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Abstract
Inspired by the remarkable performance of the Leray-α (and the Navier–Stokes
alpha (NS-α), also known as the viscous Camassa–Holm) subgrid scale model
of turbulence as a closure model to Reynolds averaged equations (RANS) for
flows in turbulent channels and pipes, we introduce in this paper another subgrid
scale model of turbulence, the modified Leray-α (ML-α) subgrid scale model
of turbulence. The application of the ML-α to infinite channels and pipes gives,
due to symmetry, similar reduced equations as Leray-α and NS-α. As a result
the reduced ML-α model in infinite channels and pipes is equally impressive as a
closure model to RANS equations as NS-α and all the other alpha subgrid scale
models of turbulence (Leray-α and Clark-α). Motivated by this, we present an
analytical study of the ML-α model in this paper. Specifically, we will show
the global well-posedness of the ML-α equation and establish an upper bound
for the dimension of its global attractor. Similarly to the analytical study of
the NS-α and Leray-α subgrid scale models of turbulence we show that the
ML-α model will follow the usual k−5/3 Kolmogorov power law for the energy
spectrum for wavenumbers in the inertial range that are smaller than 1/α and
then have a steeper power law for wavenumbers greater than 1/α (where α > 0
is the length scale associated with the width of the filter). This result essentially
shows that there is some sort of parametrization of the large wavenumbers
(larger than 1/α) in terms of the smaller wavenumbers. Therefore, the ML-α
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model can provide us another computationally sound analytical subgrid large
eddy simulation model of turbulence.

Mathematics Subject Classification: 35Q30, 37L30, 76D03, 76F20, 76F55,
76F65

1. Introduction

In recent years analytic subgrid scale models of turbulence have been extensively studied (see,
e.g., [5–7, 9,3,15,16]). Of particular interest to us in this paper is the so-called Leray-α model
of turbulence:

∂tv − ν�v + (u · ∇)v = −∇p + f,

∇ · u = ∇ · v = 0,

v = u − α2�u,

u(x, 0) = uin(x).

(1)

Formally, the above system is the Navier–Stokes equations system when α = 0, i.e. u = v.
In order to study the question of existence of solutions to the Navier-Stokes equation (NSE),
Leray considered in his pioneering work [23] a general regularization form of the Navier-Stokes
equation in which the relationship between u and v in (1) is given by u = φα ∗ v, where φα

is an arbitrary smoothing kernel such that u converges to v, in some sense, as α → 0+. In the
particular case of system (1), the kernel φα is nothing other than the Green’s function associated
with the Helmholtz operator (I − α2�). For this very reason, system (1) is called the Leray-
α model. For abstract mathematical study, one can use different smoothing kernels which
could lead to a more general smoothing operator between u and v (see, e.g., [25]). However,
motivated by the remarkable performance of the Navier-Stokes-α (also known as the viscous
Camassa–Holm equations (VCHE) or the Lagrangian-averaged Navier-Stokes-α (LANS-α))
as a closure model of turbulence in infinite channels and pipes (see [5–7]) the Helmholtz
relation between the unknown functions u and v becomes the natural choice. This is because
this Helmholtz relation between the unknown function u and v leads to a simple system
of differential equations which can be solved explicitly when the Navier-Stokes-α (NS-α)
system is applied to infinite channels and pipes. Most importantly, these explicit solutions
give excellent agreement with experimental data for a wide range of huge Reynolds numbers,
up to about 17 × 106. This Helmholtz relation between u and v can be traced back from the
derivation of the Euler-α model employing the Hamilton variational principle [21]. In [11],
however, another approach connecting Lagrangian and Eulerian formulations for the Euler
and Navier–Stokes equations was introduced. This exact connection between Lagrangian and
Eulerian formulations gives another perspective—a numerical approximation point of view—
for looking at the relation between the Navier–Stokes equations and the NS-α (LANS-α or
VCHE) and Leray-α models.

Viewed as a subgrid scale model of turbulence, system (1) has been studied analytically
in [9] and computationally in [18, 19, 22]. In particular, it was stressed in [9] that by using
this model as a closure model in turbulent channels and pipes one obtains the same reduced
system of equations as those produced by the Navier-Stokes-α (NS-α) model, whose solutions
give, as we have already remarked above, excellent agreement with empirical data for a wide
range of large Reynolds numbers [5–7]. It is also worth noting that the numerical study of the
LANS-α subgrid scale turbulence model in [24] shows that this model, indeed, captures most
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of the large-scale features of a turbulent flow, in particular, those scales of motion larger than
the lengthscale α, while the scales of motion smaller than α follow a faster decay of energy
when compared with the energy of the NSE making it a more computable analytical subgrid
large eddy simulation model of turbulence. It was this very remarkably successful comparison
with experimental data and the manifestation of the expected results of the NS-α computations
in comparison with the direct numerical simulation (DNS) of NSE which stoke the interest of
the turbulence community in the alpha subgrid scale models of turbulence. Inspired by the
above Leray-α model (1) we consider the following modified Leray-α model:

∂tv − ν�v + (v · ∇)u = −∇p + f,

∇ · u = ∇ · v = 0,

v = u − α2�u,

u(x, 0) = uin(x),

(2)

which we will call, in short, the ML-α model. To obtain the ML-α model we replaced the
nonlinear term (u · ∇)v in the Leray-α model (1) by (v · ∇)u. Interestingly enough, as we
will demonstrate in section 3, when considering the ML-α as a closure model of the Reynolds
averaged equations in turbulent channels and pipes, one arrives at the same system (up to the
modified pressure) of reduced equations as those obtained from the NS-α (LANS-α or VCHE)
[5–7], the Clark-α [3] and the Leray-α model [9]. (Also, as in [3, 5–7, 9] we use the Helmholtz
operator in the definition of the variable v: v = u−α2�u.) Hence, the ML-α model should, in
principle, enjoy the same success story as the other alpha subgrid scale models of turbulence.
This is the main purpose of introducing this model and consequently this analytical study. A
computational investigation studying the performance of the ML-α model in comparison with
other subgrid scale models of turbulence is the subject of future research.

We start by introducing some preliminary background and a priori estimates in section 2.
In section 3 we show that the reductions of the ML-α model in channels and pipes are the same
(up to modified pressure) as those of the NS-α in channels and pipes, respectively. In sections 4
and 5 we show the global well-posedness of the ML-α subgrid scale model of turbulence and
establish estimates for the dimension of its global attractor. It is worth mentioning that from
the a priori estimates established in section 4, one can extract subsequences of solutions
which converge as α → 0+ (in the appropriate sense) to a weak solution of the Navier-Stokes
equations on any time interval [0, T ]. This can be done along the lines of VCHE or NS-α
in [15], or as has been observed for the Leray-α model in [9]. Sections 5 and 6 contain a
discussion on the number of degrees of freedom and energy spectra of the ML-α model.

2. Functional setting and preliminaries

Let � = [0, 2πL]3. The ML-α subgrid scale turbulence model (2) of viscous incompressible
flows, subject to periodic boundary condition, with basic domain �, is written in the
expanded form:

∂t (u − α2�u) − ν�(u − α2�u) + ((u − α2�u) · ∇)u = −∇p + f,

∇ · u = 0,

u(x, 0) = uin(x),

(3)

where u represents the unknown ‘filtered’ fluid velocity vector, p is the unknown ‘filtered’
pressure scalar, ν > 0 is the constant kinematic viscosity and α > 0 is a lengthscale parameter
which represents the width of the filter. The function f is a given body forcing assumed, for
the simplicity of our presentation, to be time independent and uin is the given initial velocity.
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Next, we introduce some preliminary background material following the usual notation
used in the context of the mathematical theory of Navier-Stokes equations (NSEs) (see,
e.g., [12, 30, 31]).

(i) We denote by Lp and Hm the usual Lebesgue and Sobolev spaces. We denote by | · | and
(·, ·) the L2-norm and L2-inner product and by ‖ · ‖ and ((· , ·)) = (∇ · , ∇ ·) the H 1-norm
and H 1-inner product, respectively.

(ii) Let F be the set of all vector trigonometric polynomials with periodic domain �. We
then set

V =
{
φ ∈ F : ∇ · φ = 0 and

∫
�

φ(x) dx = 0

}
.

We set H and V to be the closures of V in L2 and H 1, respectively.
(iii) The orthogonal projection of (L2)3 onto H is denoted by Pσ : (L2)3 → H and is called the

Helmholtz–Leray projection, and we denote by A = −Pσ� the Stokes operator subject
to periodic boundary condition with domain D(A) = (H 2(�))3 ∩ V . We note that in the
space-periodic case,

Au = −Pσ�u = −�u, for all u ∈ D(A).

The operator A−1 is a self-adjoint positive definite compact operator from H into H

(cf [12, 30]). We denote by 0 < L−2 = λ1 � λ2 � . . . λj . . . the eigenvalues of A,
repeated according to their multiplicities. It is well known that in three dimensions the
eigenvalues of the operator A satisfy the Weyl type formula (see, e.g., [2, 12, 28, 31]);
namely, there exists a dimensionless constant c0 > 0 such that

j 2/3

c0
� λj

λ1
� c0j

2/3, for j = 1, 2, . . . . (4)

(iv) We recall the following three-dimensional interpolation and Sobolev inequalities (see,
e.g., [1]):

‖φ‖L3 � c‖φ‖1/2
L2 ‖φ‖1/2

H 1 and ‖φ‖L6 � c‖φ‖H 1 , for every φ ∈ H 1(�). (5)

Also, recall Agmon’s inequality [2] (see also [12]):

‖φ‖L∞ � c‖φ‖1/2
H 1 ‖φ‖1/2

H 2 , for every φ ∈ H 2(�). (6)

Hereafter, c will denote a generic dimensionless constant.
(v) For w1, w2 ∈ V , we define the bilinear form

B(w1, w2) = Pσ ((w1 · ∇)w2). (7)

In the following lemma, we will list certain relevant inequalities and properties of B.

Lemma 1. The bilinear form B defined in (7) satisfies the following.

(i) B can be extended as a continuous map B : V × V → V ′, where V ′ is the dual space
of V . In particular, for every w1, w2, w3 ∈ V , the bilinear form B satisfies the following
inequalities:

| 〈B(w1, w2), w3〉V ′ | � c|w1|1/2‖w1‖1/2‖w2‖‖w3‖. (8)

〈B(w1, w2), w3〉V ′ = − 〈B(w1, w3), w2〉V ′ , (9)

and, in particular,

〈B(w1, w2), w2〉V ′ = 0. (10)
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(ii) Further, we have

| 〈B(w1, w2), w3〉D(A)′ | � c|w1|‖w2‖‖w3‖1/2|Aw3|1/2 (11)

for every w1 ∈ H, w2 ∈ V and w3 ∈ D(A).

Proof. The proof of (i) can be found in, e.g., [12, 30]. The proof of (ii) can be found, e.g.,
in [15]. �

Following the above functional notation we observe that v = u+α2Au and the system (2)
(or (3)) can be written as

dv

dt
+ νAv + B(v, u) = f,

v = u + α2Au,

u(0) = uin.

(12)

Without loss of generality, we assume Pσf = f since we can modify the pressure to include
the gradient part of f .

We also observe, thanks to the Poincaré inequality, that

|v| � (λ−1
1 + α2)|Au| = (L2 + α2)|Au|. (13)

Definition 2 (regular solution). Let f ∈ H , u(0) = uin ∈ V and let T > 0. A function
u ∈ C([0, T ); V ) ∩ L2([0, T ); D(A)) with (du/dt) ∈ L2([0, T ); H) is said to be a regular
solution of (3) (or (12)) on the interval [0, T ) if it satisfies〈

d

dt
(u + α2Au), w

〉
D(A)′

+ ν
〈
A(u + α2Au), w

〉
D(A)′ +

〈
B(u + α2Au, u), w

〉
D(A)′ = (f, w)

(14)

for every w ∈ D(A) and almost every t ∈ [0, T ), and where (14) is understood in the following
sense: for almost every t0, t ∈ [0, T ) we have

(u(t) + α2Au(t), w) − (u(t0) + α2Au(t0), w) + ν

∫ t

t0

(u(s) + α2Au(s), Aw)ds

+
∫ t

t0

〈
B(u(s) + α2Au(s), u(s)), w

〉
D(A)′ ds =

∫ t

t0

(f, w)ds. (15)

3. The modified-Leray-α as a turbulence closure model

It is well accepted that the Navier-Stokes equations (NSE) are the governing equations of the
dynamics of viscous incompressible fluid flows. As of now, our current scientific methods or
tools are unable to solve NSE analytically or to perform reliable direct numerical simulation
of NSE due to the large range of scales of motion that need to be resolved when the Reynolds
number is high. For our practical needs, we attempt to look for averaged quantities, i.e. flow
variables such as velocity and pressure are long time-averaged. However, these time-averaged
governing equations (called Reynolds averaged Navier-Stokes (RANS) equations) are not
closed (i.e. we have fewer equations than unknowns). Turbulence models are attempting to
close this system by modelling some of the unknown quantities in terms of the other known
ones. As it stands, no single turbulence model is valid for general types of flows.

In this section, we will consider the ML-α model as a closure model to the RANS equations
for flows in turbulent channels and pipes. We will show that the reduction of the system of
equations in (3) or (2) in the infinite channels and pipes are the same (up to modified pressure)
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as the system of equations obtained in the case of NS-α (VCHE), [5–7]), Leray-α [9] and
Clark-α [10]. Hence, the general solution to the reduced ML-α system of equations in channels
and pipes will be the same (up to modified pressure) as the general solution of the NS-α in
pipe and channel symmetry as obtained in [5–7]. As a result, we will observe an excellent
agreement between the experimental empirical data and the solutions of the reduced ML-α in
channels and pipes when we identify these solutions with the solutions of RANS equations
(i.e. use it as a closure model) under the corresponding symmetry conditions, sharing the same
success stories of the NS-α model (VCHE) and other alpha models.

To be more specific, let us begin by recalling RANS equations in channels and pipes (see,
e.g., [26]). For a given function φ(x, t) we denote

〈φ〉 (x) = φ̄(x) = lim
T →∞

1

T

∫ T

0
φ(x, t)dt, (16)

assuming that such a limit exists (see, e.g., [17] for the generalization of the notion of the limit
to make sense of infinite time averages.) The long (infinite) time average of the NSE, i.e. the
stationary RANS equations, is given by

(ū · ∇)ū = ν�ū − ∇p̄ − (u − ū) · ∇(u − ū),

∇ · ū = 0.
(17)

Observe that the system above is not closed since we cannot express it in terms of ū alone.

3.1. The RANS equations for turbulent channel flows

Based on experimental observations of turbulent Poiseuille flows in infinite channels (see,
e.g., [26, 32]), the mean velocity in (17) for turbulent channel flows admits the form
ū = [Ū (z), 0, 0

]T
, where Ū (z) = Ū (−z), with mean pressure p̄ = P̄ (x, y, z). Hence,

the RANS system (17) under such symmetry reduces to

−νŪ ′′ + ∂z 〈wu〉 = −∂xP̄ ,

∂z 〈wv〉 = −∂yP̄ ,

∂z

〈
w2
〉 = −∂zP̄ ,

(18)

where the prime (′) denotes the derivative in the z direction and (u, v, w)T = u − ū is
the fluctuation in the velocity in the infinite channel {(x, y, z) ∈ R, −d � z � d}.
Moreover, experimental observations (see, e.g., [26, 32]) indicate that the Reynolds stresses
〈wu〉 , 〈wv〉 and

〈
w2
〉

are also functions of the variable z alone. At the boundary we have the
conditions Ū (±d) = 0 (no-slip) and νŪ ′(±d) = ∓τ0, where τ0 is the boundary shear stress.
Thus, using the boundary conditions 〈wu〉 (±d) = 〈wv〉 (±d) = 0, the Reynolds equations
imply that 〈wv〉 = 0 and P̄ = P0 − τ0x/d − 〈w2

〉
(z), with integration constant P0.

3.2. The reduced ML-α for channel flows

For the ML-α system of equations, under the channel symmetry, we denote by U the velocity
u in (2) and we seek its steady-state solutions in the form U = [U(z), 0, 0]T , with even
reflection symmetry condition U(z) = U(−z) and boundary condition U(±d) = 0. Under
these conditions, the steady ML-α reduces to

−νV ′′ = −νU ′′ + να2U ′′′′ = −∂xp,

0 = −∂yp,

0 = −∂zp,

(19)
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where V = U − α2U and p is a pressure function. Note here that we need additional
boundary conditions to determine V . Such boundary conditions are not available based on
physical considerations. However, in this case, and under the symmetry of the channel, the
missing boundary conditions appear as free parameters that will be determined through a tuning
process with empirical data.

3.3. Identifying ML-α with RANS—the channel case

Following the idea of [5–7] we identify the systems (18) and (19) with each other, which is
the essence of our closure assumption. We compare (18) and (19), and as a result, we identify
the various counterparts as

Ū = U,

∂z 〈wu〉 = να2U ′′′′ + p1,

∂z 〈wv〉 = 0,

∇(P̄ +
〈
w2
〉
) = ∇(p − p1x),

(20)

for some constant p1. This identification gives

〈wv〉 = 0,

− 〈wu〉 (z) = −p1z − να2U ′′′ (21)

and leaves
〈
w2
〉

undetermined up to an arbitrary function of z. The identification in (20) is
exactly the same (up to modified pressure and possibly

〈
w2
〉
) identification that was derived

when identifying the NS-α model (VCHE) with the RANS equations in the channel symmetry
in [5–7]. The same identification holds true in the case of the Leray-α model [9] and the Clark-
α model in [3]. Therefore, the general solution of ML-α and NS-α will be identical (up to a
modified pressure) and, in particular, the mean flows in both cases will have the same functions.
As a result, the performance of the ML-α model as a closure model to RANS equations for
channel flows will be the same as the performance of NS-α which gave an excellent match
with empirical data as has been reported in detail in [5–7].

A similar result applies to turbulent pipe flows.

3.4. The RANS equations for turbulent pipe flows

We consider a cylindrical pipe oriented along the x axis of radius d. Here we used d to
denote radius (instead of diameter) to be consistent with the lateral distance d from the axis
of symmetry that we used for the infinite channel and we will denote the coordinate system
as (r, θ, x) to be consistent with [5–7]. Based on experimental observations of turbulent
Hagen–Poisueille flows, the average of the velocity in the infinite pipe depends only on r and
the mean velocity in (17) for turbulent pipe flows in cylindrical coordinates admits the form
ū = [0, 0, Ū (r)

]T
, with mean pressure p̄ = P̄ (r, θ, x). Hence, the RANS system reduces to

∂r

〈
u2
〉 = −∂r P̄ ,

0 = −1

r
∂θ P̄ ,

−ν

(
Ū ′′ +

1

r
Ū ′
)

+ ∂r 〈uw〉 = −∂xP̄ ,

(22)

where the prime (′) denotes the derivative with respect to r and (u, v, w)T = u − ū is the
fluctuation in the velocity in the infinite pipe {(r, θ, x) | 0 � r � d, 0 � θ � 2π, x ∈ R}.
At the boundary we have the no-slip boundary condition Ū (d) = 0 and νŪ ′(d) = τ0, where
τ0 is the boundary shear stress.
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3.5. The reduced ML-α in an infinite pipe

Under the pipe symmetry, we denote by U the velocity u in ML-α (2) and we seek its steady-
state solutions in cylindrical coordinates in the form U = [0, 0, U(r)]T subject to boundary
condition U(d) = 0. Under this condition, the steady ML-α reduces to

0 = −∂rp,

0 = −1

r
∂θp,

−ν

(
V ′′ +

1

r
V ′
)

= −ν(U ′′ +
1

r
U ′) + να2

[
1

r
(U ′′ +

1

r
U ′)′ +

(
U ′′ +

1

r
U ′
)′′]

= −∂xp,

(23)

where V = U −α2(U ′′ + (1/r)U ′), p is a pressure function and (′) denotes the derivative with
respect to r .

3.6. Identifying ML-α with RANS—the pipe case

Here again we follow the idea in [5–7] and identify the system (22) and (23). Indeed, by
identifying the various counterparts we have

Ū = U,

∂r

〈
u2
〉 = 0,

∂r 〈uw〉 = να2

[
1

r

(
U ′′ +

1

r
U ′
)′

+

(
U ′′ +

1

r
U ′
)′′]

.

(24)

This is exactly the same identification (up to modified pressure) with the RANS equations as
in the case of NS-α (VCHE) (see in [6] (5.1)) under the pipe symmetry. We conclude that
similarly to the behaviour of the general solution of the reduced NS-α equation in the pipe,
the general solution of the reduced ML-α equation in the pipe will have an excellent match
with the empirical mean velocity in the pipe for a wide range of huge Reynolds numbers as
has been reported in [5–7].

4. Existence and uniqueness

In this section we will prove the global well-posedness of the system in (3). The estimates
and steps presented here are formal. One can justify them in a rigorous fashion by, for the
instance, establishing them first for the finite dimensional Galerkin approximation scheme
and then passing to the limit using the appropriate Aubin compactness theorems (see, e.g.,
[12, 15, 25, 30, 31]). In this section, we fix T > 0 to be arbitrarily large.

4.1. H 1 estimates

We take the inner product of (12) with u and use (10) to obtain

1

2

d

dt
(|u|2 + α2‖u‖2) + ν(‖u‖2 + α2|Au|2) = (f, u). (25)

Note that by the Cauchy–Schwarz inequality we have

|(f, u)| �
{|A−1f ||Au|,
|A−1/2f |‖u‖ (26)
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and by Young’s inequality we have

|(f, u)| �




|A−1f |2
2να2

+
ν

2
α2|Au|2,

|A−1/2f |2
2ν

+
ν

2
‖u‖2.

(27)

We let K1 = min{|A−1f |2/να2, |A−1/2f |2/ν}, from the above inequalities we get
d

dt
(|u|2 + α2‖u‖2) + ν(‖u‖2 + α2|Au|2) � K1. (28)

We then apply Poincaré’s inequality to obtain
d

dt
(|u|2 + α2‖u‖2) + νλ1(|u|2 + α2‖u‖2) � K1. (29)

Applying Gronwall’s inequality we obtain

|u(t)|2 + α2‖u(t)‖2 � e−νλ1t (|u(0)|2 + α2‖u(0)‖2) +
K1

νλ1
(1 − e−νλ1t ), (30)

that is,

|u(t)|2 + α2‖u(t)‖2 � k1 := |u(0)|2 + α2‖u(0)‖2 +
K1

νλ1
. (31)

Thus, u ∈ L∞([0, T ], V ).

4.2. H 2 estimates

Integrating (28) over the interval (t, t + r) for r > 0, we obtain

ν

∫ t+r

t

(‖u(s)‖2 + α2|Au(s)|2)ds � rK1 + |u(t)2| + α2‖u(t)‖2 � rK1 + k1. (32)

This implies that u ∈ L2([0, T ], D(A)). Now let us take the inner product of (12) with Au;
we get
1

2

d

dt
(‖u‖2 + α2|Au|2) + ν(|Au|2 + α2|A3/2u|2) + (B(v, u), Au) = (f, Au). (33)

Note that

|(f, Au)| �
{|A−1/2f ||A3/2u|,
|f ||Au|. (34)

Again by Young’s inequality we have

|(f, Au)| �




|A−1/2f |2
να2

+
ν

4
α2|A3/2u|2,

|f |2
ν

+
ν

4
|Au|2.

(35)

We denote by K2 = min{|A−1/2f |2/να2, |f |2/ν}. Then we have
1

2

d

dt
(‖u‖2 + α2|Au|2) +

3ν

4
(|Au|2 + α2|A3/2u|2) � K2 + | 〈B(v, Au), u〉D(A)′ |. (36)

Using (8), Young’s inequality, (5) and (13) we obtain

| 〈B(v, Au), u〉D(A)′ | � c|v|1/2‖v‖1/2|A3/2u|‖u‖
� c(λ−1

1 + α2)|Au|1/2|A3/2u|3/2‖u‖

� c(λ−1
1 + α2)4 ‖u‖4|Au|2

(να2)3
+

3να2

4
|A3/2u|2. (37)
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Using the above estimates and (36) we obtain

1

2

d

dt
(‖u‖2 + α2|Au|2) � K2 + c(λ−1

1 + α2)4 ‖u‖4|Au|2
(να2)3

. (38)

We integrate the above equation over the interval (s, t) and use (31) and (32) to obtain

‖u(t)‖2 + α2|Au(t)|2 � ‖u(s)‖2 + α2|Au(s)|2 + 2(t − s)K2

+(λ−1
1 + α2)4 2ck2

1

(να2)4α4
[(t − s)K1 + k1]. (39)

Now, we integrate with respect to s over the interval (0, t) and use (32)

t (‖u(t)‖2 + α2|Au(t)|2) � 1

ν
(tK1 + k1) + t2K2 + (λ−1

1 + α2)4 2ck2
1

(να2)4α4

[
t2K1

2
+ tk1

]
, (40)

for all t � 0.
For t � 1/νλ1 we integrate (39) with respect to s over the interval (t − 1/νλ1, t):

1

νλ1
(‖u(t)‖2 + α2|Au(t)|2) � 1

ν

(
1

νλ1
K1 + k1

)
+

(
1

νλ1

)2

K2

+(λ−1
1 + α2)4 2ck2

1

(να2)4α4

[(
1

νλ1

)2
K1

2
+

k1

νλ1

]
. (41)

Thus, from (40) and (41) we conclude that

‖u(t)‖2 + α2|Au(t)|2 � k2(t) (42)

for all t > 0. We note that k2(t) enjoys the following properties.

(i) k2(t) is finite for all t > 0.
(ii) If uin ∈ V , but uin /∈ D(A), then the limt→0+ k2(t) = ∞.

(iii) lim supt→∞ k2(t) < ∞.

From (39) it is clear that if uin ∈ D(A) then u ∈ L∞([0, T ]; D(A)). On the other hand,
if uin ∈ V , but uin �∈ D(A), we conclude from the above that u ∈ L∞

loc((0, T ], D(A)) ∩
L2([0, T ], D(A)).

Theorem 3 (global existence and uniqueness). Let f ∈ H and uin ∈ V . Then for any
T > 0, (3) has a unique regular solution u in [0, T ). Furthermore, this solution depends
continuously on the initial data as a map from V to C([0, T ], V ).

Proof. One can establish the global existence of regular solution of the ML-α system by
applying a standard Galerkin approximation procedure together with the a priori estimates
established above and then apply Aubin’s compactness theorem to pass to the limit.

Uniqueness of regular solution. Next we will show the continuous dependence of regular
solutions on the initial data and, in particular, we will show the uniqueness of regular solutions.

Let u and ū be any two solutions of (3) on the interval [0, T ], with initial values
u(0) = uin ∈ V and ū(0) = ūin ∈ V , respectively. Let us denote by v = (u + α2Au),
v̄ = (ū + α2Aū), δu = u − ū and δv = v − v̄. Then from (3) we get

d

dt
δv + νAδv + B(δv, u) + B(v̄, δu) = 0. (43)

By taking the D(A)′ action of (43) with δu,〈
d

dt
δv, δu

〉
D(A)′

+ ν(‖δu‖2 + α2|Aδu|2) + 〈B(δv, u), δu〉D(A)′ + 〈B(v̄, δu), δu〉D(A)′ = 0,

(44)
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and by applying a lemma of Lions–Magenes concerning the derivative of functions with values
in Banach space (cf chapter III, p 169, [30]) and by an analogue of (10) we get
1

2

d

dt
(|δu|2 + α2‖δu‖2) + ν(‖δu‖2 + α2‖Aδu‖2) + 〈B(δv, u), δu〉D(A)′ = 0. (45)

Now we use (11) and (13) to reach
1

2

d

dt
(|δu|2 + α2‖δu‖2) + ν(‖δu‖2 + α2‖Aδu‖2) � c |δv|‖δu‖1/2|Aδu|1/2‖u‖

� c(λ−1
1 + α2)4 |Aδu|3/2‖δu‖1/2‖u‖. (46)

We then apply Young’s inequality to get

1

2

d

dt
(|δu|2 + α2‖δu‖2) + ν(‖δu‖2 + α2‖Aδu‖2) � C(λ−1

1 + α2)4

(να)3
‖δu‖2‖u‖4 +

να2

2
|Aδu|2,

(47)

where C = (27/8)c. By Gronwall inequality, we obtain

(|δu(t)|2 + α2‖δu(t)‖2) � (|δu(0)|2 + α2‖δu(0)‖2) exp

(∫ t

0

C(λ−1
1 + α2)4‖u‖4

(να2)3α2

)
. (48)

Since u ∈ L∞([0, T ]; V ), thanks to (31), we conclude the continuous dependence of the
solutions on initial data, as a map from V into C([0, T ], V ), for every bounded interval [0, T ].
In particular, we also conclude the uniqueness of the solution to (3). �

As mentioned earlier, the above a priori estimates will enable us to obtain uniform
estimates on du/dt , in the appropriate norms, which are independent of α. Following similar
arguments as those presented in [15], one can extract subsequences which converge to weak
solutions of the 3D Navier Stokes equations as α → 0+.

5. Global attractors, their dimension and connection to small scales

In this section we will show the existence of global attractor A ⊂ V for system (3). Moreover,
we will show that A has finite Hausdorff and fractal dimensions. To estimate the dimension
of the attractor, we recall the following lemmas (see [12, 31] and [15], respectively).

Lemma 4 (the Lieb–Thirring inequality). Let {ψj }Nj=1 be an orthonormal set of functions
in (H)k = H ⊕ H . . . ⊕ H︸ ︷︷ ︸

k-times

. Then there exists a constant CLT, which depends on k but is

independent of N , such that∫
�


 N∑

j=1

ψj(x) · ψj(x)


5/3

dx � CLT

N∑
j=1

∫
�

(∇ψj(x) : ∇ψj(x))dx. (49)

Lemma 5. Let {φj }Nj=1 ∈ V be an orthonormal set of functions with respect to the inner
product [·, ·]:

[φi, φj ] = (φi, φj ) + α2((φi, φj )) = δij .

Let ψj(x) = (φj (x), α(∂φj (x)/∂x1), α(∂φj (x)/∂x2), α(∂φj (x)/∂x3)) and φ2(x) =∑N
j=1(φj (x) · φj (x)). Then there exists a constant CF , which is independent of N , such that

‖φ‖2
L∞ � CF

α2


 N∑

j=1

∫
�

(∇ψj(x) : ∇ψj(x))dx


1/2

. (50)
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From the existence and uniqueness properties of the solutions to (3), we get a semi-group of
solution operators, denoted as {S(t)}t�0, which associates, with each uin ∈ V , the semi-flow
for time t � 0 : S(t)uin = u(·, t).
Theorem 6. There is a compact global attractor A ⊂ V for system (3). Moreover, we have
an upper bound for the Hausdorff and fractal dimension of the attractor A

dH (A) � dF (A) � c G3/2

(
1

γ λ1α2

)3/4

, (51)

where G = |f |/ν2λ
3/4
1 is the Grashoff number and 1/γ = min{1, 1/(α2λ1)}.

Proof. The compactness of the semigroup {S(t)}t�0 and the existence of bounded absorbing
ball B guarantee the existence of the nonempty compact global attractor A (see, e.g.,
[12, 20, 27, 29, 31]). First, let us show that there is an absorbing ball in V and D(A). By (30),
we have

|u(t)|2 + α2‖u(t)‖2 � e−νλ1t (|u(0)|2 + α2‖u(0)‖2) +
K1

νλ1
(1 − e−νλ1t ). (52)

When t is large enough such that e−νλ1t (|u(0)|2 + α2‖u(0)‖2) � K1/νλ1, then we have

|u(t)|2 + α2‖u(t)‖2 � 2
K1

νλ1
, (53)

where we recall K1 = min{|A−1f |2/να2, |A−1/2f |2/ν}. In particular,

lim sup
t→∞

(|u(t)|2 + α2‖u(t)‖2) � 2
K1

νλ1
=: RV . (54)

Therefore, system (3) has the ball BV (0) in V of radius RV as an absorbing ball in V .
Next, we would like to show that there is an absorbing ball BD(A)(0) in D(A). By (41)

and (42) we conclude that

lim sup
t→∞

(‖u(t)‖2 + α2|Au(t)|2) � lim sup
t→∞

k2(t) =: RD(A) < ∞, (55)

and therefore we have the ball BD(A)(0) in D(A) with radius RD(A) as an absorbing ball in D(A).
By Rellich’s lemma we have that S(t) : V → D(A) ⊂⊂ V is a compact semigroup from

V to itself.
Since S(t)BV (0) ⊂ BV (0), it follows that for each s > 0 the set Cs := ∪t�sS(t)BV (0)

V

is nonempty and compact in V . By monotonicity of Cs for s > 0 and by the finite intersection
property of compact sets, we see that

A =
⋂
s>0

⋃
t�s

S(t)BV (0)
V

⊂ V (56)

is a nonempty compact set in V and indeed is the unique global attractor in V . To estimate
the Hausdorff and fractal dimensions of the global attractor we will use the trace formula (see,
e.g., [12, 31]).

We start by following similar techniques as in [15]. We linearize the ML-α model about
a regular solution u(t) (or v(t) = u(t) + α2Au(t))

d

dt
δv + νAδv + B(δv, u) + B(v, δu) = 0, (57)

where δv = δu + α2Aδu. Therefore, δu evolves according to the equation

d

dt
δu + νAδu + (I + α2A)−1[B(δu + α2Aδu, u) + B(u + α2Au, δu)] = 0, (58)
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which we write symbolically as

d

dt
δu + T (t)δu = 0, (59)

where T (t)ψ = νAψ + (I + α2A)−1[B((I + α2A)ψ, u) + B(v, ψ)]. Let δui(0), j = 1, . . . , N

be a set of linearly independent vectors in V and let δuj (t) be the corresponding solutions of
(58) with initial value δuj (0) for j = 1, . . . , N . Let

TN(t) = Trace(PN(t) ◦ T (t) ◦ PN(t)), (60)

where PN(t) is the orthogonal projection of V onto the span {δv1(t), δv2(t), . . . , δvN(t)}. Let
{φj }j=1,...,N be an orthonormal basis, with respect to the inner product [·, ·] = (·, ·) + α2((·, ·))
of the space PNV . From (60) we have

TN(t) =
N∑

j=1

[T (t)φj (·, t), φj (·, t)]

=
N∑

j=1

ν[Aφj , φj ] + [(I + α2A)−1B((I + α2A)φj , u), φj ] + [(I + α2A)−1B(v, φj ), φj ]

= ν

N∑
j=1

[Aφj , φj ] +
N∑

j=1

(B((I + α2A)φj , u), φj ) +
N∑

j=1

(B(v, φj ), φj )

= ν

N∑
j=1

[Aφj , φj ] +
N∑

j=1

(B(φj , u), φj ) + α2
N∑

j=1

(B(Aφj , u), φj ). (61)

By the definition of the inner product [·, ·], we have

N∑
j=1

[Aφj , φj ] =
N∑

j=1

(Aφj , φj ) + α2
N∑

j=1

(Aφj , Aφj )

=
N∑

j=1

∫
�

(∇ψj(x, t) : ∇ψj(x, t))dx =: QN(t), (62)

where

ψj =
(

φj , α
∂

∂x1
φj , α

∂

∂x2
φj , α

∂

∂x3
φj

)T

. (63)

Also note that

(ψj , ψk) = δjk. (64)

Setting

R(1)
N (t) =

N∑
j=1

(B(φj , u), φj ), R(2)
N (t) =

N∑
j=1

(B(Aφj , u), φj ),

we have

TN(t) = νQN(t) + R(1)
N (t) + α2R(2)

N (t). (65)
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We denote by ψ2 :=∑N
j=1 ψj · ψj . For R(1)

N (t) we have

|R(1)
N (t)| �

N∑
j=1

|(B(φj , u), φj )| �
∫

�

N∑
j=1

|(φj · ∇)u φj |dx �
∫

�

N∑
j=1

φ2
j |∇u|dx

�
∫

�

ψ2|∇u|dx � ‖ψ2‖L6/5‖∇u‖L6 � c ‖ψ2‖L6/5 |Au|

� c

(∫
�

ψ2dx

)7/12 (∫
�

(ψ2)5/3dx

)1/4

|Au|

� c N7/12QN(t)1/4|Au(t)| � c
N7/9

ν1/3
|Au|4/3 +

ν

4
QN, (66)

where we used (5), (64), lemma 4 and Hölder’s and Young’s inequalities.
Next, integrating by parts we obtain

R(2)
N (t) =

N∑
j=1

(B(Aφj , u), φj ) = −
N∑

j=1

∫
�

(�φj · ∇u)φj dx

=
N∑

j=1

∫
�

(∇φj · ∇u)∇φj dx +
N∑

j=1

∫
�

(∇φj · ∇∇u)φj dx =: I(1)
N (t) + I(2)

N (t).

For the first term we have

α2I(1)
N (t) � α2

N∑
j=1

∫
�

|∇φj (x)|2|∇u(x)|dx �
∫

�

ψ2(x)|∇u(x)|dx. (67)

This term has been taken care of in (66) and is bounded by the right-hand side of (66).
For the second term using lemma 5 we have

α2I(2)
N (t) � α2

∫
�

(∑N

j=1
(∇φj (x) : ∇φj (x))

)1/2(∑N

j=1
φ2

j (x)

)1/2

|∇∇u(x)|dx

� α

∫
�

ψ(x)φ(x)|∇∇u(x)|dx � α‖φ‖L∞

∫
�

|∇∇u(x)|ψ(x)dx

� c
1/2
F Q

1/4
N (t)

∫
�

|∇∇u(x)|ψ(x)dx � cQ
1/4
N (t)|Au|N1/2, (68)

which for N � 1 is again bounded by the right-hand side of (66).
Combining the estimates so obtained above we finally find

TN(t) � ν

2
QN(t) − cν−1/3N7/9|Au|4/3. (69)

By the asymptotic behaviour of the eigenvalues of the operator A (see (4)) and (64) we get

QN(t) =
N∑

j=1

‖ψj‖2 �
N∑

j=1

λj � c0λ1N
5/3. (70)

Now, by the trace formula (see, e.g., [12, 31] and the references therein), if N is large enough
so that

lim inf
T →∞

1

T

∫ T

0
TN(t) dt > 0 (71)

then N is an upper bound for the Hausdorff [12, 31] and fractal [4] dimensions of the global
attractor.
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Thus, by (69) and (70) it is sufficient to require N to be large enough such that

ν4/3λ1N
8/9 > c sup

uin∈A
lim sup
T →∞

1

T

∫ T

0
|Au(t)|4/3 dt. (72)

On the other hand, using Hölder’s inequality we get from (32)

lim sup
T →∞

1

T

∫ T

0
|Au(t)|4/3dt �

(
lim sup
T →∞

1

T

∫ T

0
|Au(t)|2dt

)2/3

�
(

lim sup
T →∞

1

T α2

∫ T

0
(‖u‖2 + α2|Au(t)|2)dt

)2/3

�
(

K1

να2

)2/3

, (73)

since by the Poincaré inequality

K1 � min

{ |f |2
νλ1

,
|f |2

νλ2
1α

2

}
= |f |2

νλ1γ
= G2 ν3λ

1/2
1

γ
.

From this and (72) we deduce that

dH (A) � dF (A) � c G3/2

(
1

γ λ1α2

)3/4

. (74)

�

We now interpret the estimate for the attractor dimension in terms of the mean rate of
dissipation of energy in turbulent flows and by following [15] we define the corresponding
mean rate of dissipation of ‘energy’ for the ML-α model (see (25)) as

ε̄ = L−3ν sup
uin∈A

lim sup
T →∞

1

T

∫ T

0
(‖u(s)‖2 + α2|Au(s)|2)ds. (75)

Thus, and in analogy with the Kolmogorov dissipation length in the classical theory of
turbulence, we set the dissipation length scale for the ML-α model as

ld =
(

ν3

ε̄

)1/4

. (76)

Identifying the dimension of the global attractor with the number of degrees of freedom, we
will show that the number of degrees of freedom for the ML-α model is bounded from above
by a quantity which scales like (L/α)3/2(L/ld)

3. This is straightforward.
In fact, in view of (75) we can write (73) as follows:

sup
uin∈A

lim sup
T →∞

1

T

∫ T

0
|Au(t)|4/3dt � sup

uin∈A

(
lim sup
T →∞

1

T α2

∫ T

0
(‖u‖2 + α2|Au(t)|2)dt

)2/3

�
(

ε̄L3

να2

)2/3

. (77)

Using this in (72) and recalling (76) we obtain the following estimate for the dimension of the
global attractor and hence the upper bound on the number of degrees of freedom in the ML-α
model:

dH (A) � dF (A) � c

(
L

α

)3/2 (
L

ld

)3

. (78)
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Remark 1. We observe that this estimate for the dimension of the global attractor (the number
of degrees of freedom) is similar to the estimates obtained for NS-α (VCHE) in [15] and for
Clark-α in [3]. All these estimates are proportional to (L/ld)

3, which agree with the heuristic
physical estimates suggested by the classical theory of turbulence about the number of degrees
of freedom in three-dimensional turbulent flows. On the other hand, we would also like to
point out that the bounds for the dimension of the global attractor of the Leray-α model, i.e.
system (1), which was established in [9], are proportional to (L/ld)

12/7. It is worth stressing
that even though the exponent 12/7 in the Leray-α model is remarkably smaller than the
exponent 3 in the dimension of the global attractor of the ML-α model, the quantities involved
in the definition of the viscous dissipation length-scales, ld , for the Leray-α and ML-α models
are different: while the former is based on the time average of the H 3-norm of u, the latter is
based on the average of the corresponding H 2-norm. Furthermore, the equations governing
the dynamics of the solutions to these models are also different, which, in turn, affect the
corresponding dissipation lengthscales ld .

6. Energy spectra

Following similar arguments to those presented in [14] and [16] (see also [3, 9, 17]) we will
study in this section the energy spectra of the ML-α model. We obtain similar results for the
decay of the energy spectrum for the filtered velocity u as in NS-α [16] and Clark-α [3]. In
particular, we observe that there are two different power laws for the energy cascade. For wave
numbers k � 1/α, we obtain the usual k−5/3 Kolmogorov power law; however, for k � 1/α

we obtain a steeper power law, evidence that the ML-α is a good candidate for a subgrid scale
model of turbulence. We are still unable to determine from theory the exact value of n in (82).
We hope that a numerical study of this model will shed some light on the exact value of n, a
subject for future research.

We will use the following notation:

b(u, v, w) = (B(u, v), w),

ûk = 1

(2πL)3

∫
�

u(x)e−ik·x dx,

v̂k = 1

(2πL)3

∫
�

v(x)e−ik·x dx,

uk =
∑

k�|j |<2k

ûj eij ·x,

vk =
∑

k�|j |<2k

v̂j eij ·x,

u<
k =
∑
j<k

uj , v<
k =
∑
j<k

vj ,

u>
k =
∑
2k�j

uj , v>
k =
∑
2k�j

vj .

We split the flow into three parts according to the three lengthscale ranges. Assume kf < k,
where kf is the largest wavenumber involved in the forcing term. Thus,

u = u<
k + uk + u>

k ,

v = v<
k + vk + v>

k .
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The energy balance equation for the ML-α model for an eddy of size k−1 is given by

1

2

d

dt
(vk, uk) + ν(−�vk, uk) = Tk − T2k, (79)

where

Tk := −b(v<
k , u<

k , uk) + b(vk + v>
k , uk + u>

k , u<
k ), (80)

Tk represents the net amount of energy per unit time that is transferred into wavenumbers larger
than or equal to k, T2k represents the net amount of energy per unit time that is transferred into
wavenumbers larger than or equal to 2k. Thus, Tk − T2k represents the net amount of energy
per unit time that is transferred into wavenumbers between [k, 2k).

Taking an ensemble average (long time average) of (79) we get

ν 〈(−�vk, uk)〉 = 〈Tk〉 − 〈T2k〉 . (81)

We define the energy spectrum

Eα(k) = (1 + α2|k|2)
∑
|j |=k

|ûj |2;

then we can rewrite the time-averaged energy transfer equation (81) as

νk3Eα(k) ∼ ν

∫ 2k

k

k2Eα(k) dk ∼ 〈Tk〉 − 〈T2k〉 .

Thus as long as νk3Eα(k) << 〈Tk〉 (that is, 〈T2k〉 ≈ 〈Tk〉, there is no leakage of energy due to
dissipation), the wavenumber k belongs to the inertial range. Similar to the other alpha subgrid
scale models, it is not known what is the correct averaged velocity of an eddy of length size
k−1. That is, we do not know a priori in these models the exact eddy turnover time of an eddy
of size k−1. As we will see below, we have a few candidates for such an averaged velocity.
Namely,

U 0
k =
〈

1

L3

∫
�

|vk|2dx

〉1/2

∼
(∫ 2k

k

(1 + α2k2)Eα(k)

)1/2

∼ (k(1 + α2k2)Eα(k)
)1/2

,

U 1
k =
〈

1

L3

∫
�

uk · vkdx

〉1/2

∼
(∫ 2k

k

Eα(k)

)1/2

∼ (kEα(k))1/2 ,

U 2
k =
〈

1

L3

∫
�

|uk|2dx

〉1/2

∼
(∫ 2k

k

Eα(k)

(1 + α2k2)

)1/2

∼
(

kEα(k)

1 + α2k2

)1/2

,

that is,

Un
k = (kEα(k))1/2

(1 + α2k2)(n−1)/2
(n = 0, 1, 2). (82)

In the inertial range, the Kraichnan energy cascade mechanism states that the corresponding
turnover time of eddies of spatial size 1/k with given average velocity as above is about

τn
k := 1

kUn
k

= (1 + α2k2)(n−1)/2

k3/2(Eα(k))1/2
(n = 0, 1, 2).

Therefore, the energy dissipation rate ε is

ε ∼ 1

τn
k

∫ 2k

k

Eα(k) dk ∼ k5/2 (Eα(k))3/2

(1 + α2k2)(n−1)/2
, (83)

and hence

Eα(k) ∼ ε2/3(1 + α2k2)(n−1)/3

k5/3
.
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Note that the translational kinetic energy spectrum of the variable u is given by

Eu(k) ≡ Eα(k)

1 + α2k2
∼




ε
2/3
α

k5/3
, when kα � 1 ,

ε
2/3
α

α2(4−n)/3k(13−2n)/3
, when kα � 1 .

Therefore, depending on the appropriate average velocity of an eddy of size k−1 for the ML-α
model, we would get the corresponding energy spectra which has a much faster decaying
power law k(2n−13)/3 (n = 0, 1, 2) than the usual Kolmogorov k−5/3 power law, in the subrange
kα � 1. This signifies that the ML-α model, like the other alpha models, is a good candidate
for the subgrid scale model of turbulence.

7. Concluding remarks

In this paper we propose using a new analytical subgrid scale turbulence model which yields
the same closure ansatz as that of the NS-α subgrid scale turbulence model in infinite channels
and pipes. A good assessment of the success of this new subgrid scale model was obtained by
comparing its general solution with the general solution of the NS-α model in infinite channels
and pipes which gave a remarkable match to the empirical data for a wide range of huge
Reynolds numbers. In addition we prove the global well-posedness of this new model and
show that it has a finite dimensional global attractor. Our explicit estimates for the dimension
of the global attractor, in terms of the relevant physical parameters, are compatible with the
suggested physical heuristic arguments for the number of degrees of freedom in turbulent flows.
Furthermore, the steeper behaviour of the slope of the energy spectrum for larger wavenumbers
within the inertial range, in comparison with the usual k−5/3 Kolmogorov energy spectrum,
signifies that there is less energy in the higher wavenumbers as is expected from any good
subgrid scale model of turbulence.
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