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POWER GEOMETRY
AS A NEW MATHEMATICS

A.D. Bruno

Keldysh Institute of Applied Mathematics of RAS. Moscow

E-mail: bruno@keldysh.ru www.keldysh.ru

Abstract. Here we present basic ideas and algorithms of Power Geometry and
give a survey of some of its applications. In Section 1, we consider one generic
ordinary differential equation and demonstrate how to find asymptotic forms
and asymptotic expansions of its solutions. In Section 2, we demonstrate how
to find expansions of solutions to Painlevé equations by this method, and we
analyze singularities of plane oscillations of a satellite on an elliptic orbit. In
Section 3, we expound the space generalizations of constructions of Section 1
and give some applications to Mechanics and Hydromechanics.

Introduction

Traditional differential calculus is effective for linear and quasilinear prob-
lems. It is less effective for essentially nonlinear problems. A linear problem is
the first approximation to a quasilinear problem. The linear problem is usually
solved by methods of functional analysis, then the solution to the quasilinear
problem is found as a perturbation of the solution to the linear problem. For
an essentially nonlinear problem, we need to isolate its first approximations, to
find their solutions, and to construct perturbations of these solutions. This is
what Power Geometry (PG) is aimed at. For equations and systems of equa-
tions (algebraic, ordinary differential, and partial differential), PG allows to
compute asymptotic forms of solutions as well as asymptotic and local expan-
sions of solutions at infinity and at any singularity of the equation (including
boundary layers and singular perturbations) [1].

Elements of plane PG were proposed by Newton for algebraic equations
(1680); and by Briot and Bouquet for ordinary differential equations (1856).
Space PG for a nonlinear autonomous system of ODEs were proposed by the
author (1962), and for a linear PDE, by Mikhailov (1963).

In this talk we intend to give basic notions of PG, present some of its
algorithms, results, and applications. It is clear that this calculus cannot be
mastered during this presentation. This talk consists of two parts: (1) plane
PG (Sections 1 and 2), and (2) space PG (Section 3). In each part, we first
outline the theory, then describe some applications.
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1. Plane Power Geometry. The theory [2]

First, consider one differential equation and power-logarithmic expansions
of its solutions (although there possible more complex expansions).

1.1. Statement of the problem. Let x be independent and y be dependent
variables, x, y ∈ C. A differential monomial a(x, y) is a product of an ordinary
monomial cxr1yr2, where c = const ∈ C, (r1, r2) ∈ R2, and a finite number of
derivatives of the form dly/dxl, l ∈ N. A sum of differential monomials

f(x, y) =
∑
ai(x, y) (1.1)

is called the differential sum.
The main problem. Let a differential equation be given

f(x, y) = 0, (1.2)

where f(x, y) is a differential sum. As x → 0, or as x → ∞, for solutions
y = ϕ(x) to the equation (1.2), find all expansions of the form

y = crx
r +

∑
csx

s, cr = const ∈ C, cr 6= 0, (1.3)

where cs are polynomials in logx, and power exponents r, s ∈ R,

ωr > ωs, (1.4)

ω =

 −1, if x→ 0,
1, if x→∞.

(1.5)

The procedure to compute expansions (1.3) consists of two steps: compu-
tation of the first approximations

y = crx
r, cr 6= 0 (1.6)

and computation of further expansion terms in (1.3).

1.2. Computation of truncated equations. To each differential monomial
a(x, y), we assign its (vector) power exponent Q(a) = (q1, q2) ∈ R2 by the
following rules:

Q(cxr1yr2) = (r1, r2); Q(dly/dxl) = (−l, 1);

when differential monomials are multiplied, their power exponents must be
added as vectors

Q(a1a2) = Q(a1) +Q(a2).

The set S(f) of power exponents Q(ai) of all differential monomials ai(x, y)
present in the differential sum (1.1) is called the support of the sum f(x, y).
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Obviously, S(f) ∈ R2. The convex hull Γ(f) of the support S(f) is called the
polygon of the sum f(x, y). The boundary ∂Γ(f) of the polygon Γ(f) consists

of the vertices Γ
(0)
j and the edges Γ

(1)
j . They are called (generalized) faces Γ

(d)
j ,

where the upper index indicates the dimension of the face, and the lower one
is its number. Each face Γ

(d)
j corresponds to the truncated sum

f̂
(d)
j (x, y) =

∑
ai(x, y) over Q(ai) ∈ Γ

(d)
j ∩ S(f). (1.7)

Example. Consider the third Painlevé equation

f(x, y) def= − xyy′′ + xy′
2 − yy′ + ay3 + by + cxy4 + dx = 0, (1.8)

assuming the complex parameters a, b, c, d 6= 0. Here the first three differential
monomials have the same power exponent Q1 = (−1, 2), then Q2 = (0, 3),
Q3 = (0, 1), Q4 = (1, 4), Q5 = (1, 0). They are shown in Fig. 1 in coordinates

q1, q2. Their convex hull Γ(f) is the triangle with three vertices Γ
(0)
1 = Q1,

Γ
(0)
2 = Q4, Γ

(0)
3 = Q5, and with three edges Γ

(1)
1 , Γ

(1)
2 , Γ

(1)
3 . The vertex Γ

(0)
1 = Q1

corresponds to the truncation

f̂
(0)
1 (x, y) = −xyy′′ + xy′

2 − yy′,

and the edge Γ
(1)
1 corresponds to the truncation

f̂
(1)
1 (x, y) = f̂

(0)
1 (x, y) + by + dx.

Let the plane R2
∗ be dual to the plane R2 such that for P = (p1, p2) ∈ R2

∗
and Q = (q1, q2) ∈ R2, the scalar product

〈P,Q〉 def= p1q1 + p2q2

is defined. Each face Γ
(d)
j in R2

∗ corresponds to its own normal cone U
(d)
j formed

by the outward normal vectors P to the face Γ
(d)
j . For the edge Γ

(1)
j , the

normal cone U
(1)
j is the ray orthogonal to the edge Γ

(1)
j and directed outward

the polygon Γ(f). For the vertex Γ
(0)
j , the normal cone U

(0)
j is the open sector

(angle) in the plane R2
∗ with the vertex at the origin P = 0 and limited by the

rays which are the normal cones of the edges adjacent to the vertex Γ
(0)
j .

Example. For the the equation (1.8), the normal cones U
(d)
j of the faces

Γ
(d)
j are shown in Fig. 2.

Thus, each face Γ
(d)
j corresponds to the normal cone U

(d)
j in the plane R2

∗
and to the truncated equation

f̂
(d)
j (x, y) = 0. (1.9)
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Theorem 1. If the expansion (1.3) satisfies the equation (1.2), and

ω(1, r) ∈ U
(d)
j , then the truncation y = crx

r of the solution (1.3) is the so-

lution to the truncated equation f̂
(d)
j (x, y) = 0.

Hence, to find all truncated solutions y = crx
r to the equation (1.2), we

need to compute: the support S(f), the polygon Γ(f), all its faces Γ
(d)
j , and

their normal cones U
(d)
j . Then for each truncated equation f̂

(d)
j (x, y) = 0, we

need to find all its solutions y = crx
r which have one of the vectors ±(1, r)

lying in the normal cone U
(d)
j .

1.3. Solution of the truncated equation. The vertex Γ
(0)
j = {Q} corre-

sponds to the truncated equation f̂
(0)
j (x, y) = 0 the support of which consists

of one point Q = (q1, q2). Take g(x, y) = x−q1y−q2f̂ (0)
j (x, y), then g(x, cxr)

does not depend on x and c, and it is a polynomial in r. Consequently, for the
solution y = crx

r to the equation f̂
(0)
j (x, y) = 0, the power exponent r is the

root of characteristic equation

χ(r) def= g(x, xr) = 0, (1.10)

with an arbitrary coefficient cr. We need only those roots r of the equation
(1.10) for which the vector ω(1, r) lies in the normal cone U

(0)
j of the vertex

Γ
(0)
j .

Example. For the equation (1.8), the vertex Γ
(0)
1 = Q1 = (−1, 2) corre-

sponds to the truncated equation

f̂
(0)
1 (x, y) def= − xyy′′ + xy′

2 − yy′ = 0, (1.11)

and f̂
(0)
1 (x, xr) = x2r−1[−r(r − 1) + r2 − r] ≡ 0, i.e. any expression y = cxr

is a solution to the equation (1.11). Here ω = −1, and we are interested

only in those solutions which have the vector −(1, r) ∈ U
(0)
1 . According to

Fig. 2, this means that r ∈ (−1, 1). Thus, the vertex Γ
(0)
1 corresponds to the

two-parameter family of power asymptotic forms of solutions

y = cxr, arbitrary c 6= 0, r ∈ (−1, 1). (1.12)

The edge Γ
(1)
j corresponds to the truncated equation f̂

(1)
j (x, y) = 0, the

normal cone U
(1)
j of the edge is the ray {P = λω′(1, r′), λ > 0}. The inclusion

ω(1, r) ∈U
(1)
j means the equalities ω = ω′ and r = r′. This determines uniquely

the power exponent r of the truncated solution y = crx
r and the value ω. To

determine the coefficient cr, we need to substitute the expression y = crx
r into

the truncated equation f̂
(1)
j (x, y) = 0. After cancelation of some power of x,
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we obtain an algebraic equation for the coefficient cr

˜̃f(cr)
def= x−sf̂

(1)
j (x, crx

r) = 0. (1.13)

Each root cr 6= 0 of this equation corresponds to its own asymptotic form
y = crx

r.
Example. For the equation (1.8), the edge Γ

(1)
1 corresponds to the trun-

cated equation

f̂1(x, y)
def= − xyy′′ + xy′

2 − yy′ + by + dx = 0. (1.14)

Since U
(1)
1 = {P = −λ(1, 1), λ > 0}, then ω = −1 and r = 1. Substituting

y = c1x into the truncated equation (1.14) and canceling x, we obtain the

equation bc1+d = 0 for c1, whence c1 = −d/b. Thus, the edge Γ
(1)
1 corresponds

to a unique power asymptotic form of solutions

y = −(d/b)x. (1.15)

The truncated equation f̂
(d)
j (x, y) = 0 may have non-power solutions y =

ϕ(x) which are the asymptotic forms for solutions to the original equation
f(x, y) = 0. These non-power solutions y = ϕ(x) may be found using power
and logarithmic transformations. Power transformation is linear in logarithms

logx = α11logu+ α12log v,
log y = α21logu+ α22log v,

α =

 α11 α12

α21 α22

 , αij ∈ R, det α 6= 0.

It induces linear dual transformations in spaces R2 and R2
∗. Logarithmic trans-

formation has the form

ξ = logu or η = log v.

Example. For the truncated equation (1.14) corresponding to the edge

Γ
(1)
1 with the normal vector −(1, 1), we make power transformation

logx = logu
log y = logu+ log v,

α =

 1 0
1 1

 ,
i.e. x = u, y = uv. Since y′ = xv′ + v, y′′ = xv′′ + 2v′, then, canceling x and
collecting similar terms, the equation (1.14), takes the form

−x2vv′′ + x2v′
2 − xvv′ + bv + d = 0. (1.16)

Its support consists of three points Q̃1 = (0, 2), Q̃2 = (0, 1), Q̃3 = 0 placed on
the axis q̃1 = 0. Now we make the logarithmic transformation ξ = logx. Since
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v′ = v̇/x, v′′ = (v̈ − v̇)/x2, where ˙ = d/dξ, then, collecting similar terms, the
equation (1.16) takes the form

−vv̈ + v̇2 + bv + d = 0.

Applying the technique described below to this equation, we obtain the ex-
pansion of its solutions

v = −(b/2)ξ2 + c̃ξ +
∞∑

k=0
ckξ

−k,

where c̃ is an arbitrary constant, and the constants ck are uniquely determined.
In original variables, we obtain the family of non-power asymptotic forms of
solutions to the original equation (1.8)

y ∼ x [−(b/2)(logx)2 + c̃ logx+
∞∑

k=0
ck (logx)−k], x→ 0.

1.4. Critical numbers of a truncated solution. If a truncated solution
y = crx

r is found, then the substitution y = crx
r + z reduces the equation

f(x, y) = 0 to the form

f(x, cxr + z) def= f̃(x, z) def= L(x)z + h(x, z) = 0, (1.17)

where L(x) is a linear differential operator, and the support S(Lz) consists

of only one point (v, 1) that is the vertex Γ̃
(0)
1 of the polygon Γ(f̃); the point

(v, 1) is not in the support S(h). The operator L(x) is computed as the first

variation δf̂
(d)
j /δy on the curve y = crx

r. Let ν(k) be characteristic polynomial
of the differential sum L(x)z, i.e.

ν(k) = x−v−kL(x)xk. (1.18)

The real roots k1, ..., kæ of the polynomial ν(k) that satisfy the inequality
ωr > ωki are called the critical numbers of the truncated solution y = crx

r.
Example. For the truncated equation (1.11), the first variation is

δf̂
(0)
1

δy
= −xy′′ − xy

d2

dx2 + 2xy′
d

dx
− y′ − y

d

dx
.

On the curve y = crx
r, this variation gives the operator

L(x) = crx
r−1

−r(r − 1)− x2 d
2

dx2 + 2rx
d

dx
− r − x

d

dx

 .
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The characteristic polynomial of the sum L(x)z, i.e. L(x)xk, is

ν(k) = cr[−r(r − 1)− k(k − 1) + 2rk − r − k] = −cr(k − r)2.

It has one double root k1 = r, which is not a critical number, since it does not
satisfy the inequality ωr > ωk1. Consequently, truncated solutions (1.12) have
no critical numbers.

For the truncated equation (1.14), the first variation is

δf̂ (1)

δy
=
δf̂

(0)
1

δy
+ b.

On the curve (1.15), i.e. y = c1x, c1 = −d/b, this variation gives the operator

L(x) = c1

−x2 d
2

dx2 + 2x
d

dx
− 1− x

d

dx
− b2

d


and the characteristic polynomial

ν(k) = −c1[k2 − 2k + 1 + b2/d].

Its roots are k1,2 = 1± b/
√
−d. If Im (b/

√
−d) 6= 0, then real critical numbers

are absent. If Im (b/
√
−d) = 0, then the inequality ωr > ωki is satisfied by

only one root k1 = 1+ |b/
√
−d| which is a unique critical number of the power

asymptotic form (1.15).

1.5. Computation of asymptotic expansion (1.3). Using support S(f̃)
of the equation (1.17) and numbers k1, . . . , kæ with ωr > ωki, we can find
the set of numbers K(k1, . . . , kæ) ⊂ R. Its elements s satisfy the inequality
ωr > ωs.

Theorem 2. The equation (1.17) has an expansion of solutions of the form

z =
∑
cs(log x)xs over s ∈ K(k1, . . . , kæ), (1.19)

where k1, . . . , kæ are critical numbers of the truncated solution y = crx
r; cs

are polynomials in log x, which are uniquely defined for s 6= ki. If all crit-
ical numbers k1, . . . , kæ are simple roots, and each ki does not lie in the set
K(k1, . . . , ki−1, ki+1, . . . , kæ), then all coefficients cs are constant; for s 6= ki,
they are uniquely determined; and for s = ki, they are arbitrary.

Example. For the truncated solution (1.12)

K = {s = r + l(1− r) +m(1 + r),
integers l,m ≥ 0, l +m > 0}. (1.20)

Since there are no critical numbers, then all cs are constant and uniquely
determined in the expansion (1.19).
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For the truncated solution (1.15)

K = {s = 1 + 2l, integer l > 0}.

If Im (b/
√
−d) 6= 0, then there are no critical numbers, and all power exponents

s are odd integers greater than 1 in the expansion (1.19), and coefficients cs
are constant and uniquely determined. If Im (b/

√
−d) = 0, then there is a

unique critical number k1 = 1 + |b/
√
−d|, and

K(k1) = {s = 1 + 2l +m(k1 − 1),
integers l,m ≥ 0, l +m > 0}. (1.21)

Consequently, if the number k1 is not odd, then all cs are constant and uniquely
determined in the expansion (1.19) for s 6= k1, and ck1

is arbitrary. Finally,
if k1 is odd, then K(k1) =K, and cs is a uniquely determined constant in the
expansion (1.19) if s < k1; ck1

is a linear function of logx with an arbitrary
constant term; cs is a uniquely determined polynomial in logx if s > k1.

1.6. Complex power exponents. Expansions of solutions (1.3) with com-
plex power exponents r and s, where ωRe r > ωRe s, are found in a similar
way.

Example. In the equation (1.8), for the truncated solution (1.12) with
complex r, Re r ∈ (−1, 1), the expansions (1.19) are also found by the set
(1.20). And for the truncated solution (1.15) with Im (b/

√
−d) 6= 0 and Re k1 >

1, we obtain the expansion (1.19) by the set (1.21).
Thus, in classical analysis, we encounter expansions in fractional powers

and with constant coefficients, but here we obtain expansions in rather arbi-
trary complex powers of the independent variable with coefficients that are
polynomials in logarithms of this variable. However, there are possible even
more complicated expansions of solutions.

1.7. Types of expansions. As x → 0, consider asymptotic expansions of
solutions to the equation (1.2) of the form

y = crx
r +

∑
s
csx

s, (1.22)

where power exponents r and s are complex numbers without points of accu-
mulation, Re s ≥ Re r, Re s increase.

We define four types of expansions (1.22); the first three of which have finite
number of power exponents s with the same real part Re s and Re s > Re r
(Fig. 3).
Type 1. cr and cs are constant (power expansions);
Type 2. cr is constant, cs are polynomials in logx (power-logarithmic ex-
pansions);
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Type 3. cr and cs are power series in decreasing powers of logx (complicated
expansions).
Type 4. There are infinitely many power exponents s with a fixed Re s,
and the convex hull of the points r and s from (1.22) in the complex plane
lies in the angle with the vertex at the point r, one of the limiting rays of the
angle parallel to the imaginary axis, and the span of the angle being less than
π (exotic expansions) (Figs. 4 and 5).

In addition, we assume that the argument of the complex variable x is
limited at one side. The types of asymptotic expansions as x→ const and as
x→∞ are defined in a similar way.

Similar technique is used for equations having small or big parameters.
The power exponents of these parameters are accounted for in the same way
as power exponents of variables tending to zero or infinity. Such parameter ε
can be considered as a dependent variable, satisfying the equation ε′ = 0.

2. Plane Power Geometry. Applications

2.1. The sixth Painlevé equation [3]. It has the form

y′′ =
(y′)2

2

(
1

y
+

1

y − 1
+

1

y − x

)
− y′

(
1

x
+

1

x− 1
+

1

y − x

)
+

+
y(y − 1)(y − x)

x2(x− 1)2

a+ b
x

y2 + c
x− 1

(y − 1)2 + d
x(x− 1)

(y − x)2

 , (2.1)

where a, b, c, d are complex parameters, x and y are complex variables,
y′ = dy/dx. The equation (2.1) has three singular points x = 0, x = 1, and
x = ∞. After multiplying by common denominator, we obtain the equation
as a differential sum. Its support and its polygon, in the case a 6= 0, b 6= 0,
are shown in Fig. 6. We found all asymptotic expansions of solutions to the
equation (2.1). They comprise 111 families. Among them, there are expansions
of all four types. In particular, for a = 1 and c = 0, there is an expansion of
the fourth type of the form

y = − 1

cos [log (C1x)]
+

∑
Re s≥1

csx
s, (2.2)

where C1 is an arbitrary constant, the coefficients cs are constant and uniquely
determined. The support of the expansion (2.2) is shown in Fig. 5, where
r = i. For C1 = 1 and real x > 0, the solution (2.2) has infinitely many poles
accumulating at the point x = 0.

2.2. The Beletsky equation (1956) [4]

(1 + e cos ν)δ′′ − 2e sin νδ′ + µ sin δ = 4e sin ν (2.3)
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describes plane motions of a satellite around its mass center which is moving
along an elliptic orbit with an eccentricity e = const ∈ [0, 1]. In the equation,
ν is the independent and δ is dependent variables, inertial parameter µ =
const ∈ [−3, 3]. The equation (2.3) is singular at e = 1, ν = π, since the
coefficient at the higher derivative vanishes at this point. We introduce local
coordinates x = ν − π and ε = 1 − e at the singularity. Then the equation
(2.3) takes the form

[
ε+

1

2
x2 + o(x2, ε)

]
d2δ

dx2 + 2 [x+ o(x, ε)]
dδ

dx
+ µ sin δ = −4[x+ o(x, ε)]. (2.4)

The support and the polygon of this equation for small coordinates x, ε is
shown in Fig. 7. The boundary of the polygon Γ consists of three edges and
two vertices. The unit vector along the edge Γ

(1)
1 is (1, 0), which corresponds

to the variable x. The unit vector along the edge Γ2(1) is (1,−1/2), which cor-
responds to the variable x/

√
ε. Using a variable with this type of behavior, we

can regularize the equation (2.3) at the singularity and compute its solutions
as relaxation oscillations. In 1997, we studied the limit equations correspond-
ing to the vertex Γ

(0)
1 and to the edges Γ

(1)
1 , Γ

(1)
2 . Using their solutions, the

limits of solutions to the equation (2.3) are matched as e→ 1. We found that
for e = 1, the limit families of 2π-periodic solutions form a complicated struc-
ture: the family of symmetric solutions is twisted into the spiral with infinite
number of revolutions around the solution C = {δ = −ν, µ = −2} (Fig. 8,
schematically), and each convolution of the spiral corresponds to its own family
of asymmetric 2π-periodic solutions having 4 spirals (2002) (Fig. 9, schemati-
cally). Apparently, the solution C is an accumulating point of infinitely many
families of 2π-periodic solutions and of infinitely many their spirals.

3. The space Power Geometry

3.1. Theory [1]. Let X ∈ Cm be independent and Y ∈ Cn be dependent
variables. Suppose Z = (X, Y ) ∈ Cm+n. A differential monomial a(Z) is the
product of an ordinary monomial cZR = czr1

1 . . . z
rm+n
m+n , where c = const ∈ C,

R = (r1, . . . , rm+n) ∈ Rm+n, and a finite number of derivatives of the form

∂lyj

∂xl1
1 . . . ∂x

lm
m

def=
∂lyj

∂XL
, lj ≥ 0,

m∑
j=1

lj = l, L = (l1, . . . , lm).

A differential monomial a(X) corresponds to its vector power exponent
Q(a) ∈ Rm+n formed by the following rules

Q(cZR) = R, Q(∂lyj/∂X
L) = (−L,Ej),
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where Ej is unit vector. A product of monomials a · b corresponds to the sum
of their vector power exponents:

Q(ab) = Q(a) +Q(b).

A differential sum is a sum of differential monomials

f(Z) =
∑
ak(Z).

A set S(f) of vector power exponents Q(ak) is called the support of the sum
f(Z). The closure of the convex hull Γ(f) of the support S(f) is called the
polyhedron of the sum f(Z). Consider a system of equations

fi(X,Y ) = 0, i = 1, . . . , n, (3.1)

where fi are differential sums. Each equation fi = 0 corresponds to: its support

S(fi), its polyhedron Γ(fi) with the set of faces Γ
(di)
ij in the main space Rm+n,

the set of their normal cones U
(di)
ij in the dual space Rm+n

∗ , and the set of

truncated equations f̂
(di)
ij (X, Y ) = 0. The set of truncated equations

f̂
(di)
iji

(X, Y ) = 0, i = 1, . . . , n (3.2)

is the truncated system if the intersection

U
(d1)
1j1

∩ . . . ∩U
(dn)
njn

(3.3)

is not empty. A solution

yi = ϕi(X), i = 1, . . . , n

to the system (3.1) is associated to its normal cone u ⊂ Rm+n. If the normal
cone u intersects with the cone (3.3), then the asymptotic form yi = ϕ̂i(X),
i = 1, . . . , n of this solution satisfies the truncated system (3.2), which is
quasihomogeneous.
3.2. The Euler-Poisson equations [5]

Ap′ + (C −B)qr = Mg(y0γ3 − z0γ2), γ
′
1 = rγ2 − qγ3,

Bq′ + (A− C)pr = Mg(z0γ1 − x0γ3), γ
′
2 = pγ3 − rγ1,

Cr′ + (B − A)pq = Mg(x0γ2 − y0γ1), γ
′
3 = qγ1 − pγ2,

(3.4)

where ′ = d/dt, describes the motion of a rigid body with a fixed point. In
(3.4), A,B,C, x0, y0, z0, and Mg are real constants. The system (3.4) has
three general first integrals. In the case

B 6= C, x0 6= 0, y0 = z0 = 0

11



N. Kowalewski (1908) reduced the system (3.4) to the system of two equations

f1
def= σ̈τ + σ̇τ̇ /2 + a1 + a2σ + a3τ̇ p+ a4τ + a5p

2 = 0,

f2
def= στ̈ + σ̇τ̇ /2 + b1 + b2σ̇p+ b3σ + b4τ + b5p

2 = 0,
(3.5)

where the dot means differentiation with respect to the new independent vari-
able p, σ and τ are new dependent variables, ai, bi = const. This system has
two general first integrals. Generically, the supports S(fi) and polyhedrons
Γ(fi) of both equations (3.5) coincide; they are shown in Fig. 10. We found all
power-logarithmic expansions of solutions to the system (3.5) as p→ 0 and as
p → ∞ (they comprise 24 families) and 4 families of complicated expansions
of solutions. This system does not have expansions of the 4-th type. Using
power expansions we obtained all exact solutions of the form of finite sums
of real powers of the variable p with complex coefficients. They comprise 12
families. Among them, 7 families were known. All new families are complex.

In the case

A = B, Mgx0/B = 1, y0 = z0 = 0, C/B = c

the system (3.4) has a unique parameter c ∈ (0, 2]. The system (3.4) has 4
two-parameter families of stationary solutions. On each of these families there
are sets Dj of real stationary solutions near which the system (3.4) is locally
integrable as well as the sets Rj of stationary solutions near which the system
(3.4) is locally nonintegrable. In Fig. 11, there shown the sets D1, D2, D3 and
the curves R1–R4 for one of these four families with x = 1/c and y = p0γ0

1 ,
where (p, q, r, γ1, γ2, γ3) = (p0, 0, 0,±1, 0, 0) is a stationary solution.

3.3. Boundary layer on the needle [6]. The theory of the boundary layer
on the plate for a stream of viscous incompressible fluid was developed by
Prandtl (1904) and Blasius (1908). However a similar theory for the boundary
layer on the needle was not known untill recently, since no-slip conditions on
the needle correspond to a more strong singularity as for the plate. This theory
was developed with the help of Power Geometry (2004).

Let x be an axis in three-dimensional space, r be the distance from the axis,
and semi-infinite needle be placed on the half-axis x ≥ 0, r = 0. We studied
stationary axisymmetric flows of viscous fluid which had constant velocity at
x = −∞ parallel to the axis x, and which satisfied no-slip conditions on the
needle (Fig. 12). We considered two cases.

First case: incompressible fluid. For it, the Navier-Stokes equations in
independent variables x, r are equivalent to the system of two equations for
the stream function ψ and the pressure p

g1
def= − 1

r

∂ψ

∂x

∂

∂r

(
1

r

∂ψ

∂r

)
+

1

r

∂ψ

∂r

∂

∂x

(
1

r

∂ψ

∂r

)
+

1

ρ

∂p

∂x
−
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−ν
1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ψ

∂r

))
+

∂2

∂x2

(
1

r

∂ψ

∂r

) = 0,

g2
def=

1

r

∂ψ

∂x

∂

∂r

(
1

r

∂ψ

∂x

)
− 1

r

∂ψ

∂r

∂

∂x

(
1

r

∂ψ

∂x

)
+

1

ρ

∂p

∂r
+

+ν

 ∂
∂r

1

r

∂2ψ

∂x∂r

 +
∂2

∂x2

(
1

r

∂ψ

∂x

) = 0, (3.6)

where ρ, ν = const, with the boundary conditions

ψ = ψ0r
2 for x = −∞, ψ0 = const; (3.7)

∂ψ/∂x = ∂ψ/∂r = ∂2ψ/∂x∂r = ∂2ψ/∂r2 = 0
for x ≥ 0, r = 0.

(3.8)

The system (3.6) has the form (3.1) with m = n = 2 and m+n = 4. Hence the
supports of the equations (3.6) must be considered in R4. It turned out that
polyhedrons Γ(g1) and Γ(g2) of the equations (3.6) are three-dimensional tetra-
hedrons, which can be moved by translation in one linear three-dimensional
subspace, that simplified the isolation of the truncated systems. An analysis of
truncated systems and of the results of their matching revealed (2002) that the
system (3.6) had no solution with p ≥ 0 satisfying both boundary conditions
(3.7), (3.8).

Second case: compressible heat-conducting gas. For this case, the Navier-
Stokes equations in independent variables x, r are equivalent to the system of
three equations for the stream function ψ, the density ρ, and the enthalpy h

(an analog of the temperature)

f1
def= − 1

r

∂ψ

∂x

∂

∂r

(
1

ρr

∂ψ

∂x

)
+

1

r

∂ψ

∂r

∂

∂x

(
1

ρr

∂ψ

∂x

)
− A

∂

∂r
(ρh)+

+
2

3
Cn ∂

∂r

(
hn

r

∂

∂r

(
1

ρ

∂ψ

∂x

))
− 2

3
Cn ∂

∂r

(
hn

r

∂

∂x

(
1

ρ

∂ψ

∂r

))
−

−2Cn

r

∂

∂r

(
hnr

∂

∂r

(
1

ρr

∂ψ

∂x

))
+ Cn ∂

∂x

(
hn ∂

∂r

(
1

ρr

∂ψ

∂r

))
−

−Cn ∂

∂x

(
hn ∂

∂x

(
1

ρr

∂ψ

∂x

))
+

2Cnhn

ρr3

∂ψ

∂x
= 0,

f2
def=

1

r

∂ψ

∂x

∂

∂r

(
1

ρr

∂ψ

∂r

)
− 1

r

∂ψ

∂r

∂

∂x

(
1

ρr

∂ψ

∂r

)
− A

∂

∂x
(ρh)+

+
2

3
Cn ∂

∂x

(
hn

r

∂

∂r

(
1

ρ

∂ψ

∂x

))
− 2

3
Cn ∂

∂x

(
hn

r

∂

∂x

(
1

ρ

∂ψ

∂r

))
+

+
Cn

r

∂

∂r

(
hnr

∂

∂r

(
1

ρr

∂ψ

∂r

))
− Cn

r

∂

∂r

(
hnr

∂

∂x

(
1

ρr

∂ψ

∂x

))
+
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+2Cn ∂

∂x

(
hn ∂

∂x

(
1

ρr

∂ψ

∂r

))
= 0,

f3
def=

1

r

∂ψ

∂x

∂h

∂r
− 1

r

∂ψ

∂r

∂h

∂x
− A

ρr

∂ψ

∂x

∂(ρh)

∂r
+
A

ρr

∂ψ

∂r

∂(ρh)

∂x
+

+2Cnhn
(
∂

∂r

(
1

ρr

∂ψ

∂x

))2

+ 2Cnhn
(

1

r2ρ

∂ψ

∂x

)2

+

+2Cnhn
(
∂

∂x

(
1

ρr

∂ψ

∂r

))2

+

+Cnhn
(
∂

∂x

(
1

ρr

∂ψ

∂x

))2

− Cnhn ∂

∂x

(
1

ρr

∂ψ

∂x

)
∂

∂r

(
1

ρr

∂ψ

∂r

)
+

+Cnhn
(
∂

∂r

(
1

ρr

∂ψ

∂r

))2

− 2

3
Cnhn

(
1

r

∂

∂r

(
1

ρ

∂ψ

∂x

))2

+

+
4Cnhn

3r

∂

∂r

(
1

ρ

∂ψ

∂x

)
∂

∂x

(
1

ρr

∂ψ

∂r

)
− 2

3
Cnhn

(
∂

∂x

(
1

ρr

∂ψ

∂r

))2

+

+
Cn

σr

∂

∂r

(
rhn∂h

∂r

)
+
Cn

σ

∂

∂x

(
hn∂h

∂x

)
= 0, (3.9)

where parameters A,C, σ > 0 and n ∈ [0, 1], with the boundary conditions

ψ = ψ0r
2, ρ = ρ0, h = h0 for x = −∞,

ψ0, ρ0, h0 = const
(3.10)

and (3.8). Here m = 2, n = 3, and m + n = 5. In the space R5, all poly-
hedrons Γ(f1), Γ(f2), Γ(f3) of the equations (3.9) are three-dimensional, and
they can be moved into one linear subspace. In coordinates (q̃′1, q̃

′
2, q̃

′
3) of this

three-dimensional space, they are shown in Fig. 13, 14, 15 respectively. This
simplified the isolation of the truncated system corresponding to the boundary
layer on the needle

f̂
(0)
12

def= − A∂(ρh)/∂r = 0 (or ∂(ρh)/∂r = 0),

f̂
(2)
22

def=
1

r

∂ψ

∂x

∂

∂r

(
1

ρr

∂ψ

∂r

)
− 1

r

∂ψ

∂r

∂

∂x

(
1

ρr

∂ψ

∂r

)
− A

∂

∂x
(ρh)+

Cn

r

∂

∂r

(
hnr

∂

∂r

(
1

ρr

∂ψ

∂r

))
= 0,

f̂
(2)
32

def=
1

r

∂ψ

∂x

∂h

∂r
− 1

r

∂ψ

∂r

∂h

∂x
− A

ρr

∂ψ

∂x

∂(ρh)

∂r
+
A

ρr

∂ψ

∂r

∂(ρh)

∂x
+

+Cnhn
(
∂

∂r

(
1

ρr

∂ψ

∂r

))2

+
Cn

σr

∂

∂r

(
rhn∂h

∂r

)
= 0, (3.11)
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with self-similar variables

ψ = xG(ξ), ρ = P(ξ), h = H(ξ), ξ = r2/x, (3.12)

and with the boundary conditions

ψ = ψ0r
2, ρ = ρ0, h = h0; ψ0, ρ0, h0 = const, r →∞ (3.13)

and (3.8). In Figs. 13–15, the faces corresponding to the truncated system
(3.11) are shown in bold. According to the first equation (3.11) and the

equalities (3.12), (3.13), the product P (ξ)H(ξ) = const = C0
def= ρ0h0. Hence

P (ξ) = C0/H(ξ), and the system (3.11), for the variables (3.12), is equivalent
to the system of two ordinary equations

F2
def= G (G′H)′ + 2Cn [ξHn(G′H)′]′ = 0,

F3
def= 2GH ′ + 16CnC−2

0 ξHn((G′H)′)2+
+4Cnσ−1(ξHnH ′)′ = 0,

(3.14)

where ′ def= d/dξ, with the boundary conditions

G = ψ0ξ, H = h0 for ξ → +∞, (3.15)

G = dG/dξ = 0 for ξ = 0. (3.16)

The problem (3.14)–(3.16) has an invariant manifold (G′H)′ = 0 on which it
is reduced to one equation

∆ def= 2(ξHnH ′)− 2ξHnH ′2 + (ξ + c2)H
′ = 0,

where c2 is an arbitrary constant, with the boundary conditions

H → 1 for ξ → +∞,

H → +∞ for ξ → +0.

An analysis of solutions to the latter problem by methods of PG revealed
that for n ∈ (0, 1) it has solutions of the form

H ∼ c3|log ξ|1/n, ξ → 0,

where c3 is an arbitrary constant.
Thus, for n ∈ (0, 1), in the boundary layer r2/x < const, as x → +∞ and

ξ = r2/x→ 0, we obtained the asymptotic form of the flow

ψ ∼ c1r
2|log ξ|−1/n, ρ ∼ c2|log ξ|−1/n, h ∼ c3|log ξ|1/n,

i.e. near the needle, the density tends to zero, and the temperature increases
to infinity as the distance to the point of the needle tends to +∞.
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