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Abstract

For interpolation error estimates, the adaptation problem for a vector function is
different from that for a scalar solution.Since solution components have different error
estimates, the problem appears how to generate a grid which is optimal for each scalar
solution function. In our work, we address the issue of the efficient adaptation strategy
in case that the grid is adapted to a vector solution.
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Introduction. 1 In the present work we address the issues arising when

grid adaptation to the solution is considered for a system of equations. Deal-

ing with interpolation error estimates, which are common in many practical

applications, the adaptation problem for a vector function is different from

that for a scalar solution. Ideally, each solution component requires its own

grid to provide the optimal convergence rate. Thus, a vector interpolation

error estimate should be computed at each solution-adaptation iteration.

Since the computation of the vector error estimate renders the adaptation

procedure inefficient, the problem appears how to generate a grid which is

optimal for each scalar solution function, provided the computational cost of

the algorithm is relatively low.

One approach to resolve the issue of efficiency is to consider a scalar

function as a key function for the adaptation to the vector solution. In

practical calculations, the simplest strategy is to assign a solution component

as a key function. In aerodynamic applications, the physics of the problem

dictates the choice of the pressure or a scalar function of the velocity field for

the adaptation purposes (e.g., see [1]). Another example is given by a plastic

deformation scalar field, which is often used to generate solution adaptive

grids in the problems of elastoplasticity [4]. In spite of the convenience

of this approach, grids obtained as a result of the adaptation to a single

component of the solution do not always provide the optimal convergence

for the other components. Thus, another idea is to use the norm of the vector

error estimate as a key function. This approach imitates, in a certain sense,

the adaptation procedure for each solution component. However, the key

function based on the norm of the vector derivative may result in a uniform

refinement throughout a whole domain of interest, whereas each component

of the solution, being considered separately, requires only a refinement in a

local region [13]. That gives rise to the issue of the choice of the key function

for the adaptation.

Another possible statement of the adaptation problem for vector func-

tions concerns an adaptation strategy. Instead of seeking a key function

which serves the needs of the adaptation algorithm, one can try to modify

the adaptation procedure to improve the results for the adaptation to an

arbitrary scalar function. Since a proper adaptation strategy implies that

minimization of the error is ensured for a given scalar field, there are no

particular requirements to the key function in this approach, except for it

should be easily computable and reliable in the sense that it captures the

1This work was supported by The Boeing Company under contract
No 104Y and Russian Foundation for Basic Research, grant No 03-01-00063.
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desired features of the vector solution. Apparently, the norm of the vector

function satisfies both requirements. In our work, we address the issue of

the efficient adaptation strategy based on interpolation error estimates. The

earlier study has been carried out in [13], where the attempt has been made

to correct the refinement algorithm in case that the standard refinement

procedure generates a quasiunifom grid. In the present work, a general algo-

rithm is developed to minimize the interpolation error estimate for a system

of ordinary differential equations.

1. The statement of the adaptation problem for vector functions.

We consider a smooth vector function x(t) = {x1(t), x2(t),...,xK(t) } ( xk(t) ∈
C∞, ∀k = 1, ...,K) on closed interval Ω = [0, 1]. Function x(t) is defined as
a solution to the general boundary problem

IDx(t) = g(t); x(0) = x0, x(1) = x1, (1)

where IDdenotes a differential operator.

The system (1) is solved numerically on a sequence of solution adaptive

grids. Let us introduce the element partition of the region Ω =
NV
i=1

ei, ei =

[ti0, t
i
1], and the mesh stepsize Hi = t

i
1−ti0, 1 ≤ i ≤ N , where N is the number

of grid elements. We define the grid H as a set {Hi} , 1 ≤ i ≤ N . The grid
H is considered to be the optimal one, if a discrete function called ”the error

estimate” is minimized over the grid. The definition of the error estimate

will be discussed later.

The adaptation problem for the vector function x(t) may be stated as

follows. Suppose that we are able to generate the optimal grid Hk for each

solution component xk(t). After the errors are calculated over the grids

{H1,H2, ...,HK}, the optimal grid for the system can be considered as a node
distribution which holds the selected criterion of the vector error minimiza-

tion on any grid element ei. Such a formulation implies that the adaptation

procedure comprises the two basic steps:

• Problem I.

A. Grid generation for scalar functions:

- The choice of the error estimate which guides the adaptation

procedure for each solution component;

- The choice of the adaptation strategy for each solution compo-

nent;
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B. Transformation of a ”multigrid” system obtained at the step A to

a single grid;

In practice, a usual way to tackle the problem I is to eliminate step A

from the consideration, as its implementation makes the adaptation process

inefficient, and to deal with the following problem:

• Problem II.

A. The choice of a scalar key function for the adaptation;

B. The choice of the error estimate and the adaptation strategy for the

key function;

Solving the problem II allows us to avoid generation of a grid set {H1,H2,

...,HK}. However, it may happen that being implemented instead of solving
the full problem I, the adaptation strategy II results in a grid which is not

optimal for a particular problem. Below we demonstrate the difference be-

tween the results of the adaptation II and that obtained with the algorithm

I.

We begin with the discussion of the standard refinement procedure. For

our further purposes we consider interpolation error estimates based on the

second derivative of the solution. For scalar function x(t), error estimate Ei
on element ei is defined as

Ei = ẍ(ti)H
2
i , (2)

where ti is the midpoint of the element. After calculating local error indica-

tors Ei, 1 ≤ i ≤ N over the grid, those elements ej are refined, which error

estimates satisfy the condition

Ej > τ ∗ Emax, (3)

where Emax = max
1≤i≤N

{Ei}, and τ is a specified tolerance.

For the adaptation process based on the algorithm II, the common choice

of the key function F (t) is to define it as a solution to the equation

F̈ (t) =

yxxw K[
k=1

ẍk(t)2. (4)

Then the local error indicator Ei on element ei is calculated as

Ei = F̈ (ti)H
2
i = ||ẍ(ti)||L2H2

i . (5)
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At the first glance, the approach (4), (5) imitates the algorithm I, since

the choice of the key function (4) affords to interpret the value Ei as the

Euclidian norm of the error vector Ei = (Ei1, Ei2, ..., EiK) on element ei,

Ei = ||Ei|| =
yxxw K[

k=1

E2ik. The vector components Eik = ẍk(ti)H
2
k , k =

1, ...,K, calculated at the midpoint ti of element ei may be considered as

local error indicators for each component of vector solution x(t). However,

the approach (5) is not always correct. It is not difficult to see that for any

vector function x(t), which scalar components satisfy

ẍk(t) =

yxxwC − K[
l 9=k
ẍl(t)2, C = const, (6)

the initial grid is refined uniformly due to the function F (t) = const in the

error estimate (5). Meanwhile, if we consider each scalar function xk(t), k =

1, ...,K, the grid refinement may be only required in a local region. Do

we really ”double toil and trouble” at every refinement step, or one should

admit a uniform grid to be the optimal grid for vector function (6)? To

answer these questions, we below discuss the adaptation procedure based on

the solution of the full problem I.

2. The solution of full adaptation problem. In our further consid-

eration we assume that for scalar functions the interpolation error estimate

based on the second derivative provides the best adaptation to the solution.

In other words, the interpolation error (2) is assumed to be the same as the

solution error. Also, the refinement procedure (5), (3) is assumed to be the

best adaptation technique in solution of the problem I.

Let optimal node distributions {H1,H2, ...,HK} be generated as a result
of step A in problem I. The interpolation error is Ek = (E1k, E2k, ..., ENk)

for the scalar function xk(t) over grid Hk. After the error vector Ei =

(Ei1, Ei2, ..., EiK) is formed on element ei, the optimal grid for the system

(1) may be defined as the node distribution H which provides the error

Ei = ||Ei|| on each element ei, 1 ≤ i ≤ N 2 .

We consider the Euclidian norm of the error vector E on element ei,

||Ei||L2 =
uS

k

E2ik, k = 1, ...K. After the norm of the error vector is defined,

2It is possible to give another formal definition for function H, as another
criterion of error minimization can be selected, according to the general
formulation of problem I.
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the problem is stated as follows:

For each grid element ei, 1 ≤ i ≤ N , find error estimate Ei in the form
Ei = F̈iH2

i (7)

which ensures the error Ei = ||Ei||L2 on the element ei, provided the condition
N[
i=1

Hi = 1, 1 ≤ i ≤ N. (8)

holds. The choice of the error estimate in form (7) is dictated by the require-

ment that the error estimate on grid H should be consistent with that used

to generate grids {H1,H2, ...,HK}. The condition (8) is necessary for the
formulation of the problem, as it guarantees that the partition H covers the

whole domain Ω.

The solution to the problem (7), (8) is a pair of discrete functions (Fi, Hi)
defined at the midpoint of each grid element ei. For the sake of simplicity,

below we consider the two - component vector function x(t) = {x1(t), x2(t)}.
Let Hik, k = 1, 2 be a mesh step size on element ei considered on the grid

Hk, k = 1, 2. A demonstrative way to solve the problem (7) is to consider

it in the (ẍi1, ẍi2) plane (see Fig.1). The error vector Ei on the element ei is

represented in the (ẍi1, ẍi2) basis as (index i is omitted)

E = (E1, E2) = (α1ẍ1,α2ẍ2), (9)

where basis coefficients αk = H2
k , k = 1, 2. It can be seen from the fig-

ure, that the condition ||Ē|| = ||E|| holds for any vector Ē = (Ē1, Ē2) =

(ᾱ1ẍ1, ᾱ2ẍ2) which endpoint belongs to the circumference CE. Thus, the

problem may be formulated as follows:

Find the angle φ, such that the initial vector E should be rotated through φ

in order to obtain the new vector

Ē = (ᾱ1ẍ1, ᾱ2ẍ2), (10)

where

ᾱ1 = ᾱ2 ≡ H2. (11)

The rotation transformation for the vector E yields⎧⎨⎩
Ē1 = E1 cosφ−E2 sinφ

Ē2 = E1 sinφ+ E2 cosφ.

(12)
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After substitution (9), (10), and (11) into the system (12) the unknown

values φ and H can be easily found as

tan(φ) =
E1ẍ2 −E2ẍ1
E1ẍ1 +E2ẍ2

, H2 =
||E||s
ẍ21 + ẍ

2
2

. (13)

It follows immediately from (13) that the adaptation to the key function

F defined on element ei as

F̈i =
t
ẍ21i + ẍ

2
2i (14)

ensures the error Ei=||E|| on grid H.
The obtained error indicator

Ei =

t
ẍ21i + ẍ

2
2iH

2
i = F̈iH2

i (15)

seems to be identical with that in (5). However, there is a considerable

difference between the two estimates. Namely, Fi 9= ||ẍi||L2, since the mid-
points of element ei have different coordinates on grids H1 and H2 where the

derivatives ẍk(tik), k = 1, 2 are calculated. Is the choice of the function F
better than the adaptation to the key function F? In the next section, the

analysis of the node distribution (13) will be made to compare the results of

the adaptation for the two functions.

3. The analysis of distribution H. The new grid H generated as a

result of (13) can be considered on each grid element ei as a weighted sum

of functions H1 and H2

H4
i = ρ1H

4
1i + ρ2H

4
2i, (16)

where the weight coefficients ρk =
ẍ2ki

ẍ21i + ẍ
2
2i

, k = 1, 2. Since the condition

2S
k=1

ρk = 1 holds for the weight coefficients in (16) on each element ei, i =

1, ..., N , the value Hi is bounded by

min {H1i,H2i} ≤ Hi ≤ max {H1i, H2i}
on element ei. Suppose that max

�
H i1
1 , H

i1
2

�
= Hi1

1 ,∀i1 : 1 ≤ i1 ≤ N1, and
max

�
Hi2
1 , H

i2
2

�
= H i2

2 ,∀i2 : 1 ≤ i2 ≤ N2, whereN1+N2 = N . Accumulating
the contributions due to the elements which belong to the discrete sets N1
and N2, we obtain

N1[
i1=1

Hi1
2 +

N2[
i2=1

H i2
1 ≤

N[
i

Hi ≤
N1[
i1=1

Hi1
1 +

N2[
i2=1

H i2
2 .
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Taking into account that both discrete functions H1 and H2 hold the condi-

tion (8), the following estimate appears

1−
N2[
i2=1

(Hi2
2 −Hi2

1 ) ≤
N[
i

Hi ≤ 1 +
N2[
i2=1

(H i2
2 −Hi2

1 ). (17)

Since H i2
2 > H i2

1 on any element ei2 ⊂ N2, the sum
N2S
i2=1

(Hi2
2 −Hi2

1 ) > 0,

except for identical grids H1i ≡ H2i,∀i : 1 ≤ i ≤ N . Hence, in the worst
case we have

NS
i

Hi < 1, and the partition (13) does not cover the whole

interval [0, 1], so that the distribution H should be scaled by the factor

α = (
NS
i=1

Hi)
−1. The new node distribution H̃ is given by

H̃i = αHi, 1 ≤ i ≤ N. (18)

For α > 1 the similarity transformation (18) stretches the grid that results

in increasing the error.

Let us compare the error components for functions F and F for the solu-
tion (6). It follows from (16) that the error Ẽki for each solution component

reads

Ẽ2ki = ẍ
2
kiH̃

4
i = αẍ2ki(ρ1iH

4
1i + ρ2iH

4
2i) (19)

on the grid H̃ generated as a result of the adaptation to F . Substituting the
weight coefficients ρk into (19), we obtain

Ẽ2ki = αρ̃ki(E
2
1i +E

2
2i), k = 1, 2, (20)

where Eki, k = 1, 2, is the error on the optimal grid Hk, k = 1, 2, and ρ̃ki =
ẍ2ki

ẍ21i + ẍ
2
2i

. Note that ρ̃ki 9= ρki, since the value of the derivative ẍ
2
ki is now

defined on the grid H̃. The error norm is now given by

||Ẽi||2 = Ẽ2i = Ẽ21i + Ẽ22i = β(E21i +E
2
2i) = βi||Ei||2, 1 ≤ i ≤ N, (21)

where the discrete function βi is defined on element ei as follows

β = α(ρ̃1i + ρ̃2i).

For the function F = const, a uniform grid Hu is generated. The error

components on the grid Hu are (E
u
ki)
2
= ẍ2kiH

4
ui, k = 1, 2. Evidently,

||Eui ||2 = Eu1i2 +Eu2i2 > E1i2 +E2i2 = ||Ei||, (22)
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since for each solution component xk(t) the error E
u
ki on the uniform grid Hu

is assumed to be greater than the error Eki on the optimal grid Hk. Thus,

according to (21), the relation between the errors ||Eui || and ||Ẽi|| depends
on the value βi. For those problems where ||β||L∞ ≈ 1, the adaptation to
function F is inefficient, as the estimate ||Eu|| > ||Ẽ|| holds.
The following example considered earlier in [13] illustrates the solution

of the full adaptation problem. Let the second derivatives of the solution

x(t) be given by ẍ1(t) =
1

1 + t
, and ẍ2(t) =

√
2t+ t2

1 + t
. The derivatives

x
(3)
1 (t) =

−1
(1 + t)

2 < 0, and x
(3)
2 (t) =

1

(1 + t)
3/2
> 0 are monotone functions

over the domain [0, 1], and max
t∈[0,1]

ẍ(t) = ẍ(t0 = 0) = 1, max
t∈[0,1]

ÿ(t) = ÿ(t0 =

1) =
√
3/2 (see Fig.2a). Hence, grids H1 and H2, which are optimal for the

problem, will be refined about the left and the right endpoints of the interval

[0, 1], respectively.

Let us start with uniform initial grids H0
1 : H

0
1i = 1/N0 ≡ H0 and H0

2 :

H0
2i = 1/N0 ≡ H0, where N0 is the number of grid elements. After a few

first steps of the refinement procedure (2), (3) the number of grid elements

is increased to N , and the grids H1 and H2 are transformed as follows

H1 =

⎧⎨⎩
H0/2, i < N1,

H0, N1 < i < N,

H2 =

⎧⎨⎩
H0, i < N2,

H0/2, N2 < i < N.

(23)

The distribution H̃ generated with (13), (18) along with the uniform grid

Hu is shown in Fig.2b. It can be seen from the figure that the grid H̃ is in

better agreement with our intuitive idea of the adaptation that the grid Hu

appearing as a result of the adaptation to the function F . The distribution

H̃ keeps the grid refined in the regions where at least one component of the

solution needs a fine mesh. Let us note that, unlike the function F̈ (t) ≡ 1,
the function F̈ is not constant over the domain. For instance, F̈i is defined
as

F̈i =
v

1

1 + ti
+

s
4ti + 4t

2
i

1 + 2ti

on any element ei, 1 ≤ i ≤ N1, where ti is the midpoint of the element ei
on grid H1. However, the knowledge of the function β is required to make a

conclusion about the advantages of the distribution H̃ in solution of problem

(1).

4. The minimization of the interpolation error. The analysis of

the distribution H does not give us any practical algorithm suitable for the
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purposes of the adaptation. Evidently, the grid generation for each solution

component is not consistent with the basic idea of the adaptation which is

to increase the overall efficiency of computations. Nevertheless, the study

of the full adaptation problem I is useful, as it allows us to conclude that

solving the problem II instead of the problem I is reasonable, provided a

correct adaptation strategy is used.

On the surface, this conclusion is in contradiction with the results obtained

above, as the analysis of the full adaptation problem demonstrates that the

consideration of a scalar key function instead of a separate treatment of each

solution component may results in the inefficient adaptation. However, the

generation of a uniform grid for the solution (6) is not a consequence of the

wrong choice of the error estimate based on the key function (4). In our

opinion, it happens due to the solution of the basic adaptation problem:

The given number N of grid elements, minimize the error. (24)

is displaced with solving another, ”auxiliary” problem.

The consideration of the auxiliary adaptation problem is a common ap-

proach to generate adaptive meshes. Generally, the auxiliary task imitates

the problem (24). It may be formulated as error reduction to a given value at

each step of the adaptation procedure, or error equidistribution, etc. Solving

the auxiliary problem is attractive for the practical applications, as usually

such an algorithm meets the requirements to the design of industrial codes

[3]. In very many cases the auxiliary task does help us to achieve our main

goal (24). However, as we see from the above analysis, the auxiliary problem

does not always guarantee the expected efficiency. If solving the auxiliary

problem does not bring the proper results, it is reasonable to try to find the

solution of the basic problem (24) in order to make a conclusion about the

efficiency of the auxiliary approach.

Let us note that there are no difficulties with the choice of a scalar key

function for the problem (24), as we now seek a function which takes into

account the properties of the solution rather than a function which satisfies

the artificial needs of the auxiliary problem. Obviously, the norm of the vec-

tor solution ( with weight coefficients, if one is interested in some particular

features of the solution) is an appropriate option in this case.

The problem (24) does not include any explicit suggestions about the

form of the error estimate. Its formulation reads that a quantity loosely

called ”the error” is minimized on the optimal grid, the true error, i.e. the

difference between the exact and approximate solution, being bounded by

this quantity. The error estimates appearing in the adaptation problem (24)



12

may be derived from the interpolation theory [5, 14], or they may be devel-

oped as a result of a posteriori error analysis in weighted residual methods

[17]. The considered error estimators may have a very particular form, as

they may be required to capture both the geometry and solution behavior,

[2]. However, the adaptation strategy used to solve the problem (24) is often

viewed as being independent of the choice of the error estimate. For instance,

the standard refinement procedure (3) (with some slight variations) is imple-

mented by a number of authors (e.g. see [4, 9, 17]), in spite of the fact that

the essentially different error estimators are exploited in their work. In our

opinion, one should adjust the solution of the problem (24) to the form of the

error estimate. Below we demonstrate how the definition of the error may be

taken into account for the choice of the adaptation technique in the simplest

case that the interpolation error estimate based on the second derivative is

minimized.

Interpolation error estimates are derived from a Taylor series expansion

of function f(t) about point t0

f(t0 + dt) = f(t0) +
df

dt
dt+

1

2

d2f

dt2
dt2 + ...+

1

k!

d(k)f

dtk
dtk +Rk+1,

Rk+1 =
1

(k + 1)!

d(k+1)f(ξ)

dtk+1
dtk+1, ξ = t0 + θdt, 0 < θ < 1.

If the function f is represented as a polynomial of degree k, the remained

term Rk+1 is precisely the error. A computable error estimate is then based

on bounding the unknown derivative f (k+1)(ξ) by a computable quantity, e.g.

the value f (k+1)(t0).

Let us now write the Taylor series expansion as a sum of the differentials

f(t0 + dt) = f(t0) + df +
1

2
d2f + ...+

1

k!
dkf +Rk+1,

Rk+1 =
1

(k + 1)!
dk+1f(ξ), ξ = t0 + θdt, 0 < θ < 1.

(25)

It follows from (25), that the interpolation error estimate can be treated as

the (k + 1)-th differential of function f(t). Below we consider the case of a

piecewise linear approximation to the solution. The approximate solution is

represented as f(ti +Hi) ≈ f(ti) +E1i on element ei, where
E1i = ḟiHi ≈ (df)i, (26)

and the leading error term is estimated as

E2i = f̈iH
2
i ≈ (d2f)i. (27)
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Thus, the problem of error minimization in case of the error estimate (27) is

stated as

The given number N of grid elements, generate a grid where (d2f)i = 0 on

any grid element ei, 1 ≤ i ≤ N .
The solution of this problem can be obtained from the identity

dk+1f = d(dkf). (28)

Since d(C) = 0, for C = const, we suggest that equidistribution of the dis-

crete function (dkf)i over the grid results in the minimization of the function

(dk+1f)i, 1 ≤ i ≤ N . Hence, for k = 1 our goal is to generate a grid, where
(df)i = const on any grid element ei, 1 ≤ i ≤ N . In other words, we want
to obtain the equidistributed error (26) in order to minimize the error (27).

Let us note that, according to (28), any adaptation procedure (e.g. node

redistribution or grid subdivision) equidistributing the error of the k-th or-

der reduces the error of the (k + 1)-th order at each solution — adaptation

iteration. The error indicator in the AHA-2D grid generator [11] gives us an

illustrative example. The value Ee of the error indicator on edge e reads

Ee =

#
w1

����∂u∂e
����+ w2����∂2u∂e2

����1/2
$
= w1|(∇u, e)|+ w2|(eTHe)|1/2, (29)

where e = ri − rj, H, w1 and w2 are edge vector, Hessian and weight coeffi-
cients, respectively. Equidistribution of the gradient term based on edge and

macrocell subdivision results in the minimization of the second order error,

while equidistribution of the Hessian term reduces the high order error com-

ponents at each step of the refinement/derefinement procedure implemented

in the AHA-2D code. A similar edge based error indicator is exploited in

BIT-2D grid generator [16]. A particular feature of the BIT-2D technology

is that the grid edges are aligned to the contour levels of the solution to

efficiently minimize the error.

Another example has been reported in [12], where a linear finite volume

scheme has been used for solving 1D convection-diffusion equation on adap-

tive grids. The comparison between grid subdivision and error equidistribu-

tion has been made in [12] for the interpolation error estimate based on the

second derivative. Evidently, equidistribution of the error (27) minimizes

the value of E3i = x(3)(ti)H
3
i . Comparing the convergence results for both

adaptation algorithms, only a slight difference in the convergence rate has

been observed. Based on the analysis carried out in [13], one may suggest

that in the considered case grid subdivision performs equidistribution of the
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function E(t,N), which represents the error (27), rather than error reduc-
tion at each adaptation step. If so, exploiting the first differential (26) as

an error indicator in the grid subdivision procedure would yield the better

convergence rate, provided the error (27) is dominant in the approximate

solution.

5. Equidistribution of the interpolation error for a monotone

function. In this section we address the issue of error equidistribution in

case that the error (26) is considered. A straightforward way to achieve

E1i = const over the grid is to derive node distribution H from the definition

of E1i . Under the statement of the problem we obtain

Hi =
"

ḟi
, (30)

where the constant " is defined to satisfy the condition (8).

Although the algorithm (30) performs easily for the given number N of

grid elements, the adaptation procedure based on node relocation technique

(30) is inefficient. Actually, suppose that the number of grid nodes is in-

creased from N to N1 at the next step of the adaptation. To redistribute

the nodes over the new grid the values of the derivative ḟi are required at

new N1 − N points. In order to choose these points one has to solve the

equation on the uniform grid with N1 nodes. Involving the calculations over

the uniform grid into the adaptation procedure renders the algorithm (30)

useless.

The effective approach to solve the problem of error minimization has

been developed in [6]. For the algorithm suggested in [6], the idea of grading

functions ( described also in [7]) is essential. Following [7], we briefly recall

the basic concepts. Let a uniform grid be generated in a reference domain

0 < ξ < 1. The grading function x(ξ) is a mapping between the domain ξ

and the physical domain a < t < b that transforms grid ξi = i/N into the

desired grid {ti}. It has been proven in [6] that the grading function in the
form

ξ(t) =

tU
a

(f̈)2/5dt

bU
a

(f̈)2/5dt

(31)

minimizes the L2 norm of the error e = f − fI with respect to variations
in the mesh coordinates, where fI is the interpolant of the function f . The

grid mapping (31) can be also applied to optimize the mesh in solution of

boundary problems. The designed technique, however, is laborious, since the
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nonlinear equation (31) must be solved at any mesh point in order to obtain

the coordinate ti. Also, the class of considered problems is restricted, as the

solution f(t) is required to be a monotone function.

We suggest another approach to minimize the error (27) by means of

equidistributing the error (26) over the grid. The developed algorithm takes

an advantage of the relationship between the first differential of the function

f and its increment:

∆f ≡ f(t+ dt)− f(t) = df + ◦(dt). (32)

The identity (32) allows us to equidistribute the value of ∆f instead of

equidistributing the error (26).

First, we consider a function f(t) monotone over the domain 0 ≤ t ≤ 1.
The idea now is to generate a uniform grid {fi} in the reference domain fr
which is identified with the range of values of the monotone function f(t)

and then to map the partition {fi} into the physical domain 0 < t < 1. The
algorithm for the increasing function f(t) may be written as follows

Algorithm I.

1. Generation of a uniform grid in the reference domain:

1.1. Calculate the difference f(1)− f(0) between the values of the func-
tion at the segment endpoints.

1.2. For the given number N of grid elements, calculate the value ∆f =
f(1)− f(0)

N
.

1.3. Equidistribute the nodes over the reference domain [f(0), f(1)] as

fi = f(0) + i ∗∆f, 1 ≤ i ≤ N .
2. Mapping the uniform grid to a mesh in the physical domain:

For 1 ≤ i ≤ N Do:

2.1. Find the point Pi = (ti, fi) of intersection between the solution curve

f(t) and the line fi = const as the solution to the equation

f(ti) = fi. (33)

2.2. Assign the abscissa ti of the point Pi as a new grid node.

EndDo

The simplest example of the mapping function t(f) is given by a linear

function fl(t) = at+b. Obviously, a uniform grid is generated for the function
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fl(t) over the domain [0, 1] as a result of solving the equation

ati + b =
ai

N
+ b.

For a decreasing function f(t), a slight modification of the algorithm I

should be made to take into account node ordering in the reference do-

main. The function fc(t) = e−t is frequently used for modeling the be-
havior of complicated physical and biological systems, [15]. For the func-

tion fc(t) the value ∆f is calculated as ∆f =
(1− e−1)i

N
. A fine mesh

tN−i = ln
�

N

(1− e−1)i+N
�
is generated in the region of the steep gradient

about the point t = 0. Figure 3a illustrates the algorithm of error minimiza-

tion for the function fc(t). The distribution Hi = ti+1 − ti over the domain
[0, 1] is shown in Fig.3b.

The boundary problem

ḟ(t) = μf̈(t), f(0) = 0, f(1) = 1 (34)

is often considered to be a good model for study of convection - dominated

problems (e.g., see [18]). The exact solution to the problem is given by

f(t) = sinh(t/μ)/sinh(1/μ).

The function f(t) is shown in Fig.4a for the value μ = 0.5 · 10−2. The

boundary layer of the width |rb| presents near the point t = 1.0, while the
solution varies slowly in the far field region rf .

We use the linear finite element discretization of the problem (34) to

find the approximate solution f̄ on adaptive grids. Fig.4b illustrates the

algorithm of error minimization applied to the problem (34). For the dis-

tribution H shown in Fig.4b, the coordinates ti of grid nodes are computed

directly from

ti = μln

�
N + (e1/μ − 1)i

N

�
.

It can be seen from the figure that equidistribution of the error df results in

a very fine mesh in the boundary layer region rb. Meanwhile, the whole far

field region rf corresponds to a single grid cell Crf . For instance, the size of

the far field cell Crf = 0.98 on the grid with the number of elements N = 50

.

For better understanding of the results of the adaptation let us consider

the solution error ei = |fi− f̄i| computed elementwise on a sequence of grids
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with the equidistributed value of df . The plots of the error function are shown

in Fig.4c. The maximum of the solution error keeps in the cell Crf , whereas

the boundary layer is resolved well. The obtained error distribution over the

domain demonstrates the difference between the interpolation error and the

solution error. Although the condition d2f = 0 holds for the interpolation

error used as an error estimate, the solution error is reduced slowly in the

far field region. The reason is that the error df is the leading term in the

error estimate in the far field, where the function f(t) ≈ const (see Fig.4a).
The solution error on the element erf can be estimated as

Erf ≈ df = const = 1/N,
where N is the number of grid elements. This estimate is confirmed by the

results in Fig.4c. For instance, the value df = 0.571 · 10−2 is in a good
comparison with the solution error Erf = 0.509 · 10−2 on the grid with N =

175. Hence, in the far field region the adaptation procedure should reduce

the error df rather than equidistribute it.

Keeping in the mind the behavior of the error in the far field, in our further

consideration we compute the norm of the error only in the region rb, since

our main goal is to study the resolution of the boundary layer. We compare

the results of the adaptation on grids refined with the standard procedure (2),

(3) with those obtained with the algorithm I. For the standard refinement

procedure the width |rb| of the boundary layer is estimated as |rb| ∼ O(√μ).
We consider |rb| = 1− |Crf | on redistributed grids, where |Crf | is the size of
the far field cell.

In practical calculations, the exact solution f(t) is not available so that

we need to solve the equation

fI(ti) = fi, (35)

where fI is an interpolant of the function f . To solve the equation (35),

the piecewise linear reconstruction of the solution is used, the nodal values

being taken from the exact solution. In the standard refinement (3) the exact

second derivatives of the solution are used in the error estimate (2).

the convergence history in the boundary layer region is presented in Fig.4d.

The solution adaptive grids are obtained with the grid subdivision and er-

ror equidistribution algorithms. The solution error measured in L2-norm is

shown in the semilogarithmic scale. The convergence plots demonstrate the

better convergence of the error minimization algorithm on coarse grids with

N < 30. On finer grids, both adaptation procedures resolve the boundary

layer with the same accuracy.
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The nodal distribution over the interval (0, 1) on refined (GS) and re-

distributed (GR) grids is shown in Table 1 for the number of grid elements

N = 32. Grids GRexact and G
R
approx are obtained as a result of the solution

of the equation (33), and (35), respectively. To generate the grid GSexact the

derivatives are taken from the exact solution, while on the grid GSapprox the

error estimate is calculated from the approximate solution.

Table 1.

Nodal distribution for problem (34) on adaptive grids: GS - standard
refinement, GR - node redistribution (N=32).

Interval Grid GSexact Grid GSapprox Grid GRexact Grid GRapprox
(0.00, 0.80) 4 4 0 0

(0.80, 0.90) 1 2 0 0

(0.90, 0.92) 0 0 0 0

(0.92, 0.94) 1 1 0 0

(0.94, 0.96) 1 1 0 0

(0.96, 0.98) 4 4 0 15

(0.98, 0.99) 5 5 4 8

(0.99, 0.995) 6 6 7 4

(0.995, 1.00) 9 8 20 4

It can be seen from the table that redistribution of the nodes depends

strongly on the equation solved to obtain a new grid node, while the refine-

ment procedure is not sensitive to using the approximate derivatives instead

of the exact ones. Another advantage of the procedure (2), (3) is that the

refined grid contains the larger number of the nodes in the far field, therefore,

one may expect the better convergence rate in the far field region. Neverthe-

less, our hope is that the algorithm of error minimization can be modified to

reduce the error in the far field adequately.

6. Equidistribution of the interpolation error for a nonmonotone

function. In this section we generalize the algorithm I to permit the treat-

ment of arbitrary continuous functions. Dealing with the functions which

are not monotone over the domain, the value ∆f should be defined more

thoroughly. We will use the concept of the total variation ( e.g., see [8], [10]

) to calculate the increment ∆f of the function. Let 0 = t0 < t1.... < tM = T

form a partition of the closed interval [0, T ]. We denote the class of functions

of variation V =
MS
m=1

|f(tm)−f(tm−1)| over the interval [0, T ] as V(T, V ). The
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norm of V(T, V ) is defined as

V ≡ ||f ||V(T,V ) = sup

M ≥ 1
0 = x0 > ... > xM = T

M[
m=1

|f(tm)− f(tm−1)| (36)

The norm V is called the total variation of function f(t) on [0, T ]. If V <∞,
the function f(t) is a function of bounded variation.

For continuous functions of bounded variation, the value V is calculated
as

V =
M[
m=1

|f(tm)− f(tm−1)|, (37)

where tm, 0 ≤ m ≤ M are the points of extremum. Evidently, monotone

functions considered in the previous section correspond to M = 1 in (37),

V = |f(T )− f(0)|.
In our further consideration, we will always use the definition (37). Let us

note, however, that the definition (36) is more general, as it enables to extend

the analysis to the function classes that may have discontinuities.

The error minimization algorithm for a continuous function of bounded

variation defined on the closed interval [0, 1] may be written as follows

Algorithm II.

1. Generation of a uniform grid in the reference domain:

1.1. Find the points of extremum P extm = (textm , f
ext
m ), 1 ≤ m ≤M for the

function f(t) in the domain [0, 1]. Find fmin = min
0≤t≤1

f(t).

1.2. For the given number M of extremum points, calculate the total

variation (37) of the function f(t).

1.3. Define the reference domain fr as the closed interval [fmin, fmin+V]
. For the given number N of grid elements, calculate the value ∆f

=
V
N
.

1.4. Equidistribute the nodes over the domain fr as fi = fmin+i∗∆f, 1 ≤
i ≤ N .

2. Mapping the uniform grid to a mesh in the physical domain:

For 1 ≤ m < M Do:

2.1. Define N1 : tN1 = t
ext
m and N2 : tN2 = t

ext
m+1.
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For 1 ≤ i ≤ N Do:

If fi ∈ [f extm , f extm+1] Then

2.2. Find the point Pi = (ti, fi) of intersection between the solution

curve f(t) : t ∈ [tN1, tN2] and the line fi = const.
2.3. Assign the abscissa ti of the point Pi as a new grid node.

EndDo

EndDo

The main advantage of involving the calculation of the total variation into

the algorithm II is that it allows to control the number N of grid elements

in the physical domain, the value ∆f of the error being generated as a mesh

step size in the reference domain. For the error control, the number N should

be defined in the reference domain as the integer part of

η =

max
0≤t≤1

f(t)− min
0≤t≤1

f(t)

∆f
,

that results in the increased number of the grid elements in the physical

domain. This observation enables us to comment the issue of initial grids.

Actually, the initial partition of the domain [fmin, fmin+ V] must contain at
least one interior point. For rapidly oscillating functions this requirement

leads to generation of the adequate initial grid with the large number of grid

elements.

Now we consider the vector solution x(t). After a key function is chosen,

the algorithm II can be applied to generate a grid for a system of equations.

Let us define the key function f(t) as the L1-norm of the vector x(t)

f(t) =
1

K

K[
k=1

|xk(t)| (38)

Suppose that the algorithm I generates optimal grid Hk for each scalar func-

tion x(t) considered separately. The error on the grid Hk is calculated as

dxk =
Vk
N
, where Vk is the total variation of the solution component xk(t).

The norm of the error vector E on the element ei is

||Ei|| ≡ Ei = 1

K

K[
k=1

dxk =
1

KN

K[
k=1

Vk = V̄
N
,

where the mean total variation V̄ = 1
K

KS
k=1

Vk.
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Let us now calculate the error on the grid H obtained as a result of the

adaptation to the key function f(t). The value df on the grid H generated

with the algorithm II is given by

df =
Vf
N
,

where Vf is the total variation of the function f(t). It is not difficult to see,
that in general case Vf 9= V̄, therefore, dfi 9= Ei.
The value Vf > V̄ indicates that we are not able to achieve the desired

value of the error dxk for the solution component xk(t) on gridH, the number

N of the grid elements being sufficient to resolve the function xk(t) over

a separate grid. In this case the price one should pay for the reduction

of the vector error estimate to the scalar one is that the number of grid

elements should be increased to resolve each scalar solution component with

the desired accuracy dxk on the grid H.

Conclusions.

• The key function problem arising when interpolation error estimates

are considered for vector functions can be solved by means of a proper

choice of the adaptation strategy. Generally, the adaptation procedure

should depend on what error estimate is used.

• For the interpolation error estimates, equidistribution of the k-th order
error over the grid results in minimization of the (k + 1)-th order er-

ror. For discretization methods of the k-th order, the value of the k-th

derivative is available from the solution. Hence, it is possible to compute

the discrete function f(ti) similar to the k-th differential of the solution.

The algorithm of error minimization developed in the work can be then

applied to the function f(t) in order to minimize the interpolation error

estimate.

• The example of the convection-dominated problem considered in the

work demonstrates that a combined error estimate may be required to

resolve the solution in various domains. In case of a piecewise linear

approximation to the solution it is reasonable to use the error df in the

far field region, while the error estimate d2f is needed to obtain the

adequate resolution of the boundary layer. From a practical point of

view, the issue of combined error estimates requires a further discussion

in terms of both the accuracy and overall efficiency of the code.

• The results obtained in the work show that an additional error may

appear in the interpolation error indicator due to reduction of the vector
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error estimate to the scalar one. The impact of this error is that a finer

grid may be required to achieve the desired accuracy for the vector

solution on a single grid in comparison with the case that each solution

component is treated on a separate grid.
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Figure 1: Representation of the full adaptation problem

in the (ẍ1, ẍ2)-plane.
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Figure 2: Solution of the full adaptation problem: a) The second deriva-

tives ẍ1(t) and ẍ2(t) used in the error estimates on optimal grids. b). The

mesh step size distribution on the optimal and uniform grids.
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Figure 3: Adaptation to the function e−t: a). The algorithm of error

minimization. b). The mesh step size distribution.
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Figure 4: Error minimization in solution of the boundary problem: a).

Solution to the problem (34). b). The grid H where the error d2f is mini-

mized. (I. Close-up of the distribution H in the boundary layer region.) c).

The distribution of the error on a sequence of the adaptive grids. d). The

convergence history on adaptive grids.
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