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A.W. Niukkanen, I.B. Shchenkov, G.B. Efimov. Operator factorization

technique of formula derivation in the theory of simple and mul-

tiple hypergeometric functions of one and several variables

Abstract

It is shown that computation technique of the operator factorization

method provides a simple and universal foundation for a new theory of

hypergeometric series in any number of variables. Examples showing how

the method works in practice are given. We also discuss the prospects of the

method including the necessary modernization of Santra 2 system. We also

give a preliminary analysis of the potentialities of using the superstructure

Santra 3 over the Refal language as a basis for computer implementation

of a globally universal program capable to perform the complete set of

operations inherent in the factorization method.
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1. Introduction 1

Mathematical models which play the role of theoretical substitutes for

underlying natural or technological phenomena including those under su-

pervision of computer–aided control systems give us an information about

the phenomena in terms of functions having specialized structures. The

vast majority, up to 95%, of the special functions involved in description

of fundamentally important processes are connected with hypergeometric

series which thereby give us a key to a substantial part of applied mathe-

matics really needed by numerous users.

There is a further simple motive for our interest to the hypergeometric

series. Following elementary functions these series present the most im-

portant class of functions naturally arising from simple operations over el-

ementary functions. It suggests that along with elementary (EL) functions

hypergeometric (HYP) series will inevitably turn into an obligatory com-

ponent of modern software especially for the coming computer generation

with prevailing role of ”intellectual” interactive symbolic (SYMB) analy-

sis over purely numerical (NUM) computations. Looking at the vertices

(EL, NUM), (HYP, NUM), (EL, SYMB) and (HYP, SYMB) in functions-

methods space one can say, loosely, that the first vertex pertains to the

past, the next two symbolize the present and the last one relates to the

future. It is just the future the present work is aimed at. For better visual-

ization of what was said above we remind that Lozier and Olver maintain

that even when one moves from (EL, NUM) to (HYP, NUM) ”enormous

gaps remain for functions having variable parameters in addition to the

argument”. On our move from (EL, SYMB) to (HYP, SYMB) the gaps

would have been ”twice as enormous” if we had not had the operator fac-

torization method in our disposal.

The operator factorization method [?]–[?] greatly facilitating solu-

tion of many mathematical problems including the study of multiple hy-

pergeometric series is the main object of our interest aimed at verification

of possibility to use the main operations of the method for construction
1The work was supported by Russian Foundation of Basic Research under Grant 03-

01-00708
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a superstructure over the system of analytical transformations SANTRA

[?]–[?].

The check–up is based on a detailed overveiw of the formal structure

of the method. We show that the method uses a new fundamental

operation over power series, new analytical technique and new form

of presenting results. There is a strong evidence that the set of the

basic operations of the method is complete within a wide range of problems

including analysis of multiple hypergeometric series.

In Sec.2 we formulate some general statements which being trivial on

their own can help us to better understand the position occupied by this

method amongst other scientific methods.

In Sec.3 we describe a compact and transparent notational system that

allows the structure of any multiple hypergeometric series to be compre-

hended easily in full detail.

In Sec.4 a brief overveiw of the operator factorization method is given.

An Ω-multiplication operation, factorization formulas and general concepts

underlying the method are discussed in brief. It is shown that the method

permits us to use different analytical schemes as a basis for working out

different computational algorithms.

The main factor determining the value of the method is that it makes

use of a limited set of operations (see Sec.2 in Ref.[?]) sufficient to

derive any formula in the theory of simple and multiple hypergeometric se-

ries. Moreover, as compared with indefinitely large number of conventional

approaches this gives us the most simple and direct way to the desired re-

sult. Technically, there are 3 computational modes to reach the goal. First,

we can use the set of operations manually, with pen and paper, to cover

all the way to the final result without use of computer (see an example

in Sec.5). Second, we can make an attempt to use the manual mode to

obtain a set of macro–operations playing the role of basis relations for a

given class of formulas and then generate all relations belonging to the

class by computer–aided combining of the basis macro–operations. An ex-

ample of such ”bounded–universal” approach is given in Sec.6. Up to now

the set of main operations was not implemented in the form of computer
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commands. Numerous examples of successful applications of the first and

the second computational modes suggest that an interactive program us-

ing the complete set of operations of factorization method may give us a

globally universal computer–aided ”formula constructor” playing the role

of a central core with respect to the partially universal programs and al-

lowing the researcher to obtain the desired relation without any cease of

the user session. Preliminary examination of feasibility of the globally

universal computational mode with the help of the system of analytical

transformations SANTRA is one of the main goal of the present work (see

Sec.7).

2. General outline of the problem

2.1 Researcher and computer

The main body of scientific knowledge had been built before computer

became a full member of scientific process. That’s why scientific knowledge

generated by centuries of human intellectual activity bears an indelible

imprint of human ingenuity and human failings. Both these extremes put

obstacles in our way to computerizable scientific knowledge.

Putting aside innumerable minor human drawbacks we stress that re-

sults are most important from antropocentric standpoint. On the con-

trary the derivation rules play the primary role for computercentric

science. This difference serves as the main obstacle for teaching computer

human tricks.

2.2. Sturm und Drang?

After principles governing a given domain of science begin to work their

way there comes the time of Sturm und Drang epoch. The negative re-

sults of this impetuous activity being out of any reasonable control

are not at all less than positive results.

The most grave consequence of the rush is that the domain being al-

legedly conquered by science is in fact conquered by narrow layer of

elite capable to discern the main constitutive features of a new theory up-

rising from the primary intellectual chaos. As for the scientific community

as a whole and even for the most part of the ”elite” the domain transforms
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from a ”blank spot” into a ”black spot” of intellectual disorder. Only deep

systematic revision of the domain may give us a hope to rectify the situa-

tion. A good theory is a simple theory requiring a will and industry rather

than great abilities.

2.3. What kind of knowledge do we need

Specialization divides knowledge into scores of subfields all having meth-

ods of their own. The knowledge we need is that which helps different fields

to combine and merge rather than come apart and disintegrate.

Mathematics is the language of Science. Analysis is the heart of math-

ematics and the concept of function is the heart of analysis. Therefore

the mathematical reference data containing the most commonly used

knowledge seems to present primary interest for researchers.

Computer-aided accumulating, processing and generating of mathemat-

ical knowledge varies from passive data bases to sophisticated knowledge

bases which can produce information not present explicitly in the bases.

Unfortunately, the use of computer algebra methods which can help us to

build effective knowledge bases is limited by the fact that we meet a severe

want of new sufficiently simple and universal analytical methods which

would give us an effective basis for symbolic manipulations.

2.4. The NIST project: what is about computer algebra

Several years ago the National Institute of Standards and Technology

(NIST, USA) initiated the project of a Digital Library of Mathemati-

cal Functions (DLMF) [?]. In an earlier web description of the project

(http://math.nist.gov/DigitalMathLib//publications/nistir6297/) there had

been stressed that ”standardization of mathematical knowledge requires

growing use of symbolic and numerical software”, ”in the intervening

decades computer algebra and symbolics have come into wide use”

and ”many users will want easy-to-use support ... in numerical and sym-

bolic computation”.

Then it is said that ”the role of symbolic computation in the DLMF is

still being discussed” (!). The statement of P. Paule (DLMF associate edi-

tor) that ”the goal is a presentation of computer algebra concepts” with ”a



— 8 —

new chapter on computer algebra”, in view of what was said above, sounds

quite unexpectedly. Where has the computer algebra gone?

2.5. Underestimated role of symbolic computing

Without intensive practical use of computer algebra methods any

reference database would lose most of its value. The less objects are in-

cluded in the base (34 in DLMF!) the less interest it presents for user. On

the contrary, the giant book-like site would be crammed with misprints

and authors’ mistakes. Data level in the field of multiple hypergeometric

series may exceed the capacity of a medium-size website. The giant site

would confront with cross-referencing and search difficulties.

The knowledge created by computer at will of user is what we

should aim at.

2.6. Misuse of symbolic manipulation

An attempt to attack the problem of symbolic manipulation of sim-

ple hypergeometric series by brute force method has been undertaken by

C. Krattenthaler in his HYP and HYPQ packages. The results do not

seem to completely justify the efforts. The formal combination of occa-

sional formulas can hardly serve us as a reliable way to interesting new

results. Moreover the efforts needed to obtain the new formulas seem to be

rather tedious. ”The philosophy of this package is: Do it yourself ! ” The

disappointing idea implies that ”you should be able to control each step in

a series of manipulations by yourself”

What we really need is an integrated complete set of commands

rather than a disorderly collection of occasional tools.

3. Hypergeometric series

3.1. Where the series arise

Hypergeometric series is probably what an applied mathematician or a

theoretical physicist more often runs into when making his calculation

work. Sometimes it happens even without knowing it!

The hypergeometric series are ubiquitous. They appear, under dif-

ferent guises, in elementary functions, differential equations, heat con-

duction, solid state dynamics, hydraulics, atomic and molecular physics,
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quantum mechanics, elementary particles (Feynman diagrams), combina-

torics, group representations, algebraic geometry, etc. The late correspond-

ing member of Academy of Science of the USSR, professor K.I. Babenko

counted up to 1500 special function of hypergeometric type.

I.M. Gelfand and his co-authors remark that hypergeometric series

play an outstanding unifying role in science and assert that ”impetu-

ous development of the theory of hypergeometric functions begun in the

eighties of present century”. In course of time the role of hypergeometric

functions will become more significant due to their state–of–the–art and,

especially, potential importance for applied sciences and engineering.

3.2. Why we can not use ”standard” methods

The present level of standard methods in the theory of hypergeomet-

ric series can be clearly seen from Richard Askey’s statement made in his

preface to ”Special Functions” (Reidel, 1984). He wrote ”There are many

examples (of special functions - A.N.) and no single way of looking at

them that can illuminate all examples or even all the important properties

of a single example of a special function”.

The Askey’s statement does not hold any more. The operator factor-

ization method just gives us a single way of looking at scores of

thousands of special functions and multiple hypergeometric series. More-

over it allows us to ”computerize” the theory of these functions in

a two-fold way. Our main goal is to discuss these ways and their relation

to the existing computer - aided approaches to accumulating, processing

and generating of scientific knowledge. By the example of the operator

factorization method one can see one of the ways making the structure of

knowledge easily accessible to computer.

3.3. Hypergeometric series: notation

1. Generalized hypergeometric series in one variable of type

A//B:

F

[
a1, . . . , aA

b1, . . . , bB

; x
]

=

∞∑

i=0

(a1, i) . . . (aA, i)

(b1, i) . . . (bB, i)

xi

i !
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where Pochhammer symbol (a, i) is

(a, i) = a(a + 1) · · · (a + i − 1) = Γ(a + i)/Γ(a).

2. Contracted notation

FA
B [d; x] =

∞∑

i=0

(d, i)
xi

i !
=

∞∑

i=0

(a, i)

(b, i)

xi

i !
.

Numerator and denominator sets of parameters are a = [a1, . . . , aA] ,

b = [b1, . . . , bB] and d = a//b is a double set of parameters. Except of

the above definitions explicit summations are not used in the method.

3. Multiple series: conventions

a. Complex parameter < α | m1, . . . mN > corresponds to complex

Pochhammer symbol (α, m1i1 + . . . + mN iN) ≡ (α,m · i) in the coefficient

of multiple series.

b. Glueing complex parameter 〈α | m1, . . . mN〉 contains several

non-zero integer spectral components mn.

c. Individual ”complex” parameter 〈α|0, · · · , 0, mn, 0, · · · , 0〉 contains

only one non-zero spectral number.

4. Multiple series: more conventions

d. The colon (:) will serve us as delimiter between the glueing and

individual parameters. The latters will be put to the right of the colon

sequentially, according to the positions of their non-zero components.

e. The simple parameters of the form 〈a|0, · · · , 0, 1, 0, · · · , 0〉 and

< α | 1, . . . , 1 > are included in the glueing and the individual lists as

α and a where spectral components are omitted.

f. For brevity: m̄i = −mi, m12̄ = m1 − m2, etc.

g. Empty set of parameters ∗ corresponds to formal Pochhammer

symbol (∗, i) ≡ 1.
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5. Multiple series: general notation

NF [L;x] ≡N F

[
〈α1|m1〉, . . . , 〈αA|mA〉; x

〈β1| l1〉, . . . , 〈βB| lB〉

]

=
∞∑

i=0

L(i)
xi

i !
=

∑

i1,...,iN

L(i1, . . . , iN)
xi1

1
· · ·xiN

N

i1! · · · iN !
,

L(i) =
(α1, m1 · i) . . . (αA, mA · i)

(β1, l1 · i) . . . (βB, lB · i)
.

Any parameter can be transferred from numerator to denominator and vice

versa with the help of identity (α, i) = (−1)i(1 − α, i)−1.

In special cases it is of use to differ between glueing and individual pa-

rameters and numerator and denominator parameters.

6. Example of 3F gives us an instructive way to understand what is

implied by the above notation:

3F

[
〈a|1, 2̄, 0〉〈b|2, 1, 1̄〉, c

d, 〈e|0, 1, 1〉

:

:

g

∗

;

;

〈h|2〉

k

;

;

∗

l

; x1, x2, x3

]

=
∑

i1,i2,i3

(a, i1 − 2i2)(b, 2i1 + i2 − i3)(c, i1 + i2 + i3)

(d, i1 + i2 + i3)(e, i2 + i3)

×
(g, i1)(h, 2i2)

(k, i2)(l, i3)

xi1
1

i1!

xi2
2

i2!

xi3
3

i3!
.

4. Operator factorization method

4.1. Ω-multiplication is a fundamental operation underlying the factorization

method

Ω-product u ∗ v of functions u(x1, . . . , xN) and v(x1, . . . , xN) is defined

as

〈u ∗ v|x1, . . . , xN〉 = u

(
d

ds1

, . . . ,
d

dsN

)
v(x1s1, . . . , xNsN) |∀sn=0 .

For the Ω-product some important general properties are fulfilled: for ex-

ample, commutation property u∗v = v∗u; association property w∗(u∗v) =

(w∗u)∗v ; coupling rule, etc. See subsection COMMANDS(II) in [?], Sec.2 .

4.2. Operator factorization principle: an illustrative example of general power

series
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Introduce the notation for arbitrary power series

F [A; x] =
∞∑

i=0

A(i)
xi

i !
, F [A, B; x] =

∞∑

i=0

A(i)B(i)
xi

i !
,

etc. Then factorization formula holds:

F [A, B; x] = F

[
A;

d

ds

]
F [B; xs]|s=0 .

The condition s = 0 should be introduced after fulfillment of term by term

differentiation in the right hand side of the factorization formula.

4.3. Ω-representability of multiplication of power series coefficients

The above formula can be written as

F [A × B; x] = 〈F [A] ∗ F [B] |x〉.

This notation makes it obvious the property of Ω-representability of

multiplication operation over coefficients of an arbitrary power series.

Suppose we multiply two series with coefficients A(i) and B(i), respec-

tively. It is well known that the operation which should be applied to A

and B to produce coefficients of the resultant series is the convolution op-

eration. Now we multiply coefficients of the series. The operation which

should be applied to the two initial series to produce the resultant series

with coefficients A(i) × B(i) is just the Ω-multiplication operation.

4.4. Illustrative example of total factorization

Apart from the above simple exercise in calculus, what practical use can

be reached with the help of the Ω-multiplication. Can we give a clear-cut

illustrative example? Here it is

F

[
a1, . . . , aA

b1, . . . , bB

; x
]

= F 1

0

[
a1

∗

]
∗ F 1

0

[
a2

∗

]
∗ · · · ∗ F 1

0

[
aA

∗

]
∗ F 0

1

[ ∗
b1

]
∗ F 0

1

[ ∗
b2

]
∗ · · · ∗ F 0

1

[ ∗

bB

]
.

We see that any property of generalized hypergeometric series is a corol-

lary of the properties of the binomial series F 1

0
and the Bessel-type series

F 0

1 . The technique necessary for derivations of this kind will be given later.

4.5. Factorization formulas
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Factorization formulas for generalized hypergeometric series in one variable

have the form:

F [d1 ; x1

d

ds
] F [d2; x2s]

∣∣∣∣
s=0

= F [d1,d2 ; x1 x2] ,

F [d1 ; x1

d

ds
] F [d2; x2s

m]

∣∣∣∣
s=0

= F [< d1 | m >, d2 ; xm
1 x2] ,

where d1 and d2 are double sets of numerator and denominator parameters.

The above formulas allow complicated series to be expressed as Ω-products

of simpler series; vice versa, an Ω-product can be expressed in an algebraic

form of a more complicated series. Moreover the formulas permit us to

introduce very useful general concepts (see subsection 4.6).

General factorization formula for multiple (not necessarily hypergeo-

metric) series is

NF [L1, L2 ; x1, . . . , xN ] =

=N F

[
L1 ;

d

ds1

, . . . ,
d

dsN

]
NF [L2 ; x1s1, . . . , xNsN ]

∣∣
∀sn=0

,

where Lk(i1, . . . , iN), k = 1, 2 are arbitrary coefficients. It is a direct

paraphrase of the factorization formula for F [d1,d2; x].

In hypergeometric case the coefficients (d, m1i1 + · · · + mN iN) or (d, i1 +

· · ·+iN ) have a special dependence om summation variables. This permits

us to use the special factorization formulas:

NF [< d | m1, . . . , mN >, L ; x1, . . . , xN ] =

= F

[
d ;

d

ds

]
NF [L ; x1s

m1, . . . , xNsmN ]

∣∣∣∣
s=0

,

NF [d, L; x1, . . . , xN ] = 1F

[
d;

d

ds

]
NF [L; x1s, . . . , xNs]

∣∣∣∣
s=0

,

where, contrary to the general factorization formula, the first multipliers

in the Ω-products are simple hypergeometric series.

4.6. General concepts, which constitute the structural basis of the method

1. Ω-identical expressions
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By analogy with arithmetically identical expressions the algebraic

expressions connected by finite number of arithmetic operations and Ω-

multiplication operations will be called Ω-identical expressions.

2. Ω-equivalent operators

The operators F1 and F2 are called Ω-equivalent operators (F1
⇀↽ F2) if

the identity

F1

(
d

ds
, s

)
Ψ(xs)

∣∣
s=0

= F2

(
d

ds
, s

)
Ψ(xs)

∣∣
s=0

holds for an arbitrary function Ψ. Note that the Ω-equivalent operators

are not necessarily identical to one another.

3. Ω-equivalent relations

The functional relation f ∗ f1 = f ∗ f2 or

f (d/ds1, . . . , d/dsN) f1(x1s1, . . . , xNsN)
∣∣
∀sn=0

= f (d/ds1, . . . , d/dsN) f2(x1s1, . . . , xNsN)
∣∣
∀sn=0

where f is an arbitrary function of N variables will be called Ω-equivalent

to the relation

f1(x1, . . . , xN) = f2(x1, . . . , xN).

4. Ω-equivalent classes and proto-relations

In a class of Ω-equivalent relations a simplest relation can be chosen to

serve as a proto-relation underlying the class and giving rise to all its

members. Having proved the proto-relation we prove all formulas be-

longing to the class.

4.7. How the method works

(I) A standard four step scheme

1. Analysis. An initial series is decomposed into an Ω-product of

simpler series.

2. Basic transformations. The known properties of the simpler series

are used to transform the factorized expression to the desired form.

3. Auxiliary transformations. A finite number of auxiliary trans-

formations is employed to convert the resultant expression to the form
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permitting the use of a factorization formula.

4. Synthesis. The appropriate factorization formula is applied to turn

the operator expression into an algebraic form.

(II) Scheme based on the concept of Ω-equivalent relations

The usefulness of the relation f ∗ f1 = f ∗ f2 depends on f1, f2 and f .

To have a very simple illustrative example we use the relation F [a; x] =

(1 − x)−a to convert (1 − x)−a = (1 − x)(1 − x)−a−1 into

F 1

0 [a; x] = F 1

0 [a + 1; x]− x F 1

0 [a + 1; x] .

Applying the operator F 0

2 [∗ // a, a + 1; zd/dx]
∣∣
x=0

to both sides of the bi-

nomial identity and using relations from the COMMANDS list (Ref.[?],

Sec.2) we obtain the recurrence relation for the Bessel-type series

F 0

1

[
∗ ; z

b

]
= F 0

1

[
∗ ; z

b − 1

]
−

z

b(b − 1)
F 0

1

[
∗ ; z

b + 1

]
.

4.8. Different computational modes

1. Factorization method gives us a limited set of operations sufficient

to obtain manually, with pen and paper, any property of an arbitrary series

(manual mode).

2. If the operations were implemented in the form of computer com-

mands we could obtain a superstructure over an existent computer algebra

system capable to derive any formula in an interactive mode (globally

universal computer mode). In the case in point we set problem to

formalize the main operators of the method to make them consistent with

the grammatical structure of the SANTRA language. The preliminary

command set and its prototypical operations are presented in subsections

COMMANDS (I) – COMMANDS(VI) of Sec.2, Ref.[?].

A representative example illustrating the main features of the both

modes ”emulating” one another will be given in Sec.5 where operations

presented in Sec.2, Ref.[?] are only used.
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3. So far we used another computational mode. Considering separate

classes of formulas we used the factorization method to obtain a limited

number of formulas playing the role of basis relations. Combining these

relations (see MACRO – COMMANDS in Ref.[?], Sec.2) one can obtain

all relations belonging to the class. Interactive and automated computer

programs have been developed for 5 classes of formulas inaccessible in any

other way (bounded universal computer mode). Some examples are

given in Sec. 6.

5. Formula derivation based on the use of the operator

factorization method

5.1. Passing to examples

Given hundreds and thousands of multiple hypergeometric series and innu-

merable scores of formulas fulfilling for these series it seems surprising that

a moderate set of operations listed in COMMANDS and MACRO –

COMMANDS sections is sufficient to derive any property of an arbitrarily

complicated series.

Formal proof of derivation potential of the method can hardly be

given at present. One can make certain of the merits of the method in

a practical manner by deriving sufficiently large number of formulas. We

further give derivation of a formula illustrating four step analytical

scheme (see 4.7 (I)).

5.2. Transformation of F4

1. Factorization allows the function F4 to be expressed in terms

of simpler functions U

Introduce the F4 function

F4 ≡ F


 a1, a2 : ∗ ; ∗ ;

z1

(1 − v)(1 − u)
,

z2

(1 − v)(1 − u)

∗ : b1; b2


 .

The most interesting factorization of the F4 gives

F4 = U

[
a1, b1;

d(s2)

1 − v
,

d(s1)

1 − v

]
U

[
a2, b2;

z1s1

1 − u
,

z2s2

1 − u

]∣∣∣∣
s1=s2=0

,
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U [a, b; x1, x2] = F

[
a : ∗; ∗; x1, x2

∗ : ∗; b

]
.

2. Function U, in contrast to F4, exhibits obvious simple proper-

ties

The function U

U [a, b; x1, x2] = F

[
a : ∗; ∗; x1, x2

∗ : ∗; b

]

has binomial type (1//0) with respect to x1 and Kummer type (1//1)

with respect to x2. Specialization of general binomial and Kummer trans-

formations gives

U [a, b; x1 + u, x2] = (1 − u)−a U1

[
a, b;

x1

1 − u
,

x2

1 − u

]
,

U [a, b; x1, x2] = ex2 F

[
〈b − a|1, 1〉 : ∗; a, 1 + a − b; −x2, −x1

∗ : b; ∗

]
.

3. Using binomial properties of U-functions

Binomial transformation of both Ω-multipliers gives

F4 = (1 − v)a1(1 − u)a2

× U [a1, b1; d(s2) + v, d(s1)] U [a2, b2; z1s1 + u, z2s2]|s1=s2=0
.

Applying the operator displacement formula

F [d(s) + v] = exp(−vs)F [d(s)] exp(vs)

to the first multiplier and the shift operator formula

F [s + u] = exp(u d/ds)F [s]

to the second multiplier ensures elimination of interfering constant

terms u and v from the arguments.

4. Binomial and Kummer transformations give us a complicated

Ω-product
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After ”uniformization of arguments” in U functions the result of bino-

mial transformations in F4 = U ∗ U is

F4 = (1 − v)a1(1 − u)a2U [a1, b1; d(s2), d(s1)]

× exp[uz−1

1
d(s1)] exp (s2v) U [a2, b2; z1s1, z2s2]|s1=s2=0

.

Kummer transformation of the both U ’s gives us

F4 = (1 − v)a1(1 − u)a2

×F

[
〈b1 − a1|1, 1〉 : ∗ ; a1, 1 + a1 − b1; −d(s1),−d(s2)

∗ : b1 ; ∗

]

× exp [((z1 + u)/(z1)) d(s1)] exp [(z2 + v)s2]

×F

[
〈b2 − a2|1, 1〉 : ∗ ; a2, 1 + a2 − b2; −z2s2, z1s1)

∗ : b2 ; ∗

]∣∣∣∣∣
s1=s2=0

.

5. Applying again a factorization formula we obtain the desired

result

To simplify the Ω-product representation for F4 we eliminate the expo-

nential terms by putting u = −z1, v = −z2. Using factorization formula

we finally obtain

F

[
a1, a2

∗

:

:

∗

b1

;

;

∗

b2

;
z1

(1 + z1)(1 + z2)
,

z2

(1 + z1)(1 + z2)

]
=

= (1 + z2)
a1(1 + z1)

a2F

[
〈b1 − a1|1, 1̄〉, 〈b2 − a2|1̄, 1〉

∗

:

:

:

:

a2, 1 + a2 − b2

b1

;

;

a1, 1 + a1 − b1

b2

; z1, z2

]
.

This formula transforms the complete series of the second order (of the

type [2//1, 2//1]) into the complete series of the third order (of the type

[3//2, 3//2]).

5.3. Analytical corollaries

Factorizing the r.h.s. of the above formula we can express the general

F4 as an Ω-product of a Kummer function F 1

1
and two Gauss functions F 2

1
.
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This implies that many new formulas for F4 can be deduced from the

known properties of F 1

1
and F 2

1
.

Many known hard-hitting results follow immediately from the above for-

mula. If b1 + b2 = a1 + a2 + 1 then F4 ∼ F 2

1 F 2

1 (Watson formula). If

b2 = a2 then using the ”indefinite” transformations and an appropriate lin-

ear transformation we obtain F4 ∼ F1 (Bailey formula). If a2 = b1+b2−1

then using a couple of linear transformations we can see that F4 ∼ F2 (an-

other Bailey formula).

6. Computer generation of formulas using bounded universal

programs

6.1. Programs

A complex of programs have been developed with the help of macro

– commands realizing Kummer-type and Gauss-type linear transforma-

tions, quadratic transformations, analytic continuation formulas and

reduction formulas turning multiple series into series depending on lesser

number of variables. Provision was made for both interactive and auto-

mated modes of processing.

6.2. Example of computer generation: the case of the Appell function F4

In the following we confine ourselves to the only example of special Ap-

pell function F4[a1, a2, a1, b2; x1 , x2] having one constraint on parameters.

Using the special transformation of general F4 and utilizing, for the

case of restricted F4[a1, a2, a1, b2; x1 , x2], either contraction reduction or the

auxiliary ”indefinite” transformation we represent the F4 as non-Hornian

functions:

Kgb = F

[
α

β

:

:

a1, a
′
1

b1

;

;

a2

∗

; x1, x2

]
,

Γbg = F

[
〈α1|1, 1̄〉〈α2|1̄, 1〉 :

:

a1

∗

;

;

a2, a
′
2

b2

; x1, x2

]
.

The processing of these functions consisted in using all possible linear com-

mands lin(G) along with an auxiliary bilinear transformation (for the func-

tions with parameter 〈0|1, 1̄〉). The process performed in automatic mode
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gave us functions symbolically presented by double black circles on Fig. 1.
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Fig. 1. The diagram representing 36 series generated by the func-

tion F4[a1, a2, a1, b2]. The arrows correspond to additional auxil-

iary transformations connected with ”indefinite” parameters (see

Eqs. (37) and (38) in [?]).

Long lines symbolize general linear transformations (see Sec. 2.7.3 in [?]).

Each series is represented by short inclined segments with two black nodes

corresponding to the arguments of the series. The arrows indicate addi-

tional transformations connected with ”indefinite” parameters.

Along with functions Kgb and Γgb we obtained, in an automatic mode,

the following 5 functions:

Gek = F

[
α1, α2

β

:

:

∗

∗

;

;

a2

b2

; x1, x2

]

F1 = F

[
α

β

:

:

a1

∗

;

;

a2

∗

; x1, x2

]
,
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F3 = F

[
∗

β

:

:

a1, a
′
1

∗

;

;

a2, a
′
2

∗

; x1, x2

]
,

F2 = F

[
α

∗

:

:

a1

b1

;

;

a2

b2

; x1, x2

]
,

H̃2 = F

[
〈α|1̄, 1〉 :

:

a1, a
′
1

∗

;

;

a2

b2

; x1, x2

]
.

Transformation properties of the series Gke and Gek make it possible to ob-

tain a toroidal construction made of three etageres jointed by their upper

and lower facets with one another. Of course it would be difficult to estab-

lish such connection between 108 double series without using computer–

aided symbolic approach based upon the new computational principle.

Note that the use of new transformations permits our program to make

start from an arbitrary point of the diagram.

7. Prospects of the globally-universal approach within the

system of analytical transformations Santra 3 based on Refal

language

We discuss in brief the problem of implementation of a globally universal

approach (see Sec. 4.8.2) using the domestic algorithmic language Refal.

Envision the 4-layer structure

Hypertrans graphic shell (4)

Hypertrans functions (3)

Santra 3 (2)

Refal 6 (1)

which is graphical representation of a conceived system of analytical trans-

formations of hypergeometric series. The system will be called, for brevity,

the Hypertrans system. A computer satisfying common general conditions

plays the role of the ”bottom” zero level. All peculiar features of system

are inherent in the level 1 which plays the role of the ”specialized base-

ment” for all other upper levels. This leads to the machine – independent
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system. Any change in the level 1, for example, transfer to other Refal ver-

sion may cause serious re-building of other levels. Having presently only

the level 1 facilities with Refal 6 (http://www.refal.net/˜arklimov/refal6/)

functioning in DOS window with tight graphic interface we aim, for the

time being, at development of a model Hypertrans system having complete

set of program facilities with but a limited set of graphic conveniences.

Level 2 is exhausted at present by tools of the system Santra 2 [?]-[?].

These tools are not convenient for implementation of Hypertrans functions.

However Santra 2 provides a reliable basis for development of more con-

venient system Santra 3 because Santra 2 was conceived as a universal

system of algebraic transformations using symbolic manipulations similar

to those of Refal. The experience gained in course of implementing differ-

ent algebraic transformations with the help of Refal tools [?]-[?] served us

as a basis for development of Santra 2. The universality feature inhereted

by Sanra 2 from Refal allows us to build up various problem-oriented su-

perstructures. The aim of the improvements is development of more conve-

nient tools without change of already written code. Really, the universality

of Santra 2 implies that any algebraic transformations can be implemented,

in principle, with the help of basic system tools. Practically, we need more

convenient tools for a specific applied problem. It is important that any

”applied subsystem” can be readily modified without any change in the

basic system.

Specifically, it is Refal 2 [?]-[?] that plays the role of paradigm for

Santra 2 language. One of the additional capabilities is that the left parts of

statements can be formed algorithmically. This allows algorithmic recogni-

tion of objects having fixed structures, for example, the typed expressions.

In turn, this allows to differentiate operations depending on the type of

object on the same principle as in the case of abstract data types. Be-

sides, the Santra 2 language admits dynamical program formation that

allows the use of macrocommands and subroutine relocation depending on

a specific data set. However the processing of the normal forms which are

used in Santra 2 for representation of algebraic expressions is not sufficient

for operations required by operator factorization method. For example, it
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is necessary to process functions whose arguments, exponents, coefficients

and free terms play the role of parameters in contextual definition. In

Santra 2, there are no convenient tools for extraction such functions from

normal forms. One more deficiency is that Santra 2 is closely related to

Refal 2 which is characterized by less convenient form of program record

compare to Refal 5 and Refal 6 (http://www.refal.net/˜arklimov/refal6/)

which gives an extension of Refal 5. Santra 3 is being developed on the

basis of Refal 5 supplemented by ideas of Refal 6 and some additional

options.

All extensions introduced in Santra 3 persue the goal to simplify pro-

gramming by development of more simple and illustrative tools close to

the typical manipulations of researcher engaged in derivation of a mathe-

matical formula. The work on the project of Santra 3 is still in progress

now.

The approach to construction of the level 3 functions will be illustrated

by analysis of several typical transformations of the factorization method

[?]. The level 3 as a whole is constituted by the set of commands cor-

responding to the complete set of operations used in the factorization

method. It is just what we call the command set of the globally universal

approach. The program implementation of the commands is illustrated by

model constructions of Santra 3 [?].
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Summary

He who has to deal with hypergeometric series systematically and even

he who confronts with them occasionally should familiarize himself with

the operator factorization method.

The reasons giving advantage to the method over innumerable tradi-

tional approaches to the theory of hypergeometric series and special func-

tions are as follows:

• Factorization principle is a key – stone of the new theory

• A set of auxiliary identities together with the factorization formulas

play the role of a meta – language giving us the shortest way to

write the derivation story for any formula

• Hypergeometric series are expressed only through hypergeometric se-

ries (closure property). On the one hand the hypergeometric series

are subjects of investigation, on the other hand they are investigatory

tools. Such an ideal correspondence is the main reason of extraor-

dinary efficiency of the method

• New theoretical concepts (Ω-equivalent relations, Ω-equivalent iden-

tities, Ω-identical transformations, etc.) have a significant heuristic

value and give a well-structured form to the theory

• Bounded universal approach based on the use of macro – commands

allowed extensive classes of formulas to be obtained with the help of

computer-aided symbolic transformations

• Instead of separate tools inherent in other computer algebra ap-

proaches the factorization method gives us an integrated system of

commands. Prospective development may give us a computer algebra

superstructure allowing us to work with any types of hypergeometric

series without need to tear ourselves from keyboard



— 25 —

References

[1] Niukkanen A.W. New theory of hypergeometric series and new

prospects for computer algebra systems. Fundamental and applied

mathematics (in Russian) v. 5, no 3, pp. 716-745, 1999.

[2] Niukkanen A.W. A transformation of F4 suggestive of a new sym-

bolic software. Computer Physics Communications v. 126, pp. 137–

140, 2000.

[3] Niukkanen A.W., Paramonova O.S. Computer generation of compli-

cated transformations and reduction formulas for multiple hypergeo-

metric series. Computer Physics Communications v. 126, pp. 141 –

148, 2000.

[4] Niukkanen A.W. Extention of factorization principle on general hyper-

geometric series. Mat. Zametki (in Russian) v. 67, no 4, pp. 573-581,

2000.

[5] Niukkanen A.W. General linear transformations of hypergeometric

functions. Mat.Zametki (in Russian) v. 70, no 5, pp. 769-779, 2001.

[6] Niukkanen A.W. Analytical continuation formulas for multiple hyper-

geometric series. Fundamental and applied mathematics (in Russian)

v. 7, no 1, pp. 1-16, 2001.

[7] Niukkanen A.W. Quadratic transformations of multiple hypergeomet-

ric series. Fundamental and applied mathematics (in Russian) v. 8,

no 2, pp. 517-531, 2002.

[8] Paramonova O.S., Niukkanen A.W. Computer–aided analysis of trans-

formation formulas of the Appell and the Horn functions. Program-

mirovanie (in Russian) no 2, pp. 1-6, 2002.

[9] Niukkanen A.W. On the way to computerizable scientific knowledge

(by the example of the operator factorization method). Nucl. Instr.

and Methods A v. 502, pp. 639-642, 2003.

[10] I.B. Shchenkov. System of symbolic analytical transformations

SANTRA-2. Description of formal part of command language. Keldysh



— 26 —

Inst. of Appl. Math. Academy of Science USSR, Preprint No 1, 1989

(32p.).

[11] I.B. Shchenkov. System of symbolic analytical transformations

SANTRA-2. Description of dynamical functions. Keldysh Inst. of

Appl. Math. Academy of Science USSR, Preprint No 7, 1989 (24p.).

[12] I.B. Shchenkov. System of symbolic analytical transformations

SANTRA-2. Description of functions supporting non-algebraic op-

erations. Keldysh Inst. of Appl. Math. Academy of Science USSR,

Preprint No 21, 1989 (31p.).

[13] I.B. Shchenkov. System of symbolic analytical transformations

SANTRA-2. Operations over expression belonging to the main classes.

Keldysh Inst. of Appl. Math. Academy of Science USSR, Preprint

No 14, 1991 (38p.).

[14] I.B. Shchenkov. System of symbolic analytical transformations

SANTRA-2. Operations over matrices. Keldysh Inst. of Appl. Math.

Academy of Science USSR, Preprint No 15, 1991 (29p.).

[15] I.B. Shchenkov. System of symbolic analytical transformations

SANTRA-2. Program design and program checkout tools. Keldysh

Inst. of Appl. Math. Academy of Science USSR, Preprint No 1, 1993

(28p.).

[16] A.P.Budnik, E.V.Gai, N.S. Rabotnov, V.F. Turchin, S.V. Popov,

I.B. Shchenkov. Machine performance of analytical transformations

in mathematical physics with the help of REFAL language. Theses.

Symposium on processing of symbolic information. Computer Center

GSSR, Tbilisi, 1970.

[17] I.B. Shchenkov. Program in mathematical physics with the help of

REFAL language. Theses. Symposium on processing of symbolic in-

formation. Computer Center GSSR, Tbilisi, 1970.

[18] A.P.Budnik, E.V.Gai, N.S. Rabotnov, N.S.Klimov, V.F. Turchin, I.B.

Shchenkov. Basis wave functions and operator matrices in the nuclei

model. Yadernaya fizika (in Russian), V. 14, No 2, pp.304-314, 1971.



— 27 —

[19] V.N. Vinogradov, F.V. Gai, S.V. Popov, N.C. Rabotnov, I.B.

Shchenkov. Construction of physical bases of O(5) and SV(3) groups

with automated execution of symbolic transformations. Yadernaya

fizika (in Russian), V. 16, No 6, pp.1178-1187, 1972.

[20] And. V. Klimov, S.A. Romanenko. Programming system Refal-2 for

Unified Series of Electronoc Compating Machines. Description of com-

mand language. IAM, Academy of Science USSR, Moscow: 1987.

[21] And. V. Klimov, S.A. Romanenko. Programming system Refal-2 for

Unified Series of Electronoc Compating Machines. Description of func-

tions library. IAM, Academy of Science USSR, Preprint No 200, 1996.

[22] S.A. Romanenko. Implementation of Refal-2. IAM, Academy of Sci-

ence USSR, Moscow: 1987.

[23] A.W. Niukkanen, I.B. Shchenkov, G.B. Efimov. A project of a glob-

ally universal interactive program of formula derivation based on the

operator factorization technique. Keldysh Inst. of Appl. Math. RAS,

Preprint No 82, 2003, (24 p.).

[24] D.W. Lozier. The DLMF Project: A new initiative in classical special

functions, in C. Dunkl, M. Ismail and R. Wong, eds., Special Func-

tions: Proceedings of the International Workshop, World Scientific

(Singapore), pp. 207-220, 2000.


