

with the error estimate (3), (14), beginning with the coarse (curve I) and
the fine (curve II) meshes. NR is the number of refinements.
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Figure 6: The correction of the refinement algorithm for a sloping function

f(t). Representation of the correction algorithm as the transition between

the curves in the (t, "u(t))-plane.
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