
On Feasible Cases of Checking Multi-Agent

Systems Behavior

Michael Dekhtyar a,1 Alexander Dikovsky b,1 Mars Valiev c,1

a Dept. of CS, Tver St. Univ., Tver, Russia, 170000
Michael.Dekhtyar@tversu.ru

b IRIN, Université de Nantes, 2, rue de la Houssinière, BP 92208 44322 Nantes
Cedex 03 France

Alexandre.Dikovsky@irin.univ-nantes.fr
and

Keldysh Inst. for Appl. Math., Moscow, Russia, 125047
c Keldysh Inst. for Appl. Math. Moscow, Russia, 125047

valiev@spp.keldysh.ru

Abstract

The complexity of multi-agent systems behavior properties is studied. The behavior
properties are formulated using classical temporal logic languages and are checked
relative to the transition system induced by the multi-agent system definition. We
show that there are deterministic or nondeterministic polynomial time check algo-
rithms under some realistic structural and semantic restrictions on agent programs
and actions.

Key words: Multi-Agent System, Temporal logics, Model checking, Complexity

Dedicated to the 60th
anniversary of Anatol Slissenko

1 Introduction

Emerging in the late 80ies, the terms ‘Intelligent Agent’ (IA) and ‘Multi-Agent
System’ (MA-system) refer to a new and generic metaphor of an artificial intel-
ligence based computing technology. The range of IA applications extends from

1 This work was sponsored by the Russian Fundamental Studies Foundation
(Grants 01-01-00278 and 00-01-00254).

Preprint submitted to Elsevier Science

operating system interfaces, processing of satellite imaging data and WEB
navigation to air traffic control, business process management and electronic
commerce. This is the reason why there is no unified reading of the terms. We
address the reader to the book [26] and several publications [29,15,18,19,23,22]
discussing their different readings and definitions. Meanwhile, the intuitive ap-
peal of the term ‘Intelligent Agent’ is quite clear :

- an IA is autonomous, i.e. it can function by itself in predetermined envi-
ronments;

- it is reactive, i.e. it is capable of perceiving and responding to the stimuli
of other agents or of its medium;

- it is intelligent, i.e. its actions are determined by a certain logic and
estimation of its environment;

- and it is goal oriented, i.e. even if its functioning is continuous, it is ori-
ented on reaching states with some predetermined properties.

Concrete realizations of these properties determine particular agent ar-
chitectures. Agent’s intelligence capacity can vary from finite state control
structures or IF-THEN rules to logic programs, non monotone belief based
systems or deontic logics (see [26] for a discussion and references).

In this paper, we study the complexity of recognizing properties of behav-
ior of MA-systems. The research of this kind is rather scarce (besides the cited
book [26], see [9,10,14,28]). The reason for this lacuna is the difference in ori-
entations of MA-system architecture definitions and of logical or complexity
analysis of behavior properties. The former are oriented to higher expressivity
and adequacy relative to applications. The latter, on the contrary, needs ab-
straction from details and substantial simplifications of analyzed models. So
one of the problems is that of finding an adequate abstraction level. ¿From
many known agent architectures, we have chosen the so called IMPACT archi-
tecture described in detail in the book [26]. This very elaborated architecture
is neatly formalized in terms of state transition systems and carefully studied.
In particular, the complexity bounds of several aspects of decision making are
established in [26] (chapter 11), which partially characterize the complexity
of one-step state transition. This complexity being rather high (from NP and
FNP to ΠP

3 -complete), we simplify this architecture leaving only the agent
features concerning actions, decision policies and communication. We express
behavior properties of deterministic and nondeterministic MA-systems as the
properties of trajectories (i.e. finite or infinite paths) in the state transition
systems they define. This allows the use of classical temporal logics as behavior
properties description languages. The “MA-BEHAVIOR” problem we consider
in this paper, consists in verifying that a temporal logic formula Φ holds on
the tree of trajectories of a given MA-system. So it is a model checking type
problem. Model checking has been extensively studied since the early 80ies
(see [6,20,16,24,27,25,8,11,12,7]). There is however a substantial difference be-
tween the classical problem statement and that of this paper. Traditionally, the
complexity results are established for explicitly presented transition diagrams
or else for some their fixed representation (by a finite automata, by OBDD).

2

Meanwhile, we establish the complexity bounds with respect to MA-systems
whose operational semantics is presented in the form of transition systems.
MA-systems constitute a compact representation of the corresponding tran-
sition system. For example, even for a ground (i.e. variable-free) MA-system
A, the transition system T (A) describing its trajectories may have the size
exponential in |A|, because it can occur that it has O(2|A|) states. So the
lower bounds may be (and they are) more pessimistic as compared with the
classical ones for the same classes of logics. This being so, we nevertheless
establish in this paper interesting classes of MA-systems, in which the MA-
BEHAVIOR problem turns out to be decidable in deterministic or nondeter-
ministic polynomial time. And this is due to a new possibility of formulating
natural constraints in terms of structural parameters of MA-systems.

2 Agent and MA-system architecture

An intelligent agent (IA) a, as it shows up in this paper, has its internal state,
which is a finite set of ground atoms in the signature Pe

a, communicates other
agents through messages, which are ground message atoms in the signature
Pm

a , held in its message box, is capable of performing a number of param-
eterized actions in the signature Pact

a , constituting its action base ABa, is
controlled by a program Pa, whose semantics determines the set of executable
actions and uses its one-step semantics Acta in order to select the actions to
execute.
A multi-agent system (MA-system) A = {a1, ..., an} serves as a common
frame for interacting IA a1, ..., an. It fixes some finite extensional signature
Pe, message signature Pm, and intensional actions signature Pact such that
Pe

a ⊆ Pe, Pm
a ⊆ Pm, Pact

a ⊆ Pact for a ∈ A.
We adopt a domain closure assumption fixing some finite set of constants

C denoting the domain objects and considering a set Π of polynomial time
computable built-in predicates and operations (e.g., the standard arithmetical
operations over numbers).

Hereafter, by Ae,Am, Aact and Le,Lm, Lact we denote the sets of atoms
and literals in the corresponding predicate signatures, using constants in C
and variables in some countable set V. By Be,Bm, and Bact we denote the
corresponding sets of ground atoms, and by LBe,LBm, and LBact we denote
the corresponding sets of ground literals.

The message box of an agent a, denoted MsgBoxa can hold messages
received from other agents, i.e. pairs of the form (Sender agent,Message),
where Message is a ground atom in the signature Pm

a . We call local states the
pairs IMa = (Ia,MsgBoxa) consisting of the current individual state Ia and
the current message box contents MsgBoxa.
Action base ABa is a finite set of actions specified by expressions

3

(α(X1, ..., Xl), ADD(α), DEL(α), SEND(α)),
in which the atom α(X1, ..., Xl) (uniquely) determines the action’s name and
parameter list, ADD(α) and DEL(α) are lists of atoms to add to (respec-
tively, remove from) the state, and SEND(α) is a set of messages to send
to indicated agents. Atoms in ADD(α), DEL(α) and messages in SEND(α))
may share parameters X1, ..., Xl. So each ground substitution τ binding the
parameters fixes the corresponding action instance τ(α). An action α is ex-
panding if DEL(α) = ∅. Agent a is expanding if it has only expanding actions.
Program Pa defines the agent’s action policy. It is a logic program with the
clauses of the formH ← L1, ..., Ln, where n ≥ 0, the headH = α(t1, ..., tl) is an
(intensional) action atom in Aact such that (α(X1, ..., Xl), ADD(α), DEL(α),
SEND(α)) ∈ ABa, literals Li in its body are either action literals over
Lact, or (extensional) state literals in LBe, or message literals of the form
Received(Source agent,Message), or their negations ¬Received(Source agent,
Message) with Message ∈ Am, or atoms q(t̄) with built-in predicates q ∈ Π.
An agent’s program is positive if there are no negations in it’s clauses. An
agent with positive program is also called positive.

We suppose that the clauses are safe in the sense that all variables in the
head H occur positively in the body L1, ..., Ln, and that the program
P state

a = Pa ∪ {p ← | p ∈ Ia} ∪ {Received(Agent source,Message) ← |
(Agent source,Message) ∈MsgBoxa} is stratified [2].
Program semantics determines the set of actions which in principle can be
executed by the agent in its current local state. As it is well known (see [2]),
stratified logic programs have a unique minimal model M state

a computed by
a standard polynomial time fixpoint computation procedure from the groun-
dization gr(P state

a) of the program P state
a

2 .
The semantics Sem(Pa)(Ia,MsgBoxa) of Pa with respect to a local state

(Ia,MsgBoxa) is defined as Mact
a = M state

a ∩Bact. In other words, the seman-
tics is the set of ground actions implied by the program P state

a .
Agent’s one-step semantics. Given the set M = Mact

a of the actions
available for execution, the role of an agent’s one-step semantics Acta is to
choose (or guess) a set Acta(M) ⊆ M of the actions to execute. It is nat-
ural to suppose that a greater set of available actions leads to a greater
set of chosen actions. So we assume the monotonicity of one-step semantics:
Acta(M) ⊆ Acta(M

′) for M ⊆M ′. We distinguish deterministic and nonde-
terministic semantics.
Deterministic one-step semantics is a function in the class STEPD =
{Act : M → 2M | Act(M) is computable in polynomial time}. For instance,
the total deterministic semantics defined by Acttd(M) = M belongs to this

2 I.e. from the set of all ground instances of clauses in P state
a . It should be noted that

the size of gr(P state
a) can be exponential with respect to the size of P state

a . We remind
that the domain closure assumption we have adopted includes the requirement of
polynomial time calculability of the built-in predicates. So the polynomial time
complexity of the fixed point computation is preserved.

4

class. This semantics selects the whole M. We can also imagine other types of
deterministic one-step semantics, e.g. priority driven deterministic semantics
which presumes some partial order ≺ on the actions in Bact and is defined by
Act≺d(M) = {m ∈M | ¬∃m′ ∈M (m′ ≺ m)}. Deterministic agents are those
having a deterministic one-step semantics in STEPD.
Nondeterministic one-step semantics is a relationAct in the class STEPN

= {Act ⊆ M × 2M | Act is recognizable in polynomial time}. The simplest
nondeterministic one-step semantics in this class is the unit choice one-step
semantics defined by Actun(M) = {{p} | p ∈ M}. It guesses some available
action in M. Another example is the spontaneous one-step semantics defined
by Actsn(M) = {M ′ | M ′ ⊆ M}. It guesses any subset of available actions
in M. Nondeterministic agents are those having a nondeterministic one-step
semantics in STEPN .
Concurrent execution of actions. Let a set AS = {σ1(α1), ..., σk(αk)}
⊆ Bact of ground actions to execute be selected, each αj being an action defined
by an expression (αj(X1, ..., Xl), ADD(αj), DEL(αj), SEND(αj)) ∈ ABa

and σj being some ground substitution (1 ≤ j ≤ k). Then AS defines the
following concurrent local state change operator

⊗
a
AS.

The new internal state of a is defined by:⊗
a
AS(Ia) = ((Ia \

k⋃
j=1

σj(DEL(αj))) ∪
k⋃

j=1
σj(ADD(αj)))

3 .

The new message box states are defined for agents b 6= a by:⊗
a
AS(MsgBoxb) = MsgBoxb ∪

k⋃
j=1
{(a, σj(Msg)) | (b,Msg) ∈ SEND(αj)}.⊗

a
AS it computable in time polynomial with respect to |ABa|+ |AS|+ |Ia|.

A global state of the MA-system A is defined as an n-tuple of local states
of the agents a1, ..., an, i.e. S =< (Ia1 ,MsgBoxa1), . . . , (Ian ,MsgBoxan) > .
The set of all global states of A is finite and is denoted by SA.
MA-system one step semantics. We have defined one step of each indi-
vidual agent in A . The one step semantics of the whole system A will define
the one step transition ⇒A relation on SA as parallel execution of individual
agents one step actions and message sending. Let S =< (Ia1 ,MsgBoxa1),
..., (Ian ,MsgBoxan) > and S ′ = < (I ′a1

,MsgBox′a1
), ..., (I ′an

,MsgBox′an
) >

be some global states in SA. Then S ⇒A S ′ if S is transformed into S ′ as
follows: for each ai ∈ A its semantics Mact

i = Sem(Pai
)(Iai

,MsgBoxai
) is

calculated and the agent’s one-step semantics ASi = Actai
(Mact

ai
) creates the

action set to be executed concurrently. Then the message boxes of all agents in
A are emptied (so the messages in S are forgotten). On the next stage for each
ai ∈ A, in natural order, the actions ASi are executed concurrently producing
I ′ai

=
⊗
ai

ASi(Iai
) and putting for each j 6= i the corresponding messages of ai

3 So in the case where the same fact should be added and deleted, it will be added.
Of course, other strategies of resolving such conflicts can also be used, e.g. the one,
where adding and deleting annihilate each other.

5

into the message boxes of aj: MsgBox′aj
:=

⊗
ai

ASi(MsgBoxaj
).

Classes of MA-systems. We distinguish two main classes of MA-systems:
deterministic and nondeterministic. A MA-system A is deterministic if all its
agents are deterministic, otherwise it is nondeterministic.

In both classes of MA-systems, we consider the following subclasses in-
duced by natural constraints imposed on agents’ components. A MA-system
A = {a1, ..., an} is

- ground if each program Pai
is ground 4 ;

- k-dimensional if the arities of the action predicates in Pact and of the mes-
sage predicates in Pm are bounded by k (dimension-bounded, if k-dimensional
for some k). In fact, this property fixes the maximal number of parameters
involved in the actions and in the messages of A ;

- expanding if all its agents are expanding ;
- positive if all its agents are positive;
- m-agent if n ≤ m.
- r-signal if Pm consists of no more than r primitive symbols (signals).
The following simple proposition characterizes the complexity of the MA-

system’s one step semantics under these restrictions.

Proposition 1
(1) For each deterministic MA-system A , the transition function S ⇒A S ′

is computable in polynomial time with respect to |S|+ |A|+ |S ′| if A is ground
or dimension bounded, and is computable in deterministic exponential time in
the general case.
(2) For each nondeterministic MA-system A , the transition relation S ⇒A S

′

is recognizable in nondeterministic polynomial time with respect to |S|+ |A|+
|S ′| if A is ground or dimension bounded, and is recognizable in nondetermin-
istic exponential time in the general case.

MA-System Behavior. We define the behavior of MA-systems started in an
initial global state with empty message boxes. For a MA-systemA, its behavior
in some initial global state S0 =< (I0

a1
,MsgBox0

a1
), ..., (I0

an
,MsgBox0

an
) >,

where MsgBoxai
= ∅, 1 ≤ i ≤ n, can be seen as the set T = TA(S0) of

infinite trajectories (i.e. sequences of global states) of the form:
τ = (S0 ⇒A S

1 ⇒A ...S
t ⇒A S

t+1 ⇒A ...).
For a deterministic MA-system A, T consists of a single trajectory starting
in S0. If A is nondeterministic, then T is an infinite tree of trajectories with
the root node S0. The nodes of T are the global states S ∈ SA accessible from
S0 by the reflexive-transitive closure of ⇒A . If S is a node of T , then the
states in NextA(S) are its immediate successors in T . An infinite branch of
T starting in some its node is a trajectory in T .

Example 1 “Resource-allocation”
A resource allocation system consists of a manager-agent m owing some resource,

4 I.e., all its clauses are ground.

6

which it distributes on orders among four user-agents u1, u2, u3, u4. Each user has
its own strategy of ordering resources:
1) u1 is the first to order a resource; then it repeats its order on receipt of the
resource;
2) u2 orders the next moment after u1 has ordered;
3) u3 orders the next moment after u1 has received the resource from m;
4) u4 orders every time.
The manager m maintains the list of orders and fulfills the first order on the list,
one order at a time. Only one order of each user-agent can be held in the list. So if
m receives an order from some user before the previous order of this user has been
fulfilled, then the new order is discarded.

We implement this specification in the form of the following MA-system 5 RA.
The agents of RA are defined as follows. The states Iu1 of u1 can contain the

fact put order. The states Iui (i = 2, 3, 4) are always empty. The states Im of m
include the facts of the form order(X, I) (order(ui, j) means that the order of agent
ui is kept in the position j in the order list of m), actual(X) (an order of agent X
stands on the list of m), num orders(I) (I is the number of unfulfilled orders). In
order to let m and other users know that ui asks for a resource, this agent sends
them the message order. When m fulfills an order of ui, he sends to ui the message
ok. u1 sends to u3 the message ok in order to inform him about the receipt of a
resource.
Agent u1.
Actions: put : ADD = {put order}, SEND = {(m, order), (u2, order)};

receive : DEL = {put order}, SEND = {(u3, ok)};
Pu1 : put← ¬put order

receive← Received(m, ok)
Agent u2.
Actions: put : SEND = {(m, order)};
Pu2 : put← Received(u1, order)
Agent u3.
Actions: put : SEND = {(m, order)};
Pu3 : put← Received(u1, ok)
Agent u4.
Actions: put : SEND = {(m, order)};
Pu4 : put← .
Agent m.
Actions:
place order(X, I) : ADD = {order(X, I), actual(X)};
fulfill order(X) : DEL = {order(X, 1), actual(X)}, SEND = {(X, ok)};
shift(X, I) : ADD = {order(X, I)}, DEL = {order(X, I + 1)};
new num(I, J) : ADD = {num orders(J)}, DEL = {num orders(I)}
Pm :

new order(X)← Received(X, order),¬actual(X)

5 Strictly speaking, this MA-system definition does not fit in the constraints above
because the program place order is not stratified. However, it can be easily trans-
formed into an equivalent stratified program. We don’t do it because the resulting
program is greater and less clear.

7

first free(I)← num orders(I), I > 0
first free(1)← num orders(0)
place order(X, I)← new order(X), first free(I) (X ∈ {u1, u2})
place order(u3, I)← new order(u3), place order(X, I − 1) (X ∈ {u1, u2})
place order(u3, I)← new order(u3), first free(I),¬place order(u1, I),

¬place order(u2, I)
place order(u4, I)← new order(u4), place order(u3, I − 1)
place order(u4, I)← new order(u4),¬place order(u3, I − 1),

place order(X, I − 1) (X ∈ {u1, u2})
place order(u4, I)← new order(u4), first free(I),¬place order(u1, I),

¬place order(u2, I),¬place order(u3, I − 1)
fulfill order(X)← order(X, 1)
shift(X, 1)← fulfill order(Y), order(X, 2)
shift(X, I)← shift(Y, I − 1), order(X, I + 1)
new num(I, J)← num orders(I), num new orders(K), J = I + K

The initial state of m consists of the fact num orders(0). Then the fact new order(X)
indicates whether a new order of agent X should be placed in the list, the fact
first free(I) defines the position I in the list, where a new order should be placed,
place order places new orders at the end of the list in the predefined order u1 <
u2 < u3 < u4, fulfill order sends a resource to the first agent in the list, and shift
shifts the elements of the list one position to the left, new num(I, J) changes the
old value of num orders(I) by adding the number K of new orders unregistered in
MessageBoxm before the step. K is computed by the predicate num new orders
not defined here.

3 Logics for MA-System Behavior Properties

We follow the tradition of using temporal logic languages of discrete time for
expressing the properties of MA-system trajectories. In this paper, we use first
order extensions of PTL [11] whith the first order sentences on states (called
basic state formulas) in the place of propositional letters 6 . We call FLTL
the following minimal first order extension of PTL using the standard linear
time operators X (“nexttime”) and U (“until”) :
(p1) Each basic state formula φ is a FLTL formula.
(p2) If φ and ψ are formulas, then ¬φ, φ ∧ ψ and φ ∨ ψ are formulas.
(p3) If ψ1 and ψ2 are formulas, then X(ψ1) and ψ1Uψ2 are formulas. 2

The validity of a FLTL formula φ on a trajectory τ = S1, S2, in the
trajectory tree T = TA(S0) of a MA-system A is defined as follows. Let
S1 =< (Ia1 ,MsgBoxa1), ..., (Ian ,MsgBoxan) > .
1. For a basic state formula φ,

6 So these sentences do not depend on agents’ message boxes. This constraint does
not lead to the loss of generality (having in mind the possibility for each agent to
copy its messages into its internal state).

8

τ |= φ iff
n⋃

i=1
Iai
|=FO φ

(|=FO corresponds to the standard first order validity).
2. τ |= ¬φ iff τ 6|= φ.
3. τ |= φ1 ∧ φ2 iff τ |= φ1 and τ |= φ2.
4. τ |= φ1 ∨ φ2 iff τ |= φ1 or τ |= φ2.
5. τ |= X ψ iff τ 2 |= ψ (where τ k denotes the suffix Sk, Sk+1, ...,).
6. τ |= ψ1Uψ2 iff there exists k > 0 such that τ k |= ψ2 and τ j |= ψ1 for all
1 ≤ j < k. 2

We may also use in FLTL several other linear time operators easily ex-
pressible throuhg the standard ones: F (“sometimes”): Fφ = true Uφ, and its
dual G (“always”): Gφ = ¬(F¬φ), and V (“unless”): φ1Vφ2 = ¬(¬φ1U¬φ2).

In this paper, FLTL is used in the case of deterministic A , i.e. the case
where for any starting global state S0, the trajectory tree T = TA(S0) has the
single trajectory T = S0, S1, So the validity of a FLTL formula φ on this
tree TA(S0) |= φ is defined as T |= φ.

In the case of nondeterministic MA-systems, we consider two simple ex-
tensions of FLTL by branching quantifiers: ∃LTL and ∀LTL consisting re-
spectively of all formulas of the form E(φ) and A(φ), where φ ∈ FLTL. For
example, the validity of a formula E(φ) ∈ ∃LTL on the tree TA(S0) is defined
as: TA(S0) |= E(φ) iff τ |= φ for some trajectory τ in TA(S0) starting in S0.

In the case where the basic state first order formulas are quantifier (and
object variable) free, we do not distinguish FLTL from its propositional coun-
terpart LTL because their model checking and validity problems have the same
complexity modulo polynomial time.

For example, for a state formula Ψ, the formula G Ψ expresses the classical
safety property, and F Ψ expresses the so called accessibility.

Example 2 (example 1 continued)
For the MA-system RA above, one may check that the following formulas are valid
on the trajectory generated by RA :

G F Received(m,ui, ok)
(every agent receives the resource infinitely often),

G ∀I∀X∀Y (order(X, I) ∧ order(Y, I)→ X = Y)
(at each moment, only one order can be placed in any position of the list), whereas
the following formulas are not valid on this trajectory:

F (Received(m,u1, ok) ∧ X Received(m,u1, ok))
(there are two consecutive moments when u1 receives a resource) and

G (order(ui, 2)→ X X ¬Received(m,ui, ok)).

4 Behavior of deterministic MA-systems

The “MA-BEHAVIOR” problem we consider in this paper applies to de-
terministic MA-systems as well as to nondeterministic ones. Given such a
system A , an initial global state S0 and a formula Φ expressing a property

9

of trajectories, the MA-BEHAVIOR problem A, S0,Φ has a positive solution
if Φ holds on the tree TA(S0) of trajectories of A starting in S0 (denoted
TA(S0), S0 |= Φ). We see that it is of the kind of model checking, though
applied to MA-systems in the role of transition systems specification. We
consider some instances of the MA-BEHAVIOR problem under restrictions
imposed on semantics (deterministic, nondeterministic), on agent programs
(e.g. groundness restriction), on action bases (e.g. deletion absence), or signa-
tures (e.g. m-agent or k-dimensional). We first consider general deterministic
MA-systems.

4.1 A check algorithm for deterministic MA-systems

The set of global states of any MS-system A is finite. So when it is determinis-
tic, the trajectory τ(A, S0) is periodic. Hence, even though τ(A, S0) is infinite,
it can be folded into a finite structure. A straightforward algorithm of checking
a FLTL-formula on this structure would require an explicit representation of
this structure, and consequently, the space at least equal to the total size of its
global states. However, in our situation, there exists a more intelligent way of
model checking which looks-up the structure portionwise. It allows to obtain
essentially better complexity upper bounds for the MA-BEHAVIOR problem.

For a periodic trajectory τ = S0, S1, ..., St, ..., let k and N be the least
numbers such that St = St+N for all t ≥ k. In our model checking algorithm,
we use three auxiliary functions. The first one move(t,i), for any time point t
and a shift i, returns such time point j < k +N that Sj = St+i :
move(t,i)= IF t+ i < k +N THEN t+ i ELSE (t+ i− k)modN + k.

The second function F τ serves as the oracle, which returns the state F τ (t) = St

of trajectory τ at any time point t. The third is the boolean-valued function
FO Check(S,Φ), which given a global state S and a closed first-order formula
Φ, returns TRUE iff S |= Φ.

Let τ = τ(A, S0) be a periodic trajectory with parameters k and N , Φ
be a FLTL formula, and t be a time point. The following recursive algorithm
checks the property τ t |= Φ.

Algorithm DetCheck(τ,k,N,Φ, t)

(1) t := move(t, 0); p := 0; (18) ELSE R := N END IF
(2) r := 0; r′ := 0; R := 0; (19) FOR i = 0 TO R− 1 DO
(3) SELECT CASE of Φ (20) r := move(t, i); p := i;
(4) CASE Φ is a basic state formula (21) IF DetCheck(τ, k, N,Φ2, r)
(5) St := F τ (t); (22) THEN EXIT FOR END IF
(6) return FO Check(St,Φ); (23) END DO
(7) CASE Φ = Φ1 ⊕ Φ2 (⊕ ∈ {∧,∨}) (24) IF p = R− 1
(8) b1 := DetCheck(τ, k, N,Φ1, t); (25) THEN return TRUE
(9) b2 := DetCheck(τ, k, N,Φ2, t), (26) ELSE

10

(10) return b1 ⊕ b2; (27) b := TRUE ;
(11) CASE Φ = ¬Φ1 (28) FOR j = 0 TO p− 1 DO
(12) return ¬ DetCheck(τ, k, N,Φ1, t); (29) r′ := move(t, j);
(13) CASE Φ = X(Φ1) (30) IF ¬DetCheck(τ, k, N,Φ1, r

′)
(14) t1 := move(t, 1); (31) THEN b := FALSE ; EXIT FOR
(15) return DetCheck(τ, k, N,Φ1, t1); (32) END IF END DO;
(16) CASE Φ = Φ1UΦ2 (33) return b END IF
(17) IF t < k THEN R := k + N − t (34) END SELECT

Let smax(τ) = max{|St| | 0 ≤ t ≤ k +N}, s(F τ) and t(F τ) be the maximal
space and time required for computing F τ (t) for 0 ≤ t ≤ k+N and sFO(τ, n)
and tFO(τ, n) be the maximal space and time required to check whether St |=
Ψ for 0 ≤ t ≤ k +N and any first-order formula Ψ of length n.

Lemma 1 For given numbers k,N and t and an FLTL-formula Φ, the al-
gorithm DetCheck checks whether τ t |= Φ for a periodic trajectory τ with
parameters k and N, using F τ and FO Check as oracles. Its computation takes
space O(|t|+ |Φ|+d∗(Φ) log(k+N)+smax(τ)+s(F τ)+sFO(τ, |Φ|)), and time
pol(|t|+ |Φ|(k +N)(t(F τ) + tFO(τ, |Φ|)) for some polynomial pol.

Proof. It is easy to see that the first four cases of the algorithm (lines 4, 7,
11, 13) follow directly the definition of semantics of FLTL-formulas. In the
case Φ = Φ1UΦ2 (line 16) an integer R is defined (lines 17, 18) such that
St+i ∈ τ ′ = {St, St+1, . . . , SR−1} for any i ≥ 0, and τ t |= Φ⇔ τ ′t |= Φ. Then
the loop in lines 19-23 searches for a minimal i ≥ 0 such that τ t+i |= Φ2. If
such i does not exist then TRUE is returned (line 25). Otherwise, the loop
in lines 28-32 searches for an integer j < i such that τ t+j 6|= Φ1. If such j is
found, then τ t 6|= Φ and FALSE is returned (line 31). Otherwise the algorithm
returns TRUE (line 33).

Let us evaluate the complexity of DetCheck with input parameters k,N,Φ
and t. The trajectory τ is represented implicitly by the oracle F τ . Each re-
cursive call of DetCheck applies to some subformula Φ′ of Φ and to some
time point t′ < k + N. For every such pair (Φ′, t′), the corresponding call
of DetCheck is effected at most once (we consider two different occurrences
of the same subformula as two different subformulas). Hence, the number of
recursive calls of DetCheck does not exceed |Φ|(k + N). The case of basic
state formula Φ′ (lines 3-6) takes time pol1(tmax(F

τ) + tFO(τ, |Φ′|)) for some
polynomial pol1. So the total time in this case does not exceed pol1(|Φ|(k +
N)tmax(F

τ) + tFO(τ, |Φ′|)). Since the number of operators in all other cases
(lines 7-34) is linearly bounded by the number of recursive calls of DetCheck in
lines 8,9,12,15,21 and 30, the total time required for these operators does not
exceed pol2(|Φ|(k+N)) for some polynomial pol2. Therefore, DetCheck takes
time bounded by pol(|t|+ |Φ|(k+N)(t(F τ)+ tFO(τ, |Φ|)) for some polynomial
pol.

In order to evaluate the space needed to execute DetCheck, we should

11

consider some implementation details. At each given moment of the computa-
tion, the needed space is the space taken by the call stack, whose call frames
keep input parameters and local variable values of DetCheck recursive calls
invoked and not finished by the moment. Since the input parameters k and N
never change, they should not be doubled while recursive calls of DetCheck.
Now let (Φ1, t1), . . . , (Φi, ti), . . . , (Φm, tm) be the sequence of call frames in the
call stack. Only the top subformula Φm can be a basic state formula. If this is
the case, this call can be executed in space O(smax(τ) + s(F τ) + sFO(τ, |Φ|)).
Any other call (Φi, ti) in the stack being recursive, its frame keeps several
boolean variables and integer variables with the values in [0, k+N) (e.g., when
Φi = Φ1

i UΦ2
i , the frame keeps integer variables t, r, R, r′, i, j, the boolean vari-

able b and a fixed number of auxiliary variables). Hence, the size of one frame
does not exceed c log(k + N) + |Φi| for some constant c. It is not difficult to
implement the computation of DetCheck in such way that the total size of all
frames on the stack |Φ1|+. . .+|Φm| does not exceed |Φ|. In order to bound the
call stack depth m, let us notice that in the cases of unary operators: Φi = ¬Φ′

or Φi = XΦ′, our algorithm is tail recursive, so they can appear at the last
place only, i.e. when i = m. As it concerns the binary operators Φi, i > 1, we
remark that d∗(Φi) > max{d∗(Φi−1), d

∗(Φi−2)}. Therefore, m ≤ 2d∗(Φ) and
the total size of the call stack is O(|t| + |Φ| + d∗(Φ) log(k + N) + smax(τ) +
s(F τ) + sFO(τ, |Φ|)). 2

Proposition 1 shows that the oracle F τ in the lemma can be efficiently
computed along the trajectories τ generated by MA-systems:

Lemma 2 There is a polynomial pol and an algorithm, which for a MS-
system A , an initial state S0 and a time point t ≥ 0, computes the state St

of the trajectory τ(A, S0) in space pol(|A|+ max{|Sr| | 0 ≤ r ≤ t}).

The next assertion provides upper bounds on the parameters of the periodic
trajectories of deterministic MA-systems.

Lemma 3 The trajectory τ(A, S0) of a deterministic MA-system A in initial
state S0 is periodic with parameters k(A, S0) and N(A, S0). If A is ground,
then k(A, S0) + N(A, S0) ≤ 2pol(|A|+|S0|). In the general case, k(A, S0) +

N(A, S0) ≤ 22pol(|A|+|S0|)
.

Proof. Since A is deterministic and the set GSA of its global states is finite,
the trajectory τ(A, S0) is periodic. The sum of its parameters k(A, S0) +
N(A, S0) is bounded by the size of GSA. When A is ground, the atoms in
global states are those found in A∪S0. If M = |A|+ |S0| and n is the number
of agents in A , then |GSA| ≤ 2Mn.

In the general case, the number of ground atoms in global states of A is
bounded by a = 2pol(M) for some polynomial pol. So |GSA| ≤ 2an. 2

From Lemmas 1, 2 and 3, we obtain upper complexity bounds of verification
of the properties of MA-systems behavior, expressible in FLTL.

12

Proposition 2 Let a MA-system A and an initial state S0 be given, and k =
k(A, S0), N = N(A, S0). Then for some polynomial pol, the model checking
of a FLTL-formula Φ over the trajectory τ(A, S0) can be accomplished within
the space 2pol(|Φ|+|A|) in the general case, and the space pol(|Φ| + |A|) in the
ground case.

5 Ground deterministic MA-systems

By Proposition 2, the MA-BEHAVIOR problem for ground MA-systems be-
longs to PSPACE. We point out two interesting cases, where it is decidable in
deterministic polynomial time.

Theorem 1 (1) The MA-BEHAVIOR problem is decidable in polynomial
time in the class of ground, expanding and positive MA-systems for the be-
havior properties Φ ∈ LTL.
(2) The MA-BEHAVIOR problem is decidable in polynomial time in the class
of ground, expanding, and r-signal m-agent systems A such that m2 ∗ r =
O(log |A|), for the behavior properties Φ ∈ LTL.

Proof. (1) We show that in this case, the time complexity of the algorithm
DetCheck can be bounded by a polynomial in |A|+|Φ|. In the lemma to follow
we establish a monotonicity property of trajectories.

Lemma 4 Let A be an expanding and positive MA-system (not necessarily
ground), S0 be its initial state, and τ = τ(A, S0) = S0, S1, . . . St, St+1, . . . be its
trajectory. Then for any time point t and two consecutive global states St =<
(I t

a1
,MsgBoxt

a1
), ..., (I t

an
,MsgBoxt

an
) > and St+1 =< (I t+1

a1
,MsgBoxt+1

a1
),

..., (I t+1
an

,MsgBoxt+1
an

) > of τ, the following inclusions hold for every 1 ≤ i ≤ n:
I t
ai
⊆ I t+1

ai
and MsgBoxt

ai
⊆MsgBoxt+1

ai
.

Proof. The inclusions of DB-states is ensured by the absence of deletions in
the actions of the agents of A . The message boxes inclusion is proved by in-
duction. It is evident for t = 0, since MsgBox0

ai
= ∅ for every 0 ≤ i ≤ n. Now,

let us suppose that for any a ∈ A, MsgBoxt
a ⊆MsgBoxt+1

a . Since Pa is pos-
itive, M t

a = Sem(Pa)(I
t
a,MsgBoxt

a) ⊆ M t+1
a = Sem(Pa)(I

t+1
a ,MsgBoxt+1

a).
Then, due to monotonicity of one-step semantics, the inclusion Actta ⊆ Actt+1

a

holds. Therefore, the set of messages which a sends at the step t+ 1, includes
all the messages it has sent at the step t. These messages arrive at the message
boxes of the agents ai 6= a at the step t+2, so MsgBoxt+1

ai
⊆MsgBoxt+2

ai
and

the assumption is valid for t+ 1. 2

Turning back to the proof of the theorem, let us notice that from the
lemma 4 it follows that at each moment t, when St 6= St+1, at least one new
action α ∈ ABa of some agent a ∈ A should be fired, i.e. α ∈ Actta\Actt−1

a . Let

13

NA = Σa∈A|ABa|. Then after NA steps the trajectory τ cannot be changed,
i.e. St = St+1 for any t > NA. Therefore, for this trajectory τ, the sum of
its parameters k + N does not exceed NA ≤ |A|. By lemma 1, we obtain for
algorithm DetCheck the time bound pol1(|Φ||A|(t(F τ) + tFO(τ, |Φ|)) for some
polynomial pol1. Since we are interested only in states St of τ with t ≤ k+N
and |St| ≤ |A|, it follows from lemma 2 that t(F τ) ≤ pol2(|A|) for some poly-
nomial pol2. The validity of a ground first-order formula on a state St of τ can
also be recognized in time polynomial in |St|, i.e. tFO(τ, |Φ|) ≤ pol3(|A|+ |Φ|)
for some polynomial pol3. Therefore, the algorithm DetCheck checks whether
τ |= Φ in time bounded by pol(|A|+ |Φ|) for some polynomial pol.

(2) In this case we also show that time of the algorithm DetCheck can be
bounded by a polynomial in |A|+ |Φ|. Let τ = τ(A, S0) = S0, S1, . . . St, . . . be
a trajectory of A and T = k +N be such minimal step that ST = ST−N for
some N > 0. Since A is expanding, then for every a ∈ A and for every t ≥ 0,
the local state I t

a is not reduced: I t
a ⊆ I t+1

a . Let Nm be the total number of all
possible global states of message boxes of A . Then for any t ≥ 0 such that
t +Nm + 1 < T, there is a pair St′ , St′+1 in the subsequence St, . . . , St+Nm+1

such that for some a ∈ A, its local state increases at the step t′ : I t′
a ⊂ I t′+1

a .
But since A is ground, all the atoms added to I t′

a at this step are present in A
itself. So the number of steps t′ at which I t′

a increases is bounded by |A|. Then
the total number of steps at which the DB-state of some agent a ∈ A increases
does not exceed m|A|. Therefore, T = k + N ≤ Nmm|A|. Since the number
of different messages in the message box of a sent by a particular agent is
bounded by r and the number of agents of A is bounded by m, it is evident
that Nm ≤ 2rm2 ≤ c|A| for some constant c, and therefore, τ k+N ≤ cm|A|2.
This will allow to obtain a polynomial time bound for algorithm DetCheck
along the same lines as in the case (1). 2

For reasons of space, we do not consider in this paper the cases resulting
from weakening the constraints imposed on the MA-systems by Theorem 1. In
general, it causes a substantial increase of complexity of the MA-BEHAVIOR
problem, especially if the constraint of groundness is lifted. There is however,
an interesting particular case.

Corollary 1 The MA-BEHAVIOR problem is decidable in polynomial time
in the class of nonground expanding, positive k-dimensional MA-systems, for
behavior properties Φ ∈ LTL and for any fixed k.

Proof. Let A be an expanding, positive and k-dimensional MA-system, S0

be its initial state, τ = τ(A, S0) = S0, S1, . . . St, St+1, . . . be its trajectory, nact

be the total number of possible ground actions and ng be the total number of
possible ground extensional atoms in DB-states and in message boxes of agents
in A . By lemma 4, the inclusions I t

a ⊆ I t+1
a and MsgBoxt

a ⊆ MsgBoxt+1
a

hold for each a ∈ A and all moments t. Therefore, if St 6= St+1, then there is a
ground action α such that α ∈ Actta\Actt−1

a for at least one agent a ∈ A. Hence,
the sum of parameters k(τ) +N(τ) does not exceed nact and the polynomial

14

time bound of the theorem follows directly from lemma 1 and the following
assertion.

Lemma 5 For all k, there is a polynomial pol such that for any k-dimensional
MA-system A and a starting global state S0, nact ≤ pol(|S0| + |A|), ng ≤
pol(|S0| + |A|) and sτ

max ≤ n pol(|S0| + |A|), where τ = τ(A, S0) and n is
the number of agents in A .

Proof. Since the total number of action names and of predicates in the ex-
tensional and message signatures of agents in A does not exceed |A|, and
the total number of constants in ground terms of τ is bounded by |S0|+ |A|,
the lemma follows from the evident inequalities nact ≤ (|S0| + |A|)k and
ng ≤ (|S0|+ |A|)k. 2

6 Ground nondeterministic MA-systems

This class of MA-systems has an interesting subclass, where the MA-BEHAVI-
OR problem is solvable in nondeterministic polynomial time.

Theorem 2 The MA-BEHAVIOR problem with respect to behavior properties
Φ ∈ ∃LTL(∀LTL) in the class of ground, expanding, and r-signal m-agent
systems A such that m2 ∗ r = O(log |A|) is NP-complete (respectively coNP-
complete).

Proof. We present a proof for ∃LTL formulas. The case of ∀LTL formulas is
treated using the equivalence: τ(A, S0) |= E(Ψ) ⇔ τ(A, S0) 6|= A(¬Ψ).

Upper bound. Let A be a ground, expanding, and r-signal m-agent
system such that m2 ∗ r = O(log |A|). A nondeterministic polynomial time
algorithm for the MA-BEHAVIOR problem is based on the following length
upper bound for some trajectories of τ(A, S0).

Lemma 6 There is a polynomial p(n) such that τ(A, S0) |= E Ψ iff there is a
trajectory µ = S0, . . . , St, . . . ∈ τ(A, S0) with Si =< (I i

a,MsgBoxi
a) | a ∈ A >

and a step T ≤ p(|A|+ |Ψ|) such that µ |= Ψ and I t
a = IT

a for all t > T and
every a ∈ A.

Proof. We will establish several auxiliary assertions concerning the validity
of FLTL-formulas on trajectories with long series of subsequent repetitions
of states. We remind that the formulas depend only on DB-states (and not
on the message boxes) in the trajectories. Let µ = M0, . . . ,M i, . . . and ν =
N0, . . . , N j, . . . be two trajectories and d ≥ 0 be an integer. We say that a
pair (µ,M i) is d-equivalent to a pair (ν,N j) (denoted: (µ,M i) ∼d (ν,N j)) iff
µi |= ϕ ⇔ νj |= ϕ is true for any FLTL-formula ϕ of depth d(ϕ) ≤ d.

15

Assertion 1 If the equivalences (µ,M i) ∼d (ν,N j) and (µ,M i+1) ∼d+1

(ν,N j+1) hold for some d ≥ 0, then (µ,M i) ∼d+1 (ν,N j) is true.

Indeed, let (µ,M i) ∼d (ν,N j) and (µ,M i+1) ∼d+1 (ν,N j+1), and let ϕ be a
FLTL-formula of depth d+1. If ϕ = ϕ1⊕ϕ2 (⊕ ∈ {∧,∨}) or ϕ = ¬ϕ1, then
d(ϕ1) ≤ d and d(ϕ2) ≤ d. By the assumption, µi |= ϕk ⇔ νj |= ϕk (k =
1, 2). Hence, µi |= ϕ ⇔ νj |= ϕ. If ϕ = X(ϕ1), then by the assumption,
µi+1 |= ϕ1 ⇔ νj+1 |= ϕ1 and µi |= ϕ ⇔ νj |= ϕ. Now suppose that µi |= ϕ
for ϕ = ϕ1Uϕ2. Then by definition of operator U, (i) µi |= ϕ2 or else (ii)
µi |= ϕ1 and µi+1 |= ϕ. In the case (i), since d(ϕ2) = d, by the first assumption,
we obtain νj |= ϕ2 and consequently, νj |= ϕ. In a similar manner, in the case
(ii), we show that νj |= ϕ1. Moreover, from the second assumption, we deduce
νj+1 |= ϕ. So in this case too, we establish νj |= ϕ. Therefore, in all the cases,
νj |= ϕ and (µ,M i) ∼d+1 (ν,N j).

This assertion directly implies the next one:

Assertion 2 If for some d ≥ 0, (µ,M i) ∼0 (ν,N j) and (µ,M i+1) ∼d

(ν,N j+1), then (µ,M i) ∼d (ν,N j).

Assertion 3 Let µ = M0, . . . be a trajectory and i be a step number such that
(µ,M i) ∼d (µ,M i+1) ∼d (µ,M i+2). Then (µ,M i) ∼d+1 (µ,M i+1).

Let ϕ be some FLTL-formula of depth d(ϕ) = d + 1. If ϕ is a boolean
combination of formulas of depth ≤ d, then µi |= ϕ ⇔ µi+1 |= ϕ, since
(µ,M i) ∼d (µ,M i+1). If ϕ = X(ϕ1), then d(ϕ1) ≤ d and µi |= ϕ⇔ µi+1 |= ϕ,
since (µ,M i+1) ∼d (µ,M i+2). If ϕ = ϕ1Uϕ2, then d(ϕ1) ≤ d and d(ϕ2) ≤ d.
Suppose that µi |= ϕ. Then by definition of operator U, we have µi |= ϕ2 or
else µi |= ϕ1 and µi+1 |= ϕ. In both cases, it is evident that µi+1 |= ϕ (in the
first case the assumption M i ∼d M

i+1 is used). On the other hand, assume
µi+1 |= ϕ. Then (i) µi+1 |= ϕ1 or (ii) µi+1 |= ϕ2. In the case (i), the assumption
(µ,M i) ∼d (µ,M i+1) implies µi |= ϕ1 and, together with µi+1 |= ϕ, it implies
µi |= ϕ. The case (ii) is similar.

Assertion 3 directly implies

Assertion 4 Let µ = M0, . . . be a trajectory and i be a step number such that
M i = M i+1 = M i+2 = . . . = M i+2+K. Then (µ,M i) ∼K (µ,M i+1).

Assertion 5 Let µ = M0, . . . be a trajectory and i be a step number such that
M i = M i+1 = M i+2 = . . . = M i+2+K. Let trajectory µ′ = M0, . . . ,M i−1,M i+1,
. . . ,M i+2+K , . . . be obtained from µ by deleting M i. Then (µ,M0) ∼K (µ′,M0).

¿From assertion 4, it follows that (µ,M i) ∼K (µ,M i+1). Thus, (µ,M i−1) ∼0

(µ′,M i−1) and (µ,M i) ∼K (µ′,M i+1). By assertion 2, this implies (µ,M i−1) ∼K

(µ′,M i−1). Then since (µ,M i−2) ∼0 (µ′,M i−2), we get further (µ,M i−2) ∼K

(µ′,M i−2) and so on until we get (µ,M0) ∼K (µ′,M0).
Now, returning to the proof of lemma 6, let us suppose that τ(A, S0) |=

16

E Ψ. This means that λ |= Ψ for some trajectory λ = S0, . . . , St, . . . ∈
τ(A, S0). Let t1, t2, . . . , ti, . . . , tk be those steps of λ at which agents’ DB-
states grow, i.e. I ti

a ⊂ I ti+1
a for some a ∈ A. Since A is expanding, k is

bounded by the total number of actions of agents in A . So k ≤ |A|. By the
choice of steps ti, the DB-states of all agents in A do not change at steps
ti + 1, ti + 2, . . . , ti+1 for all i. Let ki = ti+1 − ti be the length of such stable
subsequence of DB-states. Let Nm denote the number of all possible states
of message boxes of A . Then, as it was shown in the proof of theorem 1
(2), Nm ≤ c|A| for some constant c. Let d = d(Ψ). If ki > d + 2 + Nm, then
there are steps l and r, ti + d + 2 < l < r < ti+1, such that Sl = Sr. Then
τ(A, S0) has also the trajectory µ = S0, . . . , Sl, Sr+1, . . . obtained from λ by
deleting states Sl+1, . . . , Sr. Assertion 5 ensures that (λ, S0) ∼d (µ, S0) and
therefore, µ |= Ψ. Thus, there is a trajectory µ ∈ τ(A, S0) such that µ |= Ψ
and the length of longest subsequence of equal DB-states in µ is bounded by
d + 2 + Nm ≤ c(|A| + |Ψ|). For this trajectory, we have a stabilization step
T ≤ tk + 1 ≤ k + k(d+ 2 +Nm) ≤ pol(|A|+ |Ψ|).

The upper bound follows from lemma 6 and theorem 1(2). Let A be a
ground, expanding, and r-signal nondeterministic m-agent system verifying
the condition m2 ∗ r = O(log |A|), S0 be its initial state, τ = τ(A, S0) be
the tree of trajectories of A starting in S0 and Ψ be an LTL formula. Set
T = pol(|A|+ |Ψ|), where pol is the polynomial defined in lemma 6. In order
to check whether τ(A, S0) |= E Ψ, we use the following nondeterministic al-
gorithm NdetCh:
(1) guess in tree τ(A, S0) a finite trajectory λ = S0, S1, . . . , ST , . . . , S2T , in
which IT

a = IT+1
a = IT+2

a = . . . = I2T
a for all a ∈ A;

(2) check whether λ′ |= Ψ using algorithm DetCheck as it is implemented in
theorem 1 (2) and return answer ”Yes” if λ |= Ψ.

It is evident that NdetCh works in nondeterministic polynomial time. In
order to prove its correctness, we remark that if τ(A, S0) |= E Ψ, then by
lemma 6, there is a trajectory λ ∈ τ(A, S0) verifying λ |= Ψ and having a
finite prefix λ′ = S0, . . . , ST such that λ′ |= Ψ and Ij

a = IT
a for all a ∈ A and

every j > T. So at the step (1), the algorithm can guess this short finite prefix
and return the answer ”Yes”. Conversely, if NdetCh returns the answer ”Yes”,
then in τ(A, S0), there is a finite trajectory λ = S0, S1, . . . , ST , . . . , S2T such
that λ |= Ψ and IT

a = IT+1
a = IT+2

a = . . . = I2T
a for all a ∈ A. Since T > Nm,

there are such i and j (T < i < j < 2T) that Si = Sj. Then the prefix of
λ of length T can be extended to some infinite trajectory λ′ ∈ τ(A, S0) such
that λ′ = S0, . . . , ST , S ′T+1, S ′T+2, . . . and I ′ja = IT

a for all a ∈ A and j > T .
For this trajectory λ′, λ′ |= Ψ and τ(A, S0) |= E Ψ.

Lower bound. It is easy to show that the problem SAT is reducible in
polynomial time to MA-BEHAVIOR problem for nondeterministic ground,
expanding, and 0-signal 1-agent systems. Indeed, let α be a propositional for-
mula and let V = {x1, . . . , n} be the set of all its propositional letters. Let us
consider the MA-system A having a single agent a with extensional signa-
ture V , with action base ABa consisting of n actions aci (i = 1, . . . , n), each

17

action aci adding xi to Ia and with program Pa consisting of facts aci ←
(i = 1, . . . , n). Then it is easy to check that for S0 = ∅, ϕ ∈ SAT ⇔
τ(A, S0) |= E (ϕ) if we choose the unit-choice nondeterministic one-step se-
mantics and ϕ ∈ SAT ⇔ τ(A, S0) |= EX (ϕ) if we choose the spontaneous
nondeterministic one-step semantics. 2

The complexity of MA-BEHAVIOR problem increases substantially if we
weaken requirements to MA-systems. We do not consider this case for space
reasons.

Conclusion

IA and MA-system architectures published within the past few years are dis-
similar and diversified because they represent various application domains of
this new software technology. Technically, our study concerns one such specific
architecture. However, it illustrates the way in which penetrating deeply in a
complex MA-system architecture permits in some cases to understand more
deeply the behavior properties and in this way, to discover interesting classes
of MA-systems with with efficiently checked behavior properties.

References

[1] Araragi, T., Attie, P., Keidar, I., Kogure, K., Luchangco, V., Lynch, N., and
Mano, K., On Formal Modeling of Agent Computations. In: NASA Workshop
on Formal Approaches to Agent-Based Systems. April, 2000.

[2] Apt, K. R., Logic Programming. In: J. van Leeuwen (Ed.) Handbook of
Theoretical Computer Science. Volume B. Formal Models and Semantics,
Chapter 10, Elsevier Science Publishers B.V. 1990, 493-574.

[3] Barringer, H., Fisher, M., Gabbay, D., Gough, G., and Owens R. METATEM:
An Introduction. Formal Aspects of Computing, 1995, 7:533-549.

[4] Bernholz, O., Vardi, M. Y., Wolper, P. An automata-theoretic approach
to branching time model checking. Proc. Int. Workshop ”Computer aided
verification”, Stanford, 1994 (LNCS).

[5] Bradfield, J., Stirling, C., Modal logics and mu-calculi. In: J. Bergstra, A.
Ponse and S. Smolka (Eds.) Handbook of Process Algebra. 2001, Elsevier, North-
Holland, 293-332.

[6] Clarke, E. M., Emerson, E. A. Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Proc.of Workshop on Logics of
Programs, LNCS, N. 181, 1981, 52-71.

[7] Clarke, E. M., Grumberg, O. and Long, D., Model Checking, NATO ASI series
F, v. 152, 1996.

18

[8] Clarke, E. M., Grumberg, O. and Peled, D., Model Checking, MIT Press, 2000.

[9] Dekhtyar, M. I., Dikovsky, A. Ja., On Homeostatic Behavior of Dynamic
Deductive Data Bases. In: Proc. 2nd Int. A.P.Ershov Memorial Conference
“Perspective of Systems Informatics”, LNCS, N. 1181, 1996, 420-432.

[10] Dekhtyar, M. I., Dikovsky, A. Ja., Valiev, M. K. Applying temporal logic to
analysis of behavior of cooperating logic programs. LNCS, N. 1755, 2000, 228-
234.

[11] Emerson, E. A. Temporal and modal logic. In: J. van Leeuwen (Ed.), “Handbook
of Theor. Comput. Sci.”, Elsevier Sci. Publishers, 1990.

[12] Emerson, E. A. Model checking and the mu-calculus. In: N. Immerman, P.
H. Kolaitis (Eds.), “Descriptive Complexity and Finite Models”. Proc. of a
DIMACS Workshop, 1996, 185-214.

[13] Fisher, M., Dixon, C., Peim, M., Clausal temporal resolution, ACM
Transactions on computational logic, 2(1), 2001.

[14] Fisher, M., Wooldridge, M., Specifying and Verifying Distributed Intelligent
Systems. In: M. Filgueiras and L. Damas (Eds.) Progress in Artificial
Intelligence – Sixth Portuguese Conf. on Artificial Intelligence. LNAI, N. 727,
1993, 13-28.

[15] Jennings, N., Sycara, K. and Wooldridge, M. A roadmap of agent research and
development Autonomous Agents and Multi-Agent Systems, 1998, 1(1):7-38.

[16] Lichtenstein, O., Pnueli, A., Checking that finite state concurrent programs
satisfy their linear specification. In: Proc. 12th ACM Symposium on Principles
of Programming Languages. 1985, 97-107.

[17] Manna, Z., Pnueli, A. The temporal logic of reactive and concurrent systems:
Specification. Springer Verlag, 1991.

[18] Müller, J. P., Architectures and applications of intelligent agents: A survey. The
Knowledge Engineering Review, 1998, 13(4):353-380.

[19] Petrie, C., What is an agent? In: J.P. Müller, M. J. Wooldridge, and N. R.
Jennings (Eds.) Intelligent Agents III – Proc. of the Third Intern. Workshop
on Agent Theories, Architectures, and Languages, LNAI, N. 1193, 41-43.

[20] Queille, J. P., Sifakis, J., Specification and verification of concurrent programs in
CESAR. In: Proc. of the 5th International Symposium on Programming, LNCS,
N. 137, 1982, 195-220.

[21] Rao, A. S. and Georgeff, M. P., A model-theoretic approach to the verification
of situated reasoning systems. In: Proceedings of the Thirteen’s International
Joint Conference on Artificial Intelligence (IJCAI-93). 1993, 318-324.

[22] Reiter, R. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, 2001.

19

[23] Shoham, Y., Agent oriented programming. Artificial Intelligence, 1993, 60:51-
92.

[24] Sistla, A. P., Clarke, E. M., The complexity of propositional linear temporal
logic. J.ACM, 1985, 32(3): 733-749.

[25] Stirling, C., Walker, D., Local model checking in the Mu-calculus. Lecture Notes
in Computer Science, N. 351, 1989.

[26] Subrahmanian, V. S., Bonatti, P., Dix, J., et al., Heterogeneous Agent Systems,
MIT Press, 2000.

[27] Vardi, M., Wolper, P., An automata-theoretic approach to automatic program
verification. In: Proc. of the IEEE Symposium on Logic in Computer Science,
1986, 332-344.

[28] Wooldridge, M., The Computational Complexity of Agent Design Problem. In:
E. Durfee, (Ed.) Proc. of the Fourth Intern. Conf. on Multi-Agent Systems
(ICMAS 2000), IEEE Press, 2000.

[29] Wooldridge, M., Jennings N. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 1995, 10(2).

20

