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The boundary value problem for the Helmholtz equation is studied outside
slits in a plane. The impedance boundary conditions are specified on the slits. In
general, the impedance conditions may be different at different sides of each slit.
In a particular case, the impedance conditions may be the same on both sides
of each slit. We prove that the classical solution to the problem exists, and it is
unique. We obtain the integral representation for a solution to the problem in
the form of potentials, the densities in which are uniquely determined from the
uniquely solvable system of the Fredholm integral equations of the second kind

and index zero.
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1. Introduction
The Dirichlet and Neumann problems for the Laplace and Helmholtz equations
in the exterior of several single-sided open arcs in a plane have been studied in
|9, 21, 22|. If we consider each open arc as a slit in a plane, then by single-sided
open arcs we mean the case when the same boundary data is specified on both
sides of the slits.

In general, problems in the exterior of several slits in a plane imply that
different boundary data is specified on different sides of the slits. Boundary value
problems for the Helmholtz equation in the exterior of several slits in a plane
describe scattering of acoustic waves by several cylindrical double—sided screens
in fluids or by several cracks in solids. Dirichlet and Neumann problems in the
exterior of several slits in a plane has been studied for the Helmholtz equation
in [1-2], the mixed problem with setting Dirichlet and Neumann boundary
conditions on different slits has been studied in [3], the boundary conditions,
containing jumps of the solutions or its normal derivatives has been studied in
[4-5]. The boundary value problems in [1-5] were reduced to the uniquely solvable
integral equations, and for each problem the integral representation for a solution
has been obtained in the form of potentials.

The present paper is devoted to the analysis of the boundary value problem
for the Helmholtz equation in the exterior of several slits in a plane, when the
impedance boundary conditions are specified on different sides of each slit. The
impedance boundary conditions may be different on different sides of each slit.
The particular case of this problem with simplified boundary conditions has been
studied in [20]. The problem, studied in the present paper describes propagation
and scattering of acoustic waves in a fluid with soft acoustic screens. The problem
is very important for engineering applications, for example, the numerical solution
of its particular case for one slit has been obtained in |7, 23]. However the general
case has not been treated by methods of analysis before. Theorems of existence
and uniqueness of a solution is obtained in the present paper for the general
case of the impedance problem in the exterior of several slits in a plane. The
integral representation for a solution is obtained in the form of potentials. The

densities in potentials are found by solving the Fredholm equation of the second
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kind and index zero. It is shown that the Fredholm equation is uniquely solvable

in a certain Banach space. Singularities of the gradient of a solution are studied at
the ends of the slits. Theory of numerical methods for singular integral equations

appearing in this problem is developed in [8, p.366].

2. Formulation of the problem

By a simple open curve we mean a non—closed smooth arc of finite length without

self-intersections |9, p.13]|. Consider simple open curves I'y, ..., 'y, which belong

to C?*, X € (0,1] and have no common points (including end points), in a
N

plane = (z1,79) € R?*. Denote I' = Ulf‘n. Assume that each curve I’y is

parametrized by the arc length s:
I={x: z=2x(s) = (x1(s),22(8)), s€E [an,by]}, n=1,...,N,

so that a1 < by < ... < ay < by. Then points =z € I' and values
of the parameter s are in one-to—one correspondence. Let I' denote the set
of the segments ]L\J[ [a,,b,] of the Os axis as well as the contour I'. Let
7. = (cos a(s), sin ;(5)) be a tangent vector to I' at the point x(s) in the
direction of growth of the parameter s. Let n, = (sina(s), —cosa(s)) denote
the normal vector to I' at the point x(s) which coincides with the tangent vector
7, after rotation by the angle 7/2 counter—clockwise. Owing to parametrization
chosen cosa(s) = z)(s), sina(s) = z4(s). Let the plane R? be slit along
the contour I'. Denote the side of the slits I' which remains on the left while
parameter s increases by ', and the opposite side by I'~.

We say that the function w(xz) belongs to the smoothness class K if the
following conditions are satisfied:
1) u(z) € C°(R*\T)NC?*(R*\T), in particular, u(z) is continuous at the
ends of I';
2) Vu e C°(R*\ T\ X), where X is a set of end points of I':

X = n©1 (z (an) Uz (by));

3)if v — z(d) € X and x ¢ ', then the inequality

(1) [Vu(z)| < Clz —z(d)[,



)
holds, where the constant C' > 0, the number ¢ > —1 and d = a, or d = b,

forn=1,...,N.

Remark. The class of functions continuous in R? \ ' and continuously
extendible from the left and right to I' \ X is denoted by C°(R?>\T\ X).
The limiting values of these functions on I'\ X from the left can be different, so
these functions may have a jump if one passes across ['\ X . Functions of class
o (W) possess the same properties, but, in addition, they are continuously
extendible to the ends of the slits I'.

Let us formulate a boundary value problem for the Helmholtz equation in
R2\T.

Problem U. Find a function u(z) of the class K satisfying the Helmholtz
equation in R*\ T

(2) Au + k*u =0, k = const # 0, 0<arghk <m

and the impedance boundary conditions

(30 Ty < v O U € 1 = A
30 Ialo(s) € 1~ 20 W) ¢ T = 205,

where the functions fi(s), fa(s), Bi(s), B2(s) are specified on I', and 3;(s)
satisfy one of the following additional conditions for j =1, 2:

1.If k=Rek >0, then Imf3;(s) <0 for any s eI.

2. If Rek =0 and Imk > 0, then 8;(s) = Ref;(s) >0 for any s € I'.

3.1f Rek #0, Imk >0, then (Rek) - (Imp;(s)) <0 for any se .

In addition, the function u(x) must satisfy the conditions at infinity. If argk = 0,
i.,e. k =Rek > 0, then we set the Sommerfeld conditions at infinity

(4a) u(a:):O<1), 6;;7)—2'@(:0):0(@), 2] — oo,

|z
If 0<argk <m,ie Imk >0, then we set the following conditions at infinity:

(4) u(a:)zo(l), ag‘(gj):o(1>, 2 = 2+ 23 — oo.

] Vlal
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All conditions of the problem are regarded in classical sense. The validity of

the boundary conditions (3) at the ends of I' is not required. The condition (1)
at the ends of I' in the definition of the class K ensures the absence of the point
sources at the ends of I'. If (1(s) = (a(s), then the problem U transforms to
the problem studied in [20]. The Neumann problem in the exterior of slits in a

plane |2] is a particular case of |20].
Let k¥ = Rek > 0 (or Rek # 0, Imk > 0), and let

Im G1(s) =Im fs(s) =0, i.e. fi(s), (a(s) are real functions. If F1(s) = —Fa(s),
then the boundary condition (3b) takes the form

ou

on x(s) e '™
so the left sides in the boundary conditions (3a) and (3b) coincide. Therefore, the

+ B1(s) u($)|x(5) e = fa(s),

same boundary condition is posed on opposite sides of the slits in this particular
case of the problem U, but the boundary data fi(s) and f2(s) on opposite sides
of the slits can be different.

Remark. The boundary conditions (3) can be written in the form:

(32 only(s) e T'" " Onlz(s) € T~ "
(AU () ¢ pr — U@ () ¢ p-) = Al + £ols)
, o o
(30 Onlz(s) e T'™  Onlzg(s) e T~ "

(AU () ¢ p + AU () ¢ p-) = 7l = (o)

The boundary conditions (3a’) and (3b’) are equivalent to the boundary
conditions (3a) and (3b).

Theorem 1. If T'€ C?*, X € (0,1], Bi(s),B(s) € CUT), then there is
no more than one solution to the problem U.

Proof. Let up(z) be a solution to the homogeneous problem U. We will prove
that ug(z) = 0 by the method of integral equalities. Let C,. be a disc containing
I' of the radius r with the center in the origin. Consider a set of N simple smooth

closed curves A enveloping the contour I'. We assume that curves A have no
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common points and each curve envelops only one slit I';, . Writing out first Green’s

formula |10, p.328] for the function ug(x) in a domain bounded by A and 0C,
taking into account that ug(z) € K, shrinking A to I' and setting r — oo, we

obtain

' L [ Oug\ "
o) Jim (Il 0\ 1y~ K ol 0, 1) = [ () s
T X

_ ik lim / luo|*dl, in case of conditions (4a),
[ Ouyg 700
— [ 4, (81& ) ds + oC,
r * 0, in case of conditions (4b),
where conditions (1), (4) were used. The complex conjugate function to wug(x) is
denoted by wy(x). Clearly, uy(z) € K. The superscripts + and — denote the

limiting values of the functions on I'" and I'~ respectively. Here and further on

N bn
we use the designation / c.ds = Zl / ..ds.
n—

Remark. It follows fl;om section 1.%nof the book [6, p.24-25] that any solution
to equation (2) satisfying radiating conditions (4a) has the following asymptotic
behavior at infinity:

pikr

up(x) = \/77]:0(¢) + 0 (7031/2> : r=|x| — oo,

where ¢ is a polar angle, and Fy(¢) is a continuous function. This asymptotic

formula proves the existence of the limit
2m
: 2 2
lim [ P dl = [ |Fo(o) do
oC, 0
in the right side (ba) in case of conditions (4a). Therefore, the limit in the left

side of (ba) exists as well.
Using homogeneous boundary conditions (3) for the function wug(z), we write

the equality (5a) in the form

(5 Ji, (I9liZ, (¢, \ 1) = #*lwliz, (c, \ 1) =

= — [ Bi()lug (@(9)’ds — [ Bo(s)|ug (x(s))Pds+
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ik lim / luo|? d, in case of conditions (4a),
+ dC,
0, in case of conditions (4b).

If Rek =0 and Imk > 0, so that k* = —|k|?, then conditions (4b) are satisfied

and we obtain

limy (IVolz, (o, 1) + KF ol T, (0, 1)) =
= _/(‘51(3)’ Nug (z(8)]? + [Ba(s)] - ug (z(s))]?) ds,

since in this case Refj(s) = Bj(s) > 0 for any s € I' and j = 1,2. Hence
2 — —

HU0HL2 (R2\T) = 0, so up(xr) = 0. Further on we assume that Rek # 0

and Imk > 0 in case of conditions (4b). As noted above, limits in (5b) exist.

Consequently they exist for both real and imaginary parts. Choosing imaginary

part in (5b), we obtain

(5¢) — [ ((tm By(9)) g ((s))* + (Im Ba())|ug (w(s))[?) ds+

+k lim / lup|*dl =0 for conditions (4a),
oC,

— [ (1 B1()) g (2())* + (1m Ba(5)) g (()) [2) ds+

+Im k? lim ||u0||3;2 (CA\T) = 0  for conditions (4b),

where we used that & = Rek > 0 in case of conditions (4a), in
addition, Rek#0, Imk > 0 in case of conditions (4b). In accordance
with the formulation of the problem U, if Rek # 0 and Imk > 0,
then (Impg;(s)) - (Rek) < 0 for any s € I' and 7 = 1,2, whence
—(Imp;(s))/ (Imk?) > 0, since Imk? = 2Rek - Imk # 0. In addition, it is
required in the problem U that Im f1(s) < 0 and Im Gy(s) < 0 for any s € T
if Kk =Rek > 0. Therefore, equalities (5¢) can be written in the form

|zlc| [ (10m B1(3)] - Jug (@) + 1m Ba(s)| - [ty ((5)) ) ds+

+ lim / lup|*dl =0 in case of conditions (4a),
oC,
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e | (A0 5 O+ i ) o o))
+ lim ||u0HL2 (CA\T) = 0  in case of conditions (4b).
Hence
lim / lup|dl =0 in case of conditions (4a),
oC,
lim HUOHQLQ (C\T) = 0 in case of conditions (4b).

If k=Rek >0 and conditions (4a) hold, then ug(x) = 0 owing to the Rellich
lemma [11, p.682]. If Rek # 0, Imk > 0 and conditions (4b) hold, then
HuOHQL2 (R*\T) = 0, i.e. up(z) = 0. Thus, in all cases ug(x) is a trivial solution
to the homogeneous problem U. Therefore there exists only the trivial solution to

the homogeneous problem U, and the theorem is proved in view of the linearity
of the problem U.

3. Reduction of the problem to the integral equations
Denote the Hankel function of the first kind and zero order [12, p.332] by H(()l)(z) :

MWy V2exp(iz —in/4) T —1/2 ( Zt) 1/2
Hy'(2) = e 0/exp( t)t 1+ 5y dt.

To construct the solution to the problem U, we assume that the functions f;(s),
Ba(s), fi(s), fa(s) in the boundary conditions (3) belong to the Holder space:

(6> 51(5)762(5% f1(5)7 f2(5) S CO?AG—‘)? A€ (0? 1]'

Consider the angular potential [1, 2| on I' for the equation (2)

(7) Ml] 4 /Ml

The kernel V' (z,0) is given on each curve I';, (n=1,...,N) by the formula

T o1V (gl

Qn

where y = y(€) = (51(6),12(6)), |l —y(&)] = V(1 — 11 ()" + (w2 — 12()"
Further on we will assume that (o) belongs to the Banach space C’w( ) for

some w, ¢, such that w € (0,1], ¢ €10,1).

dg, o € [an, by,
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We say that pi(s) belongs to C¢(I') with w € (0,1], ¢ € [0,1), if

N
p1(s) I s —a,|?|s — b,|? € C%(T), where C"“(T') is a space of Hélder
continuous functions with the exponent w. The norm in the Banach space C¢'(T')

N
pa(s) 11 |s — an|®
n=1

is determined by the relation ||,LL1(S)||C«;(F) = q (o)

In addition, further on we will assume that p(s) satisfies the following
conditions [1, 2|:

(8) /,ul(a)da:O, n=1,...,N.
it

As was shown in [1, 2|, the angular potential v[ui|(z) with such a density
p1(o) belongs to the class K. In particular, inequality (1) holds for € = —q if
€ (0,1) and for any € € (—1,0) if ¢ = 0. Besides, integrating v[u1](z) by

parts and using (8), we represent the angular potential in the form of double layer

potential
i OHG (k| — y(o)])
(9) olm](z) = — / pliml (o) on do
with the density
(10) plui(o /m §d¢,  o€lanby), n=1...,N.

Consequently, v[u;](z) satisfies both equation (2) in the exterior of I' and the
conditions at infinity (4).

We shall construct a solution to the problem U with the help of potential
theory for the Helmholtz equation (2). We shall look for a solution to the problem

in the form of a sum of an angular potential and a single layer potential

(11) ulp, po)(2) = vlm](2) + w o] (),

where v[ui](x) is an angular potential defined in (7), (9), and
w [pa] (% /Mz V(klz = y(o)))do

is a single layer potential. We shall look for the function pus(s) in the space

COMYT). It was mentioned above that we look for s;(s) in the Banach space
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Co(l), w e (0,1], ¢ € [0,1). In addition, the density py(s) must satisfy
conditions (8). For such densities p;(s) and pa(s) the function (11) belongs to
the class K (see [1]) and satisfies all conditions of the problem U, except for the
boundary conditions (3). In particular, the function (11) satisfies conditions at
infinity (4).

Consider boundary conditions in the form of (3a’) and (3b"). To satisty
boundary conditions (3a’), (3b’), we substitute (11) into (3a’), (3b’), use
formulas for limiting values of the angular potential from [1] and arrive to the

integral equations for densities ,ul(s) and po(s)

(12) _7/ smgﬁo ) ;/ 6VO )d0+

(E

/u éWo (k|z(s) —y(o)])
3

on, do + 5 (51( )+ B2(s))plp](s)+

+(Bi(s) ( [ () (Kl (s) — y(o))do + | m(a)V(;z:(s),J)da> _
= fi(s) + fa(s),  s€T, F

(13) [ia(s)+

HB(3) + o) (F/uz Ykl (s) - (U)I)dff+F/u1(0)V(x(S),0)d0) +

+§(ﬁ1(3) = Ba(s))plnl(s) = fi(s) = fals),  sel,
where p[u1](s) is defined in (10),

o
Vi) = [ POV e pclann). n=12.,

iy on,,

21z

()= H(z) ~
The angle between the vector 77 and the direction of the normal n, is denoted
by @o(z,y). The angle @o(x,y) is positive if it is measured from the vector n,

counter-clockwise, and negative if it is measured from the vector n, clockwise.

Moreover, the angle ¢g(x,y) is continuous if x, y € I' and x # y.
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The first term in (12) is a singular Cauchy integral |9, p.315]. Let us study

properties of the operator p[ui(s) from (10). Since the function pu4(s) belongs
to C¥(T), it can be represented in the form pi(s) = p1.(s)Q,"'(s), where
p1+(s) € C*(T), and

N
(14a)  Qu(s) = TI |Is — an]? |bn — s|*sign (s — ay), q€1[0,1), sel.

n=1
Consider the operator
(14b)

pq [:ul*]( _p[lul /:ul* dO', s € [anybn]a n = 17"'7N'

Lemma 1. (a) The operator py|pis) (s) with g € [0,1) is bounded when it
acts from CY(T) into C1=UT). (b) The operator plui](s) is bounded when it
acts from C¢(I') with w € (0,1] and ¢ € [0,1) into C™'~Y(T).

Proof is demonstrated in [5].

Denote

A3y(5,0) = L (Bals) = Bul) A (K lals) — w(o)]).

Rewrite the Cauchy singular integral equation (12) in the form

(15a) /,u1

o)Yi1(s, 0 d0+/M2 )Yia(s, 0)do + Y [us](s)—

S (B1(s) + Bals)plm)(s) = —(fuls) + fols), s €T,

where
(1 (singo(a(s).yo)) 1\ _idVi(a(s).o)
— 2(51() = BV (2l ()
i OHY (k|2 (s) — y(o
V(o) - L7 (Ha(ni Dy = [ o)Azt o)

It follows from lemmas 3 and 4 in [2] that Yia(s,0) € COM[ x T),
Yii(s,0) € C*?(' x '), where p = A if 0 < A < 1, and p = 1 — ¢ for
any € € (0,1) if A=1.
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Equation (13) on I' can be written in the form

(15b) pa(s) + [ p(0) Az (s, 0)do + [ pa(0) Ady(s, 0)do+
r T

Fo(Bu(s) — BaNplin)(9) = fuls) — fols), s €T,

Here
(16)  An(s,0) = H(5ils) + Ba(s)V(a(s), 0) € COAT xT)

(see lemma 4 in [2]). The properties of the integral operator with the kernel
similar to As;(s, o) describe
Lemma 2. Let ' € C**, [(s) € C*NT), X e (0,1],
i

Al)(s) = [v(0)A(s,0)do, where A(s,0) = 45(5)715” (k |z (s) — y(o)]).
Then

1) the operator A[v)(s) is compact when it acts from C°(T) into C°(T),
2) Alv|(s) € CONYL) for any density v(s) € C°(T), and A[V](s) is a
bounded operator acting from COT') into COMY(T).

Proof. The representation holds

1

(1T)  A(5,0) = 0(s) (=5 lals) = y(o) | + hkla(s) — (o)) =

= 506) (g 1oy o+ Kl () )
where I(s,0) = |z(s) — y(0)|M?In|z(s) — y(o)|. It follows from [9, section 6.2
that I(s,o) € CO4(I'xT). From the expansion of the function H(()l)(z) into the
series |12, p.333|, we obtain: h(z) € C1[0,00). According to corollary to lemma 1
in [1]: |z(s) —y(o)| € COHT x T'), hence h(k|z(s) —y(o)|) € COHT x T'). On

the basis of (17a), the operator A[v|(s) is represented as a sum of two integral

operators. One of them is an integral operator with a polar kernel, while another
one is an integral operator with continuous kernel. Each of these operators is
compact when acting from CY(T) into CYT). The operator with continuous
kernel is compact by Arzela-Ascoli theorem [14, p.104], and the operator with
a polar kernel is compact by virtue of |15, chapter 7, section 4|. Therefore the

operator A[v](s) is compact when it acts from C°(I") into C°(T") since it is
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represented in the form of a sum of two compact operators. The point 1) of the

lemma is proved. Let us turn to the proof of the point 2).
Set J(s,0) = B(s)I(s,0), then J(s,0) € COMYT x I'). Consider
|A[V](s2) — A[V](Sl)\ <

82, J(Sl,O')

— d
2(52) — y(o PB (1) — y(o) 3| T

1
< [[¥llcoqr) (2/

r

1
+4/ (K| (s2) —y(o)]) — h(k[x(s1) —y(o)])] da) :
r
For the second integral the inequality holds

411/|h(/€]x(52) —y(@)]) = hlklz(s1) = y(o)])|do < cils2 — s,

where c; is a constant, while the first integral can be estimated in the following

way

J(SQ,O’) _ J(Sl,U) o
Jﬂa@w—uMMB () — y(o) 8| %7 =
J(s20 (&,DM@ﬂ yo) P
\x@ (@) Bla(s)) — y(o)V3
_ﬂamﬂu@g—mwwﬁ o(s1) — (o)),
2(s2) — 9(0)Pla(sn) —w@) PP |
J(52.0) = J(s1.0)]| - [2(s0) ~ y(@)*
< el =y Vilator) — g

U@ho-wx@»—mwwﬁ—u@n—ywww\
+r/ |z(s2) — y(o)|V3]z(s1) — y(o)[V/?
(F(s1,0)F(sy,0))M?

do <

< colse — 814 do,
< cols: 1 F/|$2—0P/3|31—0\A/3
where ¢y s a constant and F(s,0) = | (‘j — 0|( i The properties of Holder
z(s) —y(o

functions |9, sections 3.1, 5] are used in derivation of the latter inequality.
According to [1, lemma 1], F(s,0) € CY(T'xT), so F(s,0) < ¢ forall s,0 €T,

where c; is a constant. Using the Cauchy-Bunyakovskii inequality, we obtain

/(F(31,0)F(32,0))A/ do < 2>\/3/ do <
o = oPVilsy P 52— 0Pl — o =
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1/2 o 1/2
2A/3
<c (/ |59 — 0|2/\/3) (F/ |51 — 0|)\/3> < const

for any s1,s0 € I'. Hence
(170) |A[V](s2) — Alv](s1)] < CHVIICO(F)\SQ — sV,

where ¢ is a constant. Therefore A[v|(s) € COMYT) for any density
v(s) € CYT). Similarly,

5, o))
(170) 1AM < Wl oy (61 / Md0+cz) < Wl

where C;, Cs, co are constants and the inequality holds for all s € I'. It follows
from (17b) and (17¢) that A[v](s) is a bounded operator acting from C°(T) into
COM4T) . Lemma is proved.

It follows from Lemma 2 that Y[us](s) € CONMYT), if us(s) € CO(I).

Thus, if {u1(s), p2(s)} is a solution to the system of equations (15), (8), and
pi(s) € CAT), we (0,1], qge[0,1), pa(s) € COMA(T'), then the potential
(11) satisfies all conditions of the problem U. We arrive at

Theorem 2. Let T' € C**;  B3i(s), Ba(s), fi(s), fo(s) € C*NI),
A € (0,1]. If system of equations (15), (8) has a solution {u1(s), pa(s)}, such
that pi(s) € C¥(I'), w € (0,1], q € [0,1), pa(s) € COVYT), then the
solution to the problem U ezists and is given by the formula (11).

Equation (15a) is a singular Cauchy integral equation |9, p.315]|. The goal of
our further analysis is to prove solvability of the system (15), (8). In addition,
we shall reduce the system (15), (8) to the uniquely solvable Fredholm integral

equation of the second kind and index zero in the appropriate Banach space.

4. Regularization of the singular integral equation. Existence theorem
Inverting the Cauchy singular operator in (15a), i.e. carrying out the
regularization of the singular integral equation in accordance with [9, section 99|,

we obtain the following integral equation:

1
Q1/2(s

(18)  u(s) + (/ p1(0) Ao (s, 0) do + Bolp[u]](s) + So[Y 2]l (s) +
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N-1  Dy(s)
-I—/uz VApa(s,0)do + Z Gps ) = Ql/g(S)’ sel,
where Go, ..., GN_1 are arbitrary constants; Qj/s(s) is defined in (14a);
1 Y1:(&0)Q ,
(19) Aoi(s,0) = —WF/ el g v
SolY [ /Q1/2 /~62] )dg;
Ty
BO[P[MIH( )_ 27T/Ql/2(€)(ﬁ1(§21‘§2(§)) [Ml](f) de:
1 Q12(§)(f1(8) + f2(9))
Bo(s) = 7TF/ 1/2 61_8 2 dc.

Let w € (0,1], ¢ € [0,1). Note that if the functions wu;(s) € CZ(I') and
p2(s) € COMAT) obey the equation (18) for some constants Gy,..., Gy 1,
then they obey the equation (15a). (This fact can be easily shown by acting with

-1

the singular integral operator with the kernel (o — s)™" on the equation (18),

which transforms into the equation (15a).) Let us study properties of the functions
defined in (19). Obviously, Qys(s) € COV3(T"). If py(s) € C#(I'), then it follows
from the statement (b) of the Lemma 1 that plui](s) € C%74(T"). Using the
properties of singular integrals |9, section 18|, we conclude that By[p[u1]](s),
So[Y [p2]](s), Po(s) are Holder continuous functions on I', and Ag;(s,o0) is
Hélder continuous function on I' in both variables for 5 = 1,2. Moreover,
By[p[p]](s) € CO%(T), where ¢ = min{1/2,1—q, A\}: So[Y[us]](s) € CONYT);
Py(s) € C¥(T), where n = min{1/2,A}; and Ay;(s,0) belongs to the
class C%1(T") in s uniformly with respect to o € TI'. Therefore, if functions
i(s) € CoT), pa(s) € COMYT) (here w € (0,1], ¢ € [0,1)) satisfy
equation (18), then p;(s) belongs to C'IA//;(F) automatically, i.e. ¢ = 1/2 and
w = min{g, n, A/4} = A/4. Thus, further on we shall look for p;(s) in the space
Yy ().

Let us choose the constants Gy,...,Gy_1 in order to satisfy the
conditions (8). Substituting su1(s) from (18) into (8), we obtain the linear system

of equations for determination of Gy, ...,Gn_1

(20) [ (o) dot [ palo)lP (o) + [ 2 (51 (€) +Ba(€)) il (€)1 (6) d -
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N—-1
— [ V[na)(€)gn()dE + > WonGn = Hyy =1, N,
I m=

Qi /2 1

21) 9.(6) = / Qw Sz

ID(0) = = [ V(& 0)ga(©)ds,  G=1,2, o€l
T

by
Hy = [(£(&) + f20)ga(§) d&; W = [ Qi(s)s™ds, m=0,...,N—1.
r ay,

Here W,,, are the elements of the matrix W with dimensions N x N. As is

shown in [2, lemma 7|, the inverse matrix W1 for T exists and has the elements
(W*I)nm, n=0,...,N—1, m=1,...,N.Inverting the matrix W in (20),

we express the constants Gy, ...,Gy_1 in terms of u(s):
N
(22) =y (W / () (o) do — [ pa(0)I$2 (o) do+
m=1 r

+ [Vl ©alO)dE - [ (61(5)+62(§))p[u1](€)gm(§)d§}-

Remark. [t follows from the formulas for the integrals calculated in [13,
p. 910], that the coefficients defined in (21), satisfy the identities:

N N N
S =0, SiV0)=0, &oeU(anb), =12
n=1 n=1 n=1

0, m=20,...,N —2;
, m=N —1.
Therefore, if the number of slits is NV =1 then the solution to the equation (20)
is Go=0.

Substituting the constants G, from (22) into equation (18), we obtain the

N N :
> H,=0; > Wam = / Q; 5(s)s™ds =
n=1 n=1 T

integral equation for pi(s), pa(s):
(23)

1
p(s) +

Q1/2(s

(/,ul AH(S o d0'+/ﬂ2 AIQ(S J) dO+S[ [MQH( )) +
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Blplpall(s) _ ®(s)
Q1/2(3) Q1/2(5)7

where
20 Aylso) = Aylso) = X8 S (0, 190), j- 12,
D(s) = Py(s) — Ng s" %:1 (W) Hp,
S all ) = SalY () + X 5" [ Vl(©) 32 (), 0 (€) e
Blplm]](s) = Bolplpa])(s)—
X" [ 5(601(6) + B)ola)() X (W), gm(€) dE

If {ui(s), ua(s)} is an arbitrary solution to equation (23), such that
pi(s) € C’?/;( ), pa(s) € COMYT), then gy (s) satisfies conditions (8)
automatically (this fact can be shown by direct verification).

It follows from properties of functions Ag;(s, o), Bo[p[p1]](s), Po(s), defined
n (19), and from formulas (24), that ®(s) € C%(T), where n = min{1/2, \};
the function Aj;(s,0) with j = 1,2 is Holder continuous in both variables
and belongs to the class C%(T") in s uniformly with respect to o € T';
if po(s) € CUT), then S[Y[wll(s) € COMYID): if w(s) € Cpy(I),
then plu1](s) € C¥V2(T) and Blp[u]](s) € CO"(I'). Let us introduce the new
unknown function fi1.(s) = 11(s)Qy2(s) € COV4(T) instead of pi(s) € CI\//;( )

and rewrite equation (23) in the form

(25) ps(s) +Anrpa](s) + Bluns] (s) + Ara[po] (s) + Slpal(s) = ©(s),  seT,

where, taking into account (14b),

Al (s /Ml* 0)Qip(0)An(s,0)do,  Bluw](s) = B |pyys ]| (),

Aua[pa](s /M2 JAw2(s,0)do,  S|ua)(s) = S[Y[p2]](s).

If pi(s) € CUT), then Apifu](s) € CY(T), and according to Lem-
ma 1(a):  piy ] (s) € COYAT), whence Blui](s) € C%I(T). From the

above arguments it follows
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Lemma 3. Let T' € C*', Bi(s),B(s) € CONT), X € (0,1] and
n=min{1/2, \}. If functions pi.(s), pa(s) from C°T) obey equation (25),
where ®(s) € C¥N(T), then juy,(s) belongs to CONYT).

In terms of the function p1.(s), we rewrite equation (15b) in the form
f

(26)  pals) + An[pai] + E[pai](s) + Azlpe](s) = fi(s) —
where, taking into account (14b):  &E[u1.](s) = 1([31(3) —B2(5))p1/2lp1+)(s) and

«422 M2 /M2 S o dU, A21[M1* //ﬂ* Ql/g( )A21(8 U)d

2(8), S & F,

It follows from (16) that A [u1.](s) € CONT) for any wpi.(s) € COT). By
Lemma 1(a) we obtain that pyp[u.](s) € COV2(T) for any p.(s) € CU(T).
It follows from statement 2) of Lemma 2 that Ag[us](s) € COMYT) for any
pa(s) € CUT). Hence we arrive at

Lemma 4. Let I' € C?*,  Bi(s), Ba(s), fi(s), fa(s) € COMNT); A€ (0,1].
If functions p1.(s), p2(s) belong to C°T) and obey equation (26), then
pia(s) € CONMHT).

On the basis of Lemmas 3, 4, we will look for a solution {p1.(s), p2(s)} to the
system (25), (26) among functions p1.(s), pa(s) € C*(T). Consider operators in
equation (26). Note that Ay (s,0) € CO(T x T') according to (16). Therefore, it
can be verified directly using Arzela-Ascoli theorem [14, p.104] that A [u1.](s)
is a compact operator acting from C°(T") into C°(T'). In view of Lemma 2(1),
the operator Ass[uso](s) is compact when acting from C°(T) into C°(T).

By Lemma 1(a), pi2 114 (s) is a bounded operator acting from C°(T") into
COV2(T) . According to [16, p. 915], the space C%Y2(T) is compactly embedded
into the space C%V4(T'). Therefore the operator pys [p1.] (s) is compact when
acting from CO(T') into COY4(I'), since it is represented as a composition of a
bounded operator acting from C°(I') into C®Y2(I'), and a compact operator
embedding C%'V2(T) into C%Y4(I'). Obviously, the operator embedding the
space COV4(T) into CO(T) is bounded. Therefore the operator pi s [p1s] (s)
is compact when acting from CYT) into C°(T), since it is represented as
a composition of a compact operator acting from CO(I') into C%/4(T') and
a bounded operator embedding COY*(I) into C°(T"). Hence the operator
E[p1:](s) is compact from C°(T') into C*(T) as well.
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Let us study operators in equation (25). As mentioned above,

Alj(S,O') € CO(F X F)

for j = 1,2. Therefore, one can prove using Arzela-Ascoly theorem [14, p.104]
that Ay [p1.] (s) and Ajs [us] (s) are compact operators acting from CY(T") into
CY(T'). Let us prove

Lemma 5. Let I' € C?**, B(s) € CO"I), X € (0,1];
v(s) € CY(T), where v is a fivzed number from the interval (0,1], and

Dlv|(s) = /Ql/Q(U)B(U)V(J)da. Then the operator DI[v|(s) is bounded as

o—s
r
operator acting from C°7(T) into C°(T).

Proof. We represent operator D[r](s) in the form

D[V](S) _ i/ QI/Q(U)H(Z)EVEO) - I/(S)) do + V(S)b(S),
r
where b(s) = 71T/ Ql/z(i)f(a) do. It follows from properties of singular integrals

T
|9, section 18] that b(s) € C%'(T') since the function Q;5(c)3(c) belongs to the

class C%(T") with 7 = min{1/2, A} and equals zero at each end point of the
contour I'. Estimating the norm of D[v](s) in C°(T'), where v(s) € C%(I),

we obtain

1D Ollgnry < }T( [1212(0)8(0)] o — - ~do

Il oy +
cory D)

Bl oy Wl oy ) < const ] oy -

Therefore D[v](s) is a bounded operator acting from C%7(T") into C°(I"). The
lemma. i1s proved.

Now we will prove that the operator B[u1.] (s) is compact from C°(T") into
CO(T"). Consider operator By [p12] (s) defined in (19) and acting on the function
p1/2(c) from the space C*V/4(T'). By Lemma 5, the operator By [p1/s| (s) is
bounded when acting from C%Y4(I') into C°(T'). The operator B 1)) (s) is
bounded from C%Y4(T) into CO(I") since it is represented in (24) in the form of a

sum of the operator By [,01/2} (s) and a finite-dimensional, so bounded, operator.
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It follows from boundedness of the operator B [pi](s) from COY4T) into

C°(T") and from compactness of the operator pis (w4 (s) from CO(T') into
COVYT) that Blu](s) is a compact operator acting from C°(T') into C°(T)
since it is represented in the form of a composition of compact and bounded
operators. Hence Ajq [u14] (s) + Bp1s] (s) is a compact operator acting from
CY%T) into C°(T).

Let us show that the operator S [us] (s) is compact when acting from C°(T")
into C°(T"). Consider the operator Y|[us](s). By Lemma 2(2) we obtain that
Y[p2](s) is a bounded operator acting from CO(I') into COM4(T'). It follows
from [16, p. 915| that the space COV4(T') is compactly embedded in the space
COM3(T') . The operator Y [us] (s) is compact from CO(I') into C%°(I) since
it is represented in the form of a composition of a bounded operator acting
from C°(T) into COV4(T') and a compact operator embedding C*M4(T") into
COM>(T'). Consider the operator Sy[Y](s) defined in (19) and acting on the
function Y (o) from the space C%°(T'). Using Lemma 5, where (3(s) = 1,
we observe that Sy[Y](s) is a bounded operator, acting from C%(I') into
CO(I) . The operator S [Y](s) is bounded from C%*?(I") into C°(T'), since it is
represented in (24) in the form of a sum of the operator Sy [Y](s) and a finite-
dimensional, so bounded, operator. It follows from boundedness of the operator
S[Y](s) from C*M>(T') into C°') and from compactness of the operator
Y [1s] (s) from C°(T) into C%?(I') that S [us] (s) is a compact operator acting
from C°(T) into C°(T) since it is represented in the form of a composition of
a compact operator and a bounded operator. Hence Ajs (o] (s) + S (o] (s) is a
compact operator acting from C°(T") into C°(T).

Consider columns i = (p1., u2)?, ® = (®, f1 — f»)7 in the Banach space
CY(T) x C°T") with the norm

”’JHCO(F) X CO(F) - ||M1*HCO<F) + ||M2HCO(F) :
We rewrite system (25), (26) in the form of one equation

(27) I+R)i=07, R(A11+B A12—|—S)

Aoy + & Ao

where T is a unit operator in the space C°(T") x C°(T"). The operator R is a



22
compact operator mapping the space CY(I") x C°(T") into itself since all operators

forming R are compact. Therefore (27) is a Fredholm equation of the second
kind and index zero in this space [17, p.67], [18, p.473-479], [19, section 20.5].
Thus we have proved

Lemma 6. If I' € C?*, Bi(s), Ba(s) € CONT), X € (0,1], then (27) is a
Fredholm equation of the second kind and index zero in the space C°(T')x C(T).

Now we will prove that (27) is uniquely solvable integral equation in the space
CY(I") x C°(T).

Lemma 7. If I € C?*, Bi(s), Ba(s) € COMT) and X € (0,1], then the
Fredholm equation of the second kind and index zero (27) has a unique solution
i = (pi1s, )" € CO(T) x COT) for any © = (D, f — fo)7 € CO(T) x CO(T").

Proof. We shall show that the homogeneous equation (27) (with
& = (@, fi—f2)T = (0,0)T for s € I') has only trivial solution in CO(I')x C(T) .
Suppose that @° = (u,(s),u3(s))T € C°T) x CUT) is a solution to the
homogeneous equation (27). This solution converts homogeneous equations (25),
(26) into into identities. By Lemmas 3, 4: uf,(s) € COMYT), ud(s) € CONMYT).
Then the function p(s)
the functions uf(s),

= M?*(8>Ql_/12(8) belongs to the space C{\//;(F). Besides,
3), (15b) into

identities. Using homogeneous identities (23), one can verify that the function

p3(s) convert homogeneous equations (2

119(s) satisfies conditions (8). Acting on the homogeneous identity (23) with a

s)~1, we obtain that the functions

p5(s)} is

a solution to the homogeneous equations (15), (8). By Theorem 2 the function

singular integral operator with the kernel (o —

19(s) and u3(s) obey homogeneous equation (15a). Therefore {ul(s),

w1, u9](z) defined by formula (11) is a solution to the homogeneous problem
U. By Theorem 1, we see that u’[ul, u9](z) = 0 for x € R*\I'. Using the limit

formulas for tangent and normal derivatives of potentials [1], we obtain

Oullud, 5] () 0, ps) () _0s)=0.  sel.
0Ty z(s) e 0Ty x(s) € I'”
oulpl, ps)(x) _ 0ul[uy, ] () _0s)=0.  seTl.
on, x(s) e I'" on, x(s) e I~
Consequently, pl(s) = pi(s)Qip(s) = 0 for s € I, S0
10 = (1d,(s), u3(s))T = (0,0) for s € I'. Therefore, the homogeneous Fredholm
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integral equation of the second kind and index zero (27) has only the trivial

solution in CO(I") x C°(T") . The statement of the lemma follows from Fredholm’s
theorem [17, p.67], [18, p.473-479], [19, section 20.5].

Now we turn to the analysis of the solvability of the system (15), (8).

Let fi(s), f2(s) € COMT). Then the function ®(s), constructed with the help
of formulas (19) and (24) belongs to the class C%"(T') with 7 = min{1/2,\}.
By Lemma 7 equation (27) with the right side (®(s), fi(s) — fa(s))T
has the unique solution (u1.(s), u2(s))? € CUT) x CY(T), which converts
equations (25), (26) into identity. By Lemmas 3, 4: pi.(s) € CONVYI),
pa(s) € COMYTY). Tt folows from derivation of equations (25), (26) that the
functions py(s) = ,ul*(s)Ql_/lQ(s) € C{\/SL(F) and fip(s) € CONMHI) convert
equations (23) and (15b) into identities. Using identity (23), one can verify that
p1(s) satisfies conditions (8). Acting on the identity (23) by a singular integral
operator with the kernel (o — s)™!, we obtain that pi(s) and pus(s) satisfy
equation (15a). Thus we have proved the following statement.

Lemma 8. Let I' € C**; Bi(s), fa2(s), fi(s), fa(s) € C*ANT); X e (0,1].
Then the system of equations (15), (8) has a solution {ui(s), ua(s)} such
that po(s) € CONYLY), (s) € C’?/;(F). Moreover, this solution can be
written as {,ul*(s)Ql_/lQ(s), p2(s)}, where the functions p1.(s) € CONYT) and
pa(s) € CONYT) form the unique solution of equation (27) in the space
C(T") x C°T"), assured by Lemma 7.

Remark. The system of equations (15), (8) has no more than one solution
{11(s), pa(s)} such that pi(s) € C¥(T), pa(s) € C¥(T'), where w € (0,1],
q €10,1), wp € (0,1]. This statement can be proved using technique of the
proof of Lemma 7. Consequently, the solution assured by Lemma 8 is unique.

The existence theorem for the problem U follows from Lemma 8 and Theo-
rem 2.

Theorem 3. Let ' € C?*;  Bi(s), Ba(s), fi(s), fo(s) € C'MI);
A € (0,1]. A solution to the problem U ezists and is given by the formula (11),
where functions pi(s) € Cf‘//;(F) and pg(s) € CONYLY) form a solution to the
system of equations (15), (8), assured by Lemma 8.

By Theorem 1, a solution to the problem U obtained in Theorem 3 is unique. It
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follows from |1, theorem 5.3] that the solution to the problem U given by formula

(11) satisties condition (1) with € = —1/2. The explicit formulas for singularities
of the gradient of the solution at the ends of the slits I' will be presented in the

next section.

5. Behavior of the gradient of a solution at the ends of the slits.

Let x(d) be one of the end points of the contour I': z(d) € X; d=a, or
d=10b,, n=1,...,N. Let us study the asymptotic behavior of the directional
derivative au['ul"uQ](yc') of a solution to the problem U in the direction of
w = (cos 1, sing‘g, v €[0,27], in a neighborhood of the point xz(d) slit
along I'. Consider polar coordinates (|z — z(d)|cosp, |x — x(d)|sinp) in the
neighborhood of z(d). Assume that ¢ € (a(d), a(d) + 27) if d = a, and
¢ € (a(d) — 7, a(d) + m) if d = b,. Remind that «a(s) is the angle between
the direction of the axis Ox; and the tangent vector 7, to the contour I' at the
point x(s). Accordingly, a(d) = a (a, +0) if d = a,, and a(d) = a (b, —0) if
d = b,,. Thus, the angle ¢ varies continuously in the neighborhood of the point
x(d) slit along the contour I'. Denoting

pi(s) = m(s)ls — d'* = Qpp(s)m(s)ls — d|'?,

we obtain at the end points of I' that p?(d) = ui™ (a, +0) if d = a, and
pd(d) = ,ullj” (b, —0) if d = b,,. Studying the behavior of Vu[uy, po](x) at the
ends of the contour I' with the help of the technique developed in [1, 2], we arrive
at the following statement.

Theorem 4. Let v — x(d) € X and x & T'. Then the following formula
for the directional derivative of a solution to the problem U in the direction of
w = (cos ), sind) holds in the neighborhood of the point x(d) :

oul iy, 9(d +a(d) mm
[gxl;vuﬂ (v) = 2|z ﬁlx((c)l)|1/2 €08 (19 -F 2 D 2 ) -

—(—1)muzgf) [cos(¥ — a(d)) In |z — x(d)| — @ sin(¥ — a(d))] + O(1),

where m =0 if d =a, and m =1 if d =b,; n=1,...,N. Here O(1)

denotes a function continuous at the point x(d), as well as in its neighborhood

slit along T'.
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It follows from Theorem 4, that, generally, derivatives of a solution to the

problem U behave as O (|z — z(d)|7/?) + O(In |z — z(d)|) near the end z(d) of
the contour I'. However, if pud(d) = pa(d) = 0, then the gradient of a solution
Vu[pi, po](z) is bounded and even continuous both in point x(d) and in its

neighborhood slit along I'.

6. Asymptotic behavior of potentials at infinity.

In this section we discuss asymptotic behavior of potentials v[ui](x)
and  wlug)(x) as |z] — oo. Let 7, = (cosa(o),sina(c)) and
n, = (sina(o), —cosa(o)) be tangent and normal vectors to I' at the point
y(o) € T'. Consider in the plane R? polar coordinates with the origin in the
point (0,0). Let the polar coordinates of a point y(o) € I' be |y(o)| and 6(0o).
Let the polar coordinates of a point 2 € R*\ T be r = |z| and ¢. It follows
from [6, section 1.5] that the asymptotic formulas hold

ie —im /4 etkr

wlpg)(w) = 2@()\/—

o)) = 2/ @Fm))eﬂ ivo(Y)). e

(/ﬁ@ e (o) costb()=0) g

/p[,ul Sm( (o) — ¢>€—iky(o)lc08(9(a)—¢) do.

The asymptotic formulas hold both for the case & = Rek and for the case
Imk > 0.

1+0(>] r— oo,

where
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