ПОСТРОЕНИЕ ОПЕРАТОРА ДИСКРЕТНЫХ НЕОТРАЖАЮЩИХ ГРАНИЧНЫХ УСЛОВИЙ ДЛЯ МОДЕЛИРОВАНИЯ ВОЛН В ДВИЖУЩЕЙСЯ СРЕДЕ

© О.В. Подгорнова

Институт прикладной математики им. М.В. Келдыша РАН, Москва

Работа выполнена при поддержке РФФИ (код проекта 04-01-00567).

Получено дальнейшее развитие метода [1] построения неотражающих граничных условий для задачи с азимутальной зависимостью скорости звука. Предложенные модификации вычисления вспомогательных дискретных функций Грина с использованием сплайнов Рябенького второго порядка гладкости позволили существенно улучшить точность расчетов при тех же вычислительных затратах. В работе приводится описание метода, численной реализации и результатов тестирования.

GENERATION OF DISCRETE NON-REFLECTING BOUNDARY CONDITIONS FOR WAVE SIMULATIONS IN THE MOVING MEDIA

O.V. Podgornova

Keldysh Institute of Applied Mathematics RAS, Moscow

1. Введение

Рассматривается двумерное волновое уравнение в движущейся среде получающееся заменой переменной x' = x + at в волновом уравнении $u_{tt} - c^2(u_{xx} + u_{yy}) = 0$. Здесь *а* заданная постоянная скорость, *c* скорость звука, $0 \le a < c$,

$$u_{tt} + 2au_{tx'} + a^2 u_{x'x'} - c^2 (u_{x'x'} + u_{yy}) = 0.$$
(1.1)

Через x обозначена ось в неподвижной системе координат направленная вправо, а через x' – ось в локальной системе координат равномерно движущейся влево. Последняя система может быть ассоциирована с движущимся телом, например крылом.

Для численного моделирования в неограниченных областях с помощью конечно-разностных методов или методов конечных объемов требуются специальные неотражающие условия на открытых границах.

Существует подход построения точных или *прозрачных* граничных условий (TBC), описанный в [2],[3],[4],[5],[6]. Подход работает, в частности, для 2D/3D волнового уравнения при a = 0 в случае сферической границы и при $a \ge 0$ в случае плоской границы в канале.

В указанных случаях для получения граничных условий используется метод разделения переменных. Однако при a > 0 уравнение (1.1) не допускает разделение переменных в полярной системе координат из-за того что коэффициенты уравнения непостоянны относительно азимутального угла и построить аналитические ПГУ для сферической границы не удается.

В [1] предложен способ построения граничных условий для такого случая. Идея состоит в получении соответствующего граничного оператора для заранее дискретизированной задачи, и в последующем его сжатии. Подчеркнем, что идея использования дискретной постановки для получения точных граничных условий была впервые предложена В.С. Рябеньким 1990 году и реализована для 3D волнового уравнения в [8]. Принципиальная разница в подходах заключается в способе аппроксимации граничного оператора, изначально сильно дорогого с точки зрения вычислительных ресурсов. Метод [8] базируется на наличии лакун для 3D волнового уравнения, наш же подход использует аппроксимацию временной составляющей оператора посредством сумм экспонент и может быть применен при отсутствии лакун.

Работа организована следующим образом. В параграфе 2 приведена формулировка задачи. В параграфе 3 описываются основные шаги алгоритма построения оператора дискретных ПГУ и его аппроксимации ("сжатия"). Численные примеры, демонстрирующие точность даваемую подходом, рассмотрены в параграфе 4. В последнем параграфе 5 приводятся некоторые заключения.

2. Постановка задачи

Для простоты обозначений мы опускаем ' в уравнении (1.1). Рассмотрим задачу Коши

$$u_{tt} + 2au_{tx} - (c^2 - a^2) u_{xx} - c^2 u_{yy} = f, (x, y) \in \mathbb{R}^2,$$

$$u|_{t=0} = u_0,$$

$$u_t|_{t=0} = u_1.$$
(2.1)

Предполагаем, что все возмущения и начальные данные находятся внутри ограниченной области D: supp $f(t, x, y) \subset D \ \forall t$, supp $u_0(x, y) \subset D$, supp $u_1(x, y) \subset D$.

Задача состоит в построении неотражающих граничных условий на ∂D , где D – это круг $D = \{(r, \theta), r \leq R_0\}.$

Замечание: Для постановки граничных условий необходимо знать лишь уравнения вне области *D* и никакой конкретизации уравнений внутри области *D* не требуется. Это естественно, так как граничные условия подменяют собой необходимость рассмотрения задачи во всем пространстве, т.е. решения внешней задачи.

В полярной системе координат, $x = r \cos \theta$, $y = r \sin \theta$, уравнение (1.1) преобразуется к виду

$$u_{tt} + 2a\left(\cos\theta u_{tr} - \frac{\sin\theta}{r}u_{t\theta}\right) - \left(c^2 - a^2\cos^2\theta\right)u_{rr}$$

$$\left(c^2 - a^2\sin^2\theta\right)\left(\frac{u_{\theta\theta}}{r^2} + \frac{u_r}{r}\right) - a^2\sin2\theta\left(\frac{u_{r\theta}}{r} - \frac{u_{\theta}}{r^2}\right) = 0.$$

$$(2.2)$$

Также нам понадобится простое локальное граничное условие для (2.2) на ∂D . Для его получения в известном локальном условии для волнового уравнения

 $u_t/c+u_r+u/(2r)=0$ сделаем замену переменных $x\to x'$ и подставим t=0в коэффициенты зависящие от времени. Получим

$$u_t + \left(-a\cos\theta + c\right)u_r + a\frac{\sin\theta}{r}u_\theta + \frac{c}{2r}u = 0.$$
(2.3)

3. Построение оператора прозрачных граничных условий

3.1. Вспомогательные функции Грина

Будем численно конструировать решение внешней начально-краевой задачи с произвольными данными Дирихле $f(t, \theta)$ на внутренней границе $r = R_0$:

$$\begin{array}{l} \mathcal{O}_{tt}u - \Delta_{c,a}u = 0 \quad \text{B} \quad (R_0, +\infty) \times (0, +\infty) \\ u \mid_{t=0} = 0, \quad \partial_t u \mid_{t=0} = 0 \\ u \mid_{r=R_0} = f(t, \theta) \\ \mathcal{O}_{tt}u \mid_{r \to +\infty} = 0 \end{array}$$

$$(3.1)$$

Здесь $\partial_{tt} - \Delta_{c,a}$ – волновой оператор из (2.2).

Перейдем к сеточным уравнениям. Мы вводим полярную сетку Ω_h на $\mathbb{R}^2 \setminus D$: равномерную по радиусу и углу, $R_0 = r_0 < r_1 < \ldots < r_I$, $0 = \theta_0 < \theta_1 < \ldots < \theta_{M-1} < \theta_M = 2\pi$. Также вводим равномерную по времени сетку Υ_{τ} с шагом τ , $0 = t_0 < t_1 < \ldots < t_p < \ldots$ Будем использовать индексы h и τ для обозначения сеточных аналогов операторов и функций.

Обозначим через $\varphi^m(\theta), m = 0, ..., \infty$ — функции образующие базис на границе $(\sin(m\theta), \cos(m\theta)),$ а через $\varphi^m_h, m = 0, ..., M - 1$, дискретный базис.

Рассмотрим дискретизацию (3.1) на сетке $\Omega_h \times \Upsilon_{\tau}$:

$$D_{tt}^{\tau} u_{\tau,h} - \Delta_{c,a}^{h} u_{\tau,h} = 0 \text{ B} \qquad \Omega_h \times \Upsilon_{\tau},$$

$$u_{\tau,h} |_{t=0} = 0, \qquad D_t^{\tau} u_{\tau,h} |_{t=0} = 0,$$

$$u_{\tau,h} |_{r=R_0} = f_{\tau,h},$$

$$u_{\tau,h} |_{r=r_I} = 0.$$
(3.2)

Здесь $D_{tt}^{\tau} - \Delta_{c,a}^{h}$ – центрально-разностный аналог волнового оператора из (2.2).

Обозначим через $G^m(t,r)$ функции Грина задачи (3.1), то есть решения задач вида (3.1) со специальной функцией $f(t,\theta) = \delta(t)\varphi^m(\theta)$ на границе $r = R_0$.

Построим приближение $f(t,\theta)$ из (3.1), использующее только дискретные значения $f_{\tau,h}$. Для этого рассмотрим гладкую функцию $\delta_{\tau}(t)$, моделирующую дельтафункцию Дирака $\delta(t)$ на сетке Υ_{τ} , а именно $\delta_{\tau}(t_0) = 1$ и $\delta_{\tau}(t_p) = 0$ при $p \neq 0$. Конкретный вид $\delta_{\tau}(t)$ будет уточнен позже. Нужно отметить, что так как supp $\delta_{\tau}(t)$ может захватывать точки временной сетки с отрицательными значениями, то расчет вспомогательных задач проводится с момента более раннего чем t = 0, конкретное значение определяется видом $\delta_{\tau}(t)$. Итак приближение есть

$$\tilde{f}_{\tau,h}(t) = \sum_{m=0}^{M-1} \left(\sum_{p=0}^{\infty} \left(\hat{f}_{\tau}^m \right)^p \delta_{\tau}(t-t_p) \right) \varphi^m(\theta),$$
(3.3)

где \hat{f}_{τ}^m коэффициенты Фурье функции $f_{\tau,h}$ в базисе $\{\varphi_h^m\}_{m=0}^{M-1}$. Тогда решение $\tilde{u}_{\tau,h}$ задачи (3.1) для граничной функции $\tilde{f}_{\tau,h}(t)$ есть $\tilde{u}_{\tau,h}(t,r,\theta) =$ $\sum_{m=0}^{M-1} \sum_{p} \left(G^m * \delta_{\tau} \right) \left(t - t_p \right) \left(\hat{f}_{\tau}^m \right)^p \cdot \varphi^m(\theta).$ Заметим, что внутренняя сумма есть дискретная свертка по индексу p, а именно $\sum_{p} \left(G^m * \delta_{\tau} \right) \left(t - t_p \right) \left(\hat{f}_{\tau}^m \right)^p = \left(G^m * \delta_{\tau} \right) * \hat{f}_{\tau}^m.$ При

проекции на сетку получаем

$$u_{\tau,h} \approx \left(\tilde{u}_{\tau,h}(t,r,\theta)\right)|_{\Upsilon_{\tau} \times \Omega_{h}} = \sum_{m=0}^{M-1} \left(G^{m} * \delta_{\tau}\right)|_{\Upsilon_{\tau} \times \Omega_{h}} * \hat{f}_{\tau}^{m} \varphi_{h}^{m}.$$
(3.4)

Мы будем численно находить именно $G^m * \delta_{\tau}$, которые являются не чем иным как решениями задач вида (3.1) для $f(t,\theta) = \delta_{\tau} \cdot \varphi^m(\theta)$.

Для этого, наряду с основной сеткой $\Upsilon_{\tau} \times \Omega_h$ с шагом τ , рассмотрим также подсетки $\Upsilon_{\tau}^{(s)} \times \Omega_{h}^{(s)}$ с кратными шагами $\tau_{s} := \tau/s, h_{s} := h/s, s = 1, 2, 4, 8,$ Обозначим через $\delta_{\tau}^{(s)}$ проекцию функции $\delta_{\tau}(t)$ на подсетку $\Upsilon_{\tau}^{(s)}$.

Рассматриваем следующие вспомогательные разностные начально-краевые задачи на подсетке с шагами (τ_s, h_s) :

$$\begin{aligned}
\mathcal{L} & D_{tt}^{\tau_s} \mathcal{E}_{\tau_s,h_s}^m - \Delta_{c,a}^{h_s} \mathcal{E}_{\tau_k,h_s}^m = 0 \quad \text{B} \quad \Omega_h^{(s)} \times \Upsilon_{\tau}^{(s)}, \\
\mathcal{E}_{\tau_s,h_s}^m |_{t=0} = 0, \quad D_t^{\tau_s} \mathcal{E}_{\tau_s,h_s}^m |_{t=0} = 0, \\
\mathcal{E}_{\tau_s,h_s}^m |_{r=r_0} = \delta_{\tau}^{(s)} \varphi_{h_s}^m, \\
\mathcal{E}_{\tau_s,h_s}^m |_{r=r_I} = 0.
\end{aligned}$$
(3.5)

Эти М дискретных задач (3.5) определяют приближения

$$\mathcal{E}^{m}_{\tau,h} := \mathcal{E}^{m}_{\tau_{s},h_{s}} |_{\Omega_{h} \times \Upsilon_{\tau}} \approx (G^{m} * \delta_{\tau}) |_{\Upsilon_{\tau} \times \Omega_{h}} .$$
(3.6)

Замечание: Функции $\mathcal{E}^m_{ au,h}$ можно трактовать как приближения дискретных функции Грина задачи (3.2).

Затем мы вводим матрицу $\mathcal{E}_{\tau,h}$ с элементами $\left(\mathcal{E}_{\tau,h}^{m,k}\right)_{,}^{p}$, которые являются коэффициентами Фурье $\left(\mathcal{E}^m_{ au,h}
ight)_{i,j}^p$, где i,j и p индексы по переменным r, heta и t соответственно. Следующее матричное обозначение более наглядно

$$\begin{bmatrix} \mathcal{E}^{0}_{\tau,h} \\ \mathcal{E}^{1}_{\tau,h} \\ \vdots \\ \mathcal{E}^{M-1}_{\tau,h} \end{bmatrix} = \begin{pmatrix} \mathcal{E}^{0,0}_{\tau,h} & \mathcal{E}^{0,1}_{\tau,h} & \dots & \mathcal{E}^{0,M-1}_{\tau,h} \\ \mathcal{E}^{1,-1}_{\tau,h} & \mathcal{E}^{1,0}_{\tau,h} & \dots & \mathcal{E}^{1,M-2}_{\tau,h} \\ \dots & \dots & \dots & \dots \\ \mathcal{E}^{M-1,-(M-1)}_{\tau,h} & \mathcal{E}^{M-1,-(M-2)}_{\tau,h} & \dots & \mathcal{E}^{M-1,0}_{\tau,h} \end{pmatrix} \cdot \begin{bmatrix} \varphi^{0}_{h} \\ \varphi^{1}_{h} \\ \vdots \\ \varphi^{M-1}_{h} \end{bmatrix} . \quad (3.7)$$

Замечание: В случае a = 0 из-за разделения переменных матрица (3.7) диагональна, то есть $\mathcal{E}_{\tau,h}^{m,k} = 0$ при $k \neq 0$.

Из (3.4) и (3.6) получаем оператор дискретных неотражающих граничных условий

$$(u_{\tau,h})_{i,j}^{p} = \sum_{m=0}^{M-1} \left\{ \sum_{k=-m}^{M-1-m} \left(\mathcal{E}_{\tau,h}^{m,k} \right)_{i}^{p} * (\hat{f}_{\tau}^{m})^{p} \left(\varphi_{h}^{k+m} \right)_{j} \right\}.$$
(3.8)

Вернемся к выбору функции $\delta_{\tau}(t)$. Для того чтобы размер подсетки *s* был не слишком большим, точность удовлетворительной, а решение неосциллирующим, функция $\delta_{\tau}(t)$ должна быть достаточно гладкой. Также имеет смысл брать аппроксимации (3.3) не меньшего порядка чем порядок аппроксимации схемы.

Мы используем $\delta_{\tau}(t)$ построенные на основе сплайна Рябенького [9] с непрерывной второй производной. Этот сплайн, см. Рис. 1, имеет локальный носитель и определяется полиномом 5-ой степени по следующей таблице значений в точках сетки Υ_{τ} : $S^{5}(t_{-2}) = 0$, $S^{5}(t_{-1}) = 0$, $S^{5}(t_{0}) = 1$, $S^{5}(t_{1}) = 0$, $S^{5}(t_{2}) = 0$.

Рис. 1. Дважды непрерывно-дифференцируемая базисная функция $S^{(5)}$ локального сплайна Рябенького

3.2. Численные аспекты алгоритма

Рассмотрим внутреннюю задачу на сетке $\Upsilon_{\tau} \times \Omega_h$ и пусть точки ... $< r_{-2} < r_{-1} < r_0 = R_0$ принадлежат внутренней области, также привлечем дополнительную граничную точку r_1 для дискретизации граничных условий. При переходе с временного слоя t_n на t_{n+1} значения во внутренних точках обновляются по внутренней схеме, а в граничной — по формуле (3.8), где в качестве $(\hat{f}_{\tau}^m)^p$ используются коэффициенты Фурье $(\hat{u}_{\tau,h}^m)_0^p$ функции $(u_{\tau,h})_{0,j}^p$.

Для применения (3.8) необходимо знать величины $\left(\mathcal{E}_{\tau,h}^{m}\right)_{i}^{p}$ для i = 1 и для всех временных шагов p таких, что $t_{p} < T$, где T интересуемое время расчета. Однако в таком виде оператор граничных условий является очень дорогим: большие ресурсы требуются для хранения матрицы $\mathcal{E}_{\tau,h}$ и вычисления временных сверток. Модифицируем формулу (3.8) следующим образом. Во-первых разделим приходящие волны на низкочастотные и высокочастотные согласно используемой пространственной сетке. Будем обрабатывать нелокальными граничными условиями только низкочастотные гармоники с m = 0, ..., M' < M, а для высокочастотных будем использовать локальные граничные условия (3.8). Такой шаг приводит к обрезанию матрицы $\mathcal{E}_{\tau,h}$, то есть, вместо $M \times M$ матрицы мы рассматриваем $M' \times M$ матрицу. Во-вторых, введем ограничения по индексу суммирования k, будем рассматривать k = -K', ..., K'. Второй шаг приводит к использованию из матрицы $\mathcal{E}_{\tau,h}$ только ленты ширины 2K' + 1.

Наконец, самый важный шаг для уменьшения стоимости граничных условий состоит в использовании техники разработанной в [7], – приближении каждого элемента матрицы $\mathcal{E}_{\tau,h}$ суммой экспонент:

$$\left(\mathcal{E}_{\tau,h}^{m,k}\right)_{1}^{p} \approx \left(\tilde{\mathcal{E}}_{\tau,h}^{m,k}\right)_{1}^{p} = \sum_{l=1}^{L_{m,k}} a_{l}^{m,k} \left(q_{l}^{m,k}\right)^{p}, \ c \ \left|q_{l}^{m,k}\right| \le 1,$$

$$(3.9)$$

где p в последнем множителе есть степень.

Такое представление позволяет вычислять свертку в (3.8) по рекуррентным формулам.

Затраты на хранение матрицы граничных условий оцениваются O(LM'K') числом действительных значений, а вычислительные затраты O(LM'K') операций на временной шаг, $L = max(L_{m,k})$. На практике мы используем $L_{m,k} \sim 30$ для достаточно больших времен вычислений.

Согласно алгоритму [7], аппроксимации (3.9) получаются из $\left(\mathcal{E}_{\tau,h}^{m,k}\right)_1^p$ при использовании только $p = 0, 1, \ldots, 2L$. Таким образом, вспомогательную задачу (3.5) нужно решать лишь на небольшом числе временных шагов.

4. Численные примеры

Для избежания особенностей в нуле мы рассматриваем кольцевую область $1 \le r \le 2$. На r = 1 ставим однородные условия Дирихле, а на r = 2 предлагаемые неотражающие нелокальные условия. Скорость a = 0.7 и c = 1. Начальные данные полагаются равными нулю, возмущение вводится через правую часть уравнения (1.1), а именно $f(r, \theta, t) = h(t)g(|r - r_s|)p(\theta)$. Временное возмущение h(t) задается импульсом Риккера $h(t) = (2\pi(f_0t-1)^2-1)\exp(-\pi^2(f_0t-1)^2)$ с центральной частотой $f_0 = 2$. Пространственное распределение есть $g(r) = \exp(-r^2/(d^2 - r^2))$ при $|r| \le d$, d = 0.4 и g(r) = 0 при |r| > d. Частотная зависимость описывается как $p(\theta) = \cos \theta + \cos 2\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta$.

Точность расчета проверяется на двух равномерных вложенных сетках: грубой с hr = 0.0125, $h\theta = 2\pi/256$, ht = 0.01 и мелкой с hr = 0.00625, $h\theta = 2\pi/256$, ht = 0.005. Эталонное решение рассчитывается на очень мелкой сетке в расширенной области по r, $1 \le r \le 11$, так что для рассматриваемых времен отражение от внешней границы r = 10 не достигнет интересуемой области $1 \le r \le 2$.

На рисунке 2 приведена L_2 -норма коэффициентов $\left(\mathcal{E}_{\tau,h}^{m,k}\right)_1^{\overline{p}}$ по временному интервалу соответствующему времени T = 1. Пик амплитуд приходится на диагональ, k = 0, и происходит резкое убывание коэффициентов при удалении от диагонали.

Рис. 2. (а) L_2 -норма $\left(\mathcal{E}_{\tau,h}^{m,k}\right)_1^p$ относительно расстояния k, для подсеток s = 1 и s = 4, грубая сетка; (б) L_2 -норма $\left(\mathcal{E}_{\tau,h}^{m,k}\right)_1^p$ относительно расстояния k, для подсеток s = 1 и s = 4, мелкая сетка.

Рис. 3. (а) Ошибка неотражающих граничных условий и относительная погрешность решения на 1 < r < 2, грубая сетка, L_2 -норма, использовались M' = 48, K' = 4, подсетка s = 1; (б) Ошибка неотражающих граничных условий и относительная погрешность решения на 1 < r < 2, мелкая сетка, L_2 -норма, использовались M' = 48, K' = 4, подсетка s = 1.

За ошибку граничных условий мы берем относительную погрешность между решениями на малом и расширенном интервалах *при одних и mex же шагах сетки*. Погрешность решений на малом интервале по сравнению с эталонным складывается из ошибки граничных условий и *ошибки annpoкcumaции разностной схемы*.

На рисунках 3(a),(б) представлены ошибки граничных условий и ошибки аппроксимаций разностной схемы. Можно сделать следующие выводы: во-первых, погрешность граничных условий много меньше погрешности аппроксимации схемы; во-вторых, наблюдается сходимость со вторым порядком.

Ошибки локальных граничных условий для различных положений внешней

Рис. 4. (а) Ошибка локальных граничных условий для различных положений внешней границы и относительная погрешность решения на 1 < r < 2, грубая сетка, L_2 -норма; (б) Ошибка локальных граничных условий для различных положений внешней границы и относительная погрешность решения на 1 < r < 2, мелкая сетка, L_2 -норма.

границы, r = 3 и r = 4, изображены на рисунках 4(a),(б). Согласно результатам: во-первых, даже для грубой сетки необходимо увеличить втрое расчетную область для того, чтобы не потерять в точности; во-вторых, измельчение сетки требует дополнительный перенос границы.

5. Заключение

В работе представлен метод численного конструирования оператора граничных условий для волнового уравнения в движущейся среде. Приводятся численные примеры, на которых метод демонстрирует точность, удовлетворительную для вычислительных задач. Заметим, что идея конструкции оператора носит общий характер, не связанный с рассматриваемым в данной работе уравнением, и может быть применена к другим постановкам.

Автор признателен И.Л.Софронову за идею метода, многочисленные дискуссии и советы.

Список литературы

- 1. Sofronov I.L., Podgornova O.V. A spectral approach for generating non-local boundary conditions for external wave problems in anisotropic media // Journal of Scientific Computing, V. 27, No 3, 2006, pp. 419-430.
- 2. Софронов И.Л.: Условия полной прозрачности на сфере для трехмерного волнового уравнения. // Доклады РАН. Т.326. No.6, с.453-457 (1992)
- 3. M.J. Grote and J.B.Keller Exact nonreflecting boundary conditions for the time dependent wave equation // SIAM J.Appl.Math. 55 (1995), 280-297.
- Sofronov, I. L. Artificial boundary conditions of absolute transparency for two- and threedimensional external time-dependent scattering problems // Euro. J. Appl. Math., V.9, No.6 (1998) 561-588.
- 5. I.L. Sofronov Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation // . Math. Anal. Appl., V. 221, (1998) 92-115.

- 6. B. Alpert, L. Greengard, T. Hagstrom. Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation //Journal of Computation Physics 180, 270-296(2002).
- 7. Arnold A; Ehrhardt M.; Sofronov I. Discrete transparent boundary conditions for the Schroedinger equation: Fast calculation, approximation, and stability // Comm. Math. Sci. 1 (2003), 501 556.
- V. S. Ryaben'kii, S. V. Tsynkov, V. I. Turchaninov Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation // J. Comput. Phys., 174 (2001) pp. 712 758.
- 9. В.С. Рябенький Введение в вычислительную математику (1994).