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P.A. Krutitskii. The Helmholtz equation with di�erent impedance boundary

conditions on di�erent sides of slits in a plane. Preprint of the Keldysh Institute
of Applied Mathematics of RAS, Moscow, 2007.

The boundary value problem for the Helmholtz equation is studied outside
slits in a plane. The impedance boundary conditions are speci�ed on the slits. In
general, the impedance conditions may be di�erent at di�erent sides of each slit.
In a particular case, the impedance conditions may be the same on both sides
of each slit. We prove that the classical solution to the problem exists, and it is
unique. We obtain the integral representation for a solution to the problem in
the form of potentials, the densities in which are uniquely determined from the
uniquely solvable system of the Fredholm integral equations of the second kind
and index zero.

Ï.À. Êðóòèöêèé. Óðàâíåíèå Ãåëüìãîëüöà ñ ðàçíûìè èìïåäàíñíûìè ãðà-
íè÷íûìè óñëîâèÿìè íà ðàçíûõ ñòîðîíàõ ðàçðåçîâ íâ ïëîñêîñòè. Ïðåïðèíò
Èíñòèòóòà ïðèêëàäíîé ìàòåìàòèêè èì. Ì.Â. Êåëäûøà ÐÀÍ, Ìîñêâà, 2007.

Èçó÷àåòñÿ êðàåâàÿ çàäà÷à äëÿ óðàâíåíèÿ Ãåëüìãîëüöà âíå ðàçðåçîâ íà
ïëîñêîñòè. Íà ðàçðåçàõ çàäàíû èìïåäàíñíûå ãðàíè÷íûå óñëîâèÿ, âîîáùå ãî-
âîðÿ, ðàçíûå íà ðàçíûõ ñòîðîíàõ êàæäîãî ðàçðåçà. Â ÷àñòíîì ñëó÷àå èìïå-
äàíñíûå óñëîâèÿ íà ñòîðîíàõ êàæäîãî ðàçðåçà ìîãóò ñîâïàäàòü. Äîêàçàíî,
÷òî êëàññè÷åñêîå ðåøåíèå çàäà÷è ñóùåñòâóåò è åäèíñòâåííî. Ïîëó÷åíî èíòå-
ãðàëüíîå ïðåäñòàâëåíèå äëÿ ðåøåíèÿ çàäà÷è â âèäå ïîòåíöèàëîâ, ïëîòíîñòè
â êîòîðûõ îïðåäåëÿþòñÿ èç îäíîçíà÷íî ðàçðåøèìîé ñèñòåìû èíòåãðàëüíûõ
óðàâíåíèé Ôðåäãîëüìà âòîðîãî ðîäà.

c© ÈÏÌ èì. Ì.B. Êåëäûøà ÐÀÍ.
Ìîñêâà, 2007 ã.

Ðàáîòà ïîääåðæàíà Ðîññèéñêèì ôîíäîì ôóíäàìåíòàëüíûõ èññëåäîâàíèé,
ãðàíò 05-01-00050.

E-mail: biem@mail.ru http: www.keldysh.ru



3
1. Introduction
The Dirichlet and Neumann problems for the Laplace and Helmholtz equations
in the exterior of several single�sided open arcs in a plane have been studied in
[9, 21, 22]. If we consider each open arc as a slit in a plane, then by single�sided
open arcs we mean the case when the same boundary data is speci�ed on both
sides of the slits.

In general, problems in the exterior of several slits in a plane imply that
di�erent boundary data is speci�ed on di�erent sides of the slits. Boundary value
problems for the Helmholtz equation in the exterior of several slits in a plane
describe scattering of acoustic waves by several cylindrical double�sided screens
in �uids or by several cracks in solids. Dirichlet and Neumann problems in the
exterior of several slits in a plane has been studied for the Helmholtz equation
in [1�2], the mixed problem with setting Dirichlet and Neumann boundary
conditions on di�erent slits has been studied in [3], the boundary conditions,
containing jumps of the solutions or its normal derivatives has been studied in
[4�5]. The boundary value problems in [1�5] were reduced to the uniquely solvable
integral equations, and for each problem the integral representation for a solution
has been obtained in the form of potentials.

The present paper is devoted to the analysis of the boundary value problem
for the Helmholtz equation in the exterior of several slits in a plane, when the
impedance boundary conditions are speci�ed on di�erent sides of each slit. The
impedance boundary conditions may be di�erent on di�erent sides of each slit.
The particular case of this problem with simpli�ed boundary conditions has been
studied in [20]. The problem, studied in the present paper describes propagation
and scattering of acoustic waves in a �uid with soft acoustic screens. The problem
is very important for engineering applications, for example, the numerical solution
of its particular case for one slit has been obtained in [7, 23]. However the general
case has not been treated by methods of analysis before. Theorems of existence
and uniqueness of a solution is obtained in the present paper for the general
case of the impedance problem in the exterior of several slits in a plane. The
integral representation for a solution is obtained in the form of potentials. The
densities in potentials are found by solving the Fredholm equation of the second
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kind and index zero. It is shown that the Fredholm equation is uniquely solvable
in a certain Banach space. Singularities of the gradient of a solution are studied at
the ends of the slits. Theory of numerical methods for singular integral equations
appearing in this problem is developed in [8, p.366].

2. Formulation of the problem
By a simple open curve we mean a non�closed smooth arc of �nite length without
self�intersections [9, p.13]. Consider simple open curves Γ1, . . . , ΓN , which belong
to C2,λ , λ ∈ (0, 1] and have no common points (including end points), in a
plane x = (x1, x2) ∈ R2 . Denote Γ =

N⋃
n=1

Γn . Assume that each curve Γn is
parametrized by the arc length s :

Γn = {x : x = x(s) = (x1(s), x2(s)) , s ∈ [an, bn]} , n = 1, . . . , N,

so that a1 < b1 < . . . < aN < bN . Then points x ∈ Γ and values
of the parameter s are in one�to�one correspondence. Let Γ denote the set
of the segments

N⋃
n=1

[an, bn] of the Os axis as well as the contour Γ . Let
τx = (cos α(s), sin α(s)) be a tangent vector to Γ at the point x(s) in the
direction of growth of the parameter s . Let nx = (sin α(s), − cos α(s)) denote
the normal vector to Γ at the point x(s) which coincides with the tangent vector
τx after rotation by the angle π/2 counter�clockwise. Owing to parametrization
chosen cos α(s) = x′1(s) , sin α(s) = x′2(s) . Let the plane R2 be slit along
the contour Γ . Denote the side of the slits Γ which remains on the left while
parameter s increases by Γ+ , and the opposite side by Γ− .

We say that the function u(x) belongs to the smoothness class K if the
following conditions are satis�ed:
1) u(x) ∈ C0

(
R2 \ Γ

) ∩ C2
(
R2 \ Γ

)
, in particular, u(x) is continuous at the

ends of Γ ;
2) ∇u ∈ C0

(
R2 \ Γ \X

)
, where X is a set of end points of Γ :

X =
N⋃

n=1
(x (an) ∪ x (bn));

3) if x → x(d) ∈ X and x /∈ Γ , then the inequality

(1) |∇u(x)| < C|x− x(d)|ε,
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holds, where the constant C > 0 , the number ε > −1 and d = an or d = bn

for n = 1, . . . , N .
Remark. The class of functions continuous in R2 \ Γ and continuously

extendible from the left and right to Γ \ X is denoted by C0
(
R2 \ Γ \X

)
.

The limiting values of these functions on Γ \X from the left can be di�erent, so
these functions may have a jump if one passes across Γ \X . Functions of class
C0

(
R2 \ Γ

)
possess the same properties, but, in addition, they are continuously

extendible to the ends of the slits Γ .
Let us formulate a boundary value problem for the Helmholtz equation in

R2 \ Γ .
Problem U. Find a function u(x) of the class K satisfying the Helmholtz

equation in R2 \ Γ

(2) 4u + k2u = 0, k = const 6= 0, 0 ≤ arg k < π

and the impedance boundary conditions

(3a)
∂u

∂n

∣∣∣∣∣x(s) ∈ Γ+ + β1(s) u(x)|x(s) ∈ Γ+ = f1(s),

(3b)
∂u

∂n

∣∣∣∣∣x(s) ∈ Γ−
− β2(s) u(x)|x(s) ∈ Γ− = f2(s),

where the functions f1(s) , f2(s) , β1(s) , β2(s) are speci�ed on Γ , and βj(s)

satisfy one of the following additional conditions for j = 1, 2 :
1. If k = Re k > 0 , then Im βj(s) ≤ 0 for any s ∈ Γ .
2. If Re k = 0 and Im k > 0 , then βj(s) = Re βj(s) ≥ 0 for any s ∈ Γ .
3. If Re k 6= 0 , Im k > 0 , then (Re k) · (Im βj(s)) ≤ 0 for any s ∈ Γ .
In addition, the function u(x) must satisfy the conditions at in�nity. If arg k = 0 ,
i.e. k = Re k > 0 , then we set the Sommerfeld conditions at in�nity

(4a) u(x) = O


 1√
|x|


 ,

∂u(x)

∂|x| − iku(x) = o


 1√
|x|


 , |x| → ∞.

If 0 < arg k < π , i.e. Im k > 0 , then we set the following conditions at in�nity:

(4b) u(x) = o


 1√
|x|


 ,

∂u(x)

∂|x| = o


 1√
|x|


 , |x| =

√
x2

1 + x2
2 →∞.
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All conditions of the problem are regarded in classical sense. The validity of

the boundary conditions (3) at the ends of Γ is not required. The condition (1)
at the ends of Γ in the de�nition of the class K ensures the absence of the point
sources at the ends of Γ . If β1(s) ≡ β2(s) , then the problem U transforms to
the problem studied in [20]. The Neumann problem in the exterior of slits in a
plane [2] is a particular case of [20].

Let k = Re k > 0 (or Re k 6= 0 , Im k > 0 ), and let
Im β1(s) ≡ Im β2(s) ≡ 0 , i.e. β1(s) , β2(s) are real functions. If β1(s) ≡ −β2(s) ,
then the boundary condition (3b) takes the form

∂u

∂n

∣∣∣∣∣x(s) ∈ Γ−
+ β1(s) u(x)|x(s) ∈ Γ− = f2(s),

so the left sides in the boundary conditions (3a) and (3b) coincide. Therefore, the
same boundary condition is posed on opposite sides of the slits in this particular
case of the problem U, but the boundary data f1(s) and f2(s) on opposite sides
of the slits can be di�erent.

Remark. The boundary conditions (3) can be written in the form:

(3a′)
∂u

∂n

∣∣∣∣∣x(s) ∈ Γ+ +
∂u

∂n

∣∣∣∣∣x(s) ∈ Γ−
+

+

(
β1(s)u(x)|x(s) ∈ Γ+ − β2(s)u(x)|x(s) ∈ Γ−

)
= f1(s) + f2(s),

(3b′)
∂u

∂n

∣∣∣∣∣x(s) ∈ Γ+ −
∂u

∂n

∣∣∣∣∣x(s) ∈ Γ−
+

+

(
β1(s)u(x)|x(s) ∈ Γ+ + β2(s)u(x)|x(s) ∈ Γ−

)
= f1(s)− f2(s).

The boundary conditions (3a ′ ) and (3b ′ ) are equivalent to the boundary
conditions (3a) and (3b).

Theorem 1. If Γ ∈ C2,λ , λ ∈ (0, 1] , β1(s), β2(s) ∈ C0(Γ) , then there is
no more than one solution to the problem U.

Proof. Let u0(x) be a solution to the homogeneous problem U. We will prove
that u0(x) ≡ 0 by the method of integral equalities. Let Cr be a disc containing
Γ of the radius rwith the center in the origin. Consider a set of N simple smooth
closed curves Λ enveloping the contour Γ . We assume that curves Λ have no
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common points and each curve envelops only one slit Γn . Writing out �rst Green's
formula [10, p.328] for the function u0(x) in a domain bounded by Λ and ∂Cr ,
taking into account that u0(x) ∈ K , shrinking Λ to Γ and setting r →∞ , we
obtain

(5a) lim
r→∞

(
‖∇u0‖2

L2 (Cr \ Γ) − k2 ‖u0‖2
L2 (Cr \ Γ)

)
=

∫

Γ

ū+
0

(
∂u0

∂nx

)+

ds−

−
∫

Γ

ū−0

(
∂u0

∂nx

)−
ds +





ik lim
r→∞

∫

∂Cr

|u0|2 dl, in case of conditions (4a),

0, in case of conditions (4b),
where conditions (1), (4) were used. The complex conjugate function to u0(x) is
denoted by ū0(x) . Clearly, ū0(x) ∈ K. The superscripts + and − denote the
limiting values of the functions on Γ+ and Γ− respectively. Here and further on

we use the designation
∫

Γ

. . . ds =
N∑

n=1

bn∫

an

. . . ds .

Remark. It follows from section 1.5 of the book [6, p.24�25] that any solution
to equation (2) satisfying radiating conditions (4a) has the following asymptotic
behavior at in�nity:

u0(x) =
eikr

√
r
F0(φ) + O

(
1

r3/2

)
, r = |x| → ∞,

where φ is a polar angle, and F0(φ) is a continuous function. This asymptotic
formula proves the existence of the limit

lim
r→∞

∫

∂Cr

|u0|2 dl =
2π∫

0

|F0(φ)|2 dφ

in the right side (5a) in case of conditions (4a). Therefore, the limit in the left
side of (5a) exists as well.

Using homogeneous boundary conditions (3) for the function u0(x) , we write
the equality (5a) in the form

(5b) lim
r→∞

(
‖∇u0‖2

L2 (Cr \ Γ) − k2 ‖u0‖2
L2 (Cr \ Γ)

)
=

= −
∫

Γ

β1(s)|u+
0 (x(s))|2ds−

∫

Γ

β2(s)|u−0 (x(s))|2ds+
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+





ik lim
r→∞

∫

∂Cr

|u0|2 dl, in case of conditions (4a),

0, in case of conditions (4b).
If Re k = 0 and Im k > 0 , so that k2 = −|k|2 , then conditions (4b) are satis�ed
and we obtain

lim
r→∞

(
‖∇u0‖2

L2 (Cr \ Γ) + |k|2 ‖u0‖2
L2 (Cr \ Γ)

)
=

= −
∫

Γ

(|β1(s)| · |u+
0 (x(s))|2 + |β2(s)| · |u−0 (x(s))|2)

ds,

since in this case Re βj(s) = βj(s) ≥ 0 for any s ∈ Γ and j = 1, 2 . Hence
‖u0‖2

L2
(
R2 \ Γ

) = 0 , so u0(x) ≡ 0 . Further on we assume that Re k 6= 0

and Im k > 0 in case of conditions (4b). As noted above, limits in (5b) exist.
Consequently they exist for both real and imaginary parts. Choosing imaginary
part in (5b), we obtain

(5c) −
∫

Γ

(
(Im β1(s))|u+

0 (x(s))|2 + (Im β2(s))|u−0 (x(s))|2)
ds+

+k lim
r→∞

∫

∂Cr

|u0|2 dl = 0 for conditions (4a),

−
∫

Γ

(
(Im β1(s))|u+

0 (x(s))|2 + (Im β2(s))|u−0 (x(s))|2)
ds+

+Im k2 lim
r→∞ ‖u0‖2

L2 (Cr \ Γ) = 0 for conditions (4b),

where we used that k = Re k > 0 in case of conditions (4a), in
addition, Re k 6= 0 , Im k > 0 in case of conditions (4b). In accordance
with the formulation of the problem U, if Re k 6= 0 and Im k > 0 ,
then (Im βj(s)) · (Re k) ≤ 0 for any s ∈ Γ and j = 1, 2 , whence
−(Imβj(s))/

(
Im k2

) ≥ 0 , since Im k2 = 2 Re k · Im k 6= 0 . In addition, it is
required in the problem U that Im β1(s) ≤ 0 and Im β2(s) ≤ 0 for any s ∈ Γ

if k = Re k > 0 . Therefore, equalities (5c) can be written in the form
1

|k|
∫

Γ

(|Im β1(s)| · |u+
0 (x(s))|2 + |Im β2(s)| · |u−0 (x(s))|2)

ds+

+ lim
r→∞

∫

∂Cr

|u0|2 dl = 0 in case of conditions (4a),



9
1

|Im k2|
∫

Γ

(|Im β1(s)| · |u+
0 (x(s))|2 + |Im β2(s)| · |u−0 (x(s))|2)

ds+

+ lim
r→∞ ‖u0‖2

L2 (Cr \ Γ) = 0 in case of conditions (4b).

Hence
lim
r→∞

∫

∂Cr

|u0|2 dl = 0 in case of conditions (4a),

lim
r→∞ ‖u0‖2

L2 (Cr \ Γ) = 0 in case of conditions (4b).

If k = Re k > 0 and conditions (4a) hold, then u0(x) ≡ 0 owing to the Rellich
lemma [11, p.682]. If Re k 6= 0 , Im k > 0 and conditions (4b) hold, then
‖u0‖2

L2
(
R2 \ Γ

) = 0 , i.e. u0(x) ≡ 0 . Thus, in all cases u0(x) is a trivial solution
to the homogeneous problem U. Therefore there exists only the trivial solution to
the homogeneous problem U, and the theorem is proved in view of the linearity
of the problem U.

3. Reduction of the problem to the integral equations
Denote the Hankel function of the �rst kind and zero order [12, p.332] by H(1)

0 (z) :

H(1)
0 (z) =

√
2 exp(iz − iπ/4)

π
√

z

∞∫

0

exp(−t)t−1/2
(
1 +

it

2z

)−1/2

dt.

To construct the solution to the problem U, we assume that the functions β1(s) ,
β2(s) , f1(s) , f2(s) in the boundary conditions (3) belong to the H�older space:

(6) β1(s), β2(s), f1(s), f2(s) ∈ C0,λ(Γ), λ ∈ (0, 1].

Consider the angular potential [1, 2] on Γ for the equation (2)

(7) v[µ1](x) =
i

4

∫

Γ

µ1(σ)V (x, σ) dσ.

The kernel V (x, σ) is given on each curve Γn (n = 1, . . . , N) by the formula

V (x, σ) =
σ∫

an

∂H(1)
0 (k|x− y(ξ)|)

∂ny
dξ, σ ∈ [an, bn] ,

where y = y(ξ) = (y1(ξ), y2(ξ)) , |x− y(ξ)| =
√

(x1 − y1(ξ))
2 + (x2 − y2(ξ))

2.

Further on we will assume that µ1(σ) belongs to the Banach space Cω
q (Γ) for

some ω , q , such that ω ∈ (0, 1] , q ∈ [0, 1) .
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We say that µ1(s) belongs to Cω

q (Γ) with ω ∈ (0, 1] , q ∈ [0, 1) , if
µ1(s)

N∏
n=1

|s− an|q |s− bn|q ∈ C0,ω(Γ) , where C0,ω(Γ) is a space of H�older
continuous functions with the exponent ω . The norm in the Banach space Cω

q (Γ)

is determined by the relation ‖µ1(s)‖Cω
q (Γ) =

∥∥∥∥∥µ1(s)
N∏

n=1
|s− an|q |s− bn|q

∥∥∥∥∥C0,ω(Γ)
.

In addition, further on we will assume that µ1(s) satis�es the following
conditions [1, 2]:

(8)
bn∫

an

µ1(σ) dσ = 0, n = 1, . . . , N.

As was shown in [1, 2], the angular potential v[µ1](x) with such a density
µ1(σ) belongs to the class K. In particular, inequality (1) holds for ε = −q if
q ∈ (0, 1) and for any ε ∈ (−1, 0) if q = 0 . Besides, integrating v[µ1](x) by
parts and using (8), we represent the angular potential in the form of double layer
potential

(9) v[µ1](x) = − i

4

∫

Γ

ρ[µ1](σ)
∂H(1)

0 (k|x− y(σ)|)
∂ny

dσ

with the density

(10) ρ[µ1](σ) =
σ∫

an

µ1(ξ) dξ, σ ∈ [an, bn] , n = 1, . . . , N.

Consequently, v[µ1](x) satis�es both equation (2) in the exterior of Γ and the
conditions at in�nity (4).

We shall construct a solution to the problem U with the help of potential
theory for the Helmholtz equation (2). We shall look for a solution to the problem
in the form of a sum of an angular potential and a single layer potential

(11) u[µ1, µ2](x) = v[µ1](x) + w [µ2] (x),

where v[µ1](x) is an angular potential de�ned in (7), (9), and

w [µ2] (x) =
i

4

∫

Γ

µ2(σ)H(1)
0 (k|x− y(σ)|)dσ

is a single layer potential. We shall look for the function µ2(s) in the space
C0,λ/4(Γ). It was mentioned above that we look for µ1(s) in the Banach space
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Cω

q (Γ) , ω ∈ (0, 1] , q ∈ [0, 1) . In addition, the density µ1(s) must satisfy
conditions (8). For such densities µ1(s) and µ2(s) the function (11) belongs to
the class K (see [1]) and satis�es all conditions of the problem U, except for the
boundary conditions (3). In particular, the function (11) satis�es conditions at
in�nity (4).

Consider boundary conditions in the form of (3a ′ ) and (3b ′ ). To satisfy
boundary conditions (3a ′ ), (3b ′ ), we substitute (11) into (3a ′ ), (3b ′ ), use
formulas for limiting values of the angular potential from [1] and arrive to the
integral equations for densities µ1(s) and µ2(s)

(12) −1

π

∫

Γ

µ1(σ)
sin ϕ0(x(s), y(σ))

|x(s)− y(σ)| dσ +
i

2

∫

Γ

µ1(σ)
∂V0(x(s), σ)

∂nx
dσ+

+
i

2

∫

Γ

µ2(σ)
∂H(1)

0 (k|x(s)− y(σ)|)
∂nx

dσ +
1

2
(β1(s) + β2(s))ρ[µ1](s)+

+(β1(s)− β2(s))
i

4




∫

Γ

µ2(σ)H(1)
0 (k|x(s)− y(σ)|)dσ +

∫

Γ

µ1(σ)V (x(s), σ)dσ


 =

= f1(s) + f2(s), s ∈ Γ,

(13) µ2(s)+

+(β1(s) + β2(s))
i

4




∫

Γ

µ2(σ)H(1)
0 (k|x(s)− y(σ)|)dσ +

∫

Γ

µ1(σ)V (x(s), σ)dσ


 +

+
1

2
(β1(s)− β2(s))ρ[µ1](s) = f1(s)− f2(s), s ∈ Γ,

where ρ[µ1](s) is de�ned in (10),

V0(x, σ) =
σ∫

an

∂h(k|x− y(ξ)|)
∂ny

dξ, σ ∈ [an, bn] , n = 1, 2, . . . , N,

h(z) = H(1)
0 (z)− 2i

π
ln

z

k
.

The angle between the vector −→xy and the direction of the normal nx is denoted
by ϕ0(x, y) . The angle ϕ0(x, y) is positive if it is measured from the vector nx

counter-clockwise, and negative if it is measured from the vector nx clockwise.
Moreover, the angle ϕ0(x, y) is continuous if x, y ∈ Γ and x 6= y .
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The �rst term in (12) is a singular Cauchy integral [9, p.315]. Let us study

properties of the operator ρ[µ1](s) from (10). Since the function µ1(s) belongs
to Cω

q (Γ) , it can be represented in the form µ1(s) = µ1∗(s)Q−1
q (s) , where

µ1∗(s) ∈ C0,ω(Γ) , and

(14a) Qq(s) =
N∏

n=1
|s− an|q |bn − s|q sign (s− an) , q ∈ [0, 1), s ∈ Γ.

Consider the operator
(14b)

ρq [µ1∗] (s) = ρ[µ1](s) =
s∫

an

µ1∗(σ)Q−1
q (σ) dσ, s ∈ [an, bn] , n = 1, . . . , N.

Lemma 1. (a) The operator ρq [µ1∗] (s) with q ∈ [0, 1) is bounded when it
acts from C0(Γ) into C0,1−q(Γ) . (b) The operator ρ[µ1](s) is bounded when it
acts from Cω

q (Γ) with ω ∈ (0, 1] and q ∈ [0, 1) into C0,1−q(Γ) .
Proof is demonstrated in [5].
Denote

A±
22(s, σ) =

i

4
(β2(s)± β1(s))H(1)

0 (k |x(s)− y(σ)|) .

Rewrite the Cauchy singular integral equation (12) in the form

(15a)
1

π

∫

Γ

µ1(σ)
dσ

σ − s
+

∫

Γ

µ1(σ)Y11(s, σ)dσ +
∫

Γ

µ2(σ)Y12(s, σ)dσ + Y [µ2](s)−

−1

2
(β1(s) + β2(s))ρ[µ1](s) = −(f1(s) + f2(s)), s ∈ Γ,

where

Y11(s, σ) =


1

π


sin ϕ0(x(s), y(σ))

|x(s)− y(σ)| − 1

σ − s


− i

2

∂V0(x(s), σ)

∂nx
−

− i

4
(β1(s)− β2(s))V (x(s), y(σ))

)
,

Y12(s, σ) = − i

2

∂H(1)
0 (k|x(s)− y(σ)|)

∂nx
, Y [µ2](s) =

∫

Γ

µ2(σ)A−
22(s, σ)dσ.

It follows from lemmas 3 and 4 in [2] that Y12(s, σ) ∈ C0,λ(Γ × Γ) ,
Y11(s, σ) ∈ C0,p(Γ × Γ) , where p = λ if 0 < λ < 1 , and p = 1 − ε0 for
any ε0 ∈ (0, 1) if λ = 1 .
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Equation (13) on Γ can be written in the form

(15b) µ2(s) +
∫

Γ

µ1(σ)A21(s, σ)dσ +
∫

Γ

µ2(σ)A+
22(s, σ)dσ+

+
1

2
(β1(s)− β2(s))ρ[µ1](s) = f1(s)− f2(s), s ∈ Γ.

Here

(16) A21(s, σ) =
i

4
(β1(s) + β2(s))V (x(s), σ) ∈ C0,λ(Γ× Γ)

(see lemma 4 in [2]). The properties of the integral operator with the kernel
similar to A±

22(s, σ) describe
Lemma 2. Let Γ ∈ C2,λ, β(s) ∈ C0,λ(Γ), λ ∈ (0, 1],

A[ν](s) =
∫

Γ

ν(σ)A(s, σ)dσ, where A(s, σ) =
i

4
β(s)H(1)

0 (k |x(s)− y(σ)|) .

Then
1) the operator A[ν](s) is compact when it acts from C0(Γ) into C0(Γ) ,
2) A[ν](s) ∈ C0,λ/4(Γ) for any density ν(s) ∈ C0(Γ) , and A[ν](s) is a

bounded operator acting from C0(Γ) into C0,λ/4(Γ) .
Proof. The representation holds

(17a) A(s, σ) = β(s)

(
− 1

2π
ln |x(s)− y(σ)|+ i

4
h(k|x(s)− y(σ)|)

)
=

= β(s)


− 1

2π

I(s, σ)

|x(s)− y(σ)|λ/3 +
i

4
h(k|x(s)− y(σ)|)


 ,

where I(s, σ) = |x(s)− y(σ)|λ/3 ln |x(s)− y(σ)|. It follows from [9, section 6.2]
that I(s, σ) ∈ C0,λ/4(Γ×Γ) . From the expansion of the function H(1)

0 (z) into the
series [12, p.333], we obtain: h(z) ∈ C1[0,∞) . According to corollary to lemma 1
in [1]: |x(s)− y(σ)| ∈ C0,1(Γ× Γ) , hence h(k|x(s)− y(σ)|) ∈ C0,1(Γ× Γ) . On
the basis of (17a), the operator A[ν](s) is represented as a sum of two integral
operators. One of them is an integral operator with a polar kernel, while another
one is an integral operator with continuous kernel. Each of these operators is
compact when acting from C0(Γ) into C0(Γ) . The operator with continuous
kernel is compact by Arzela-Ascoli theorem [14, p.104], and the operator with
a polar kernel is compact by virtue of [15, chapter 7, section 4]. Therefore the
operator A[ν](s) is compact when it acts from C0(Γ) into C0(Γ) since it is
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represented in the form of a sum of two compact operators. The point 1) of the
lemma is proved. Let us turn to the proof of the point 2).

Set J(s, σ) = β(s)I(s, σ) , then J(s, σ) ∈ C0,λ/4(Γ× Γ) . Consider

|A[ν](s2)−A[ν](s1)| ≤

≤ ‖ν‖C0(Γ)




1

2π

∫

Γ

∣∣∣∣∣∣
J(s2, σ)

|x(s2)− y(σ)|λ/3 −
J(s1, σ)

|x(s1)− y(σ)|λ/3

∣∣∣∣∣∣ dσ+

+
1

4

∫

Γ

|h(k|x(s2)− y(σ)|)− h(k|x(s1)− y(σ)|)| dσ


 .

For the second integral the inequality holds
1

4

∫

Γ

|h(k|x(s2)− y(σ)|)− h(k|x(s1)− y(σ)|)| dσ ≤ c1|s2 − s1|,

where c1 is a constant, while the �rst integral can be estimated in the following
way

∫

Γ

∣∣∣∣∣∣
J(s2, σ)

|x(s2)− y(σ)|λ/3 −
J(s1, σ)

|x(s1)− y(σ)|λ/3

∣∣∣∣∣∣ dσ ≤

≤
∫

Γ

∣∣∣∣∣∣
(J(s2, σ)− J(s1, σ))|x(s1)− y(σ)|λ/3

|x(s2)− y(σ)|λ/3|x(s1)− y(σ)|λ/3 −

−J(s1, σ)(|x(s2)− y(σ)|λ/3 − |x(s1)− y(σ)|λ/3)

|x(s2)− y(σ)|λ/3|x(s1)− y(σ)|λ/3

∣∣∣∣∣∣ dσ ≤

≤
∫

Γ

|J(s2, σ)− J(s1, σ)| · |x(s1)− y(σ)|λ/3

|x(s2)− y(σ)|λ/3|x(s1)− y(σ)|λ/3 dσ+

+
∫

Γ

|J(s1, σ)| ·
∣∣∣|x(s2)− y(σ)|λ/3 − |x(s1)− y(σ)|λ/3

∣∣∣
|x(s2)− y(σ)|λ/3|x(s1)− y(σ)|λ/3 dσ ≤

≤ c0|s2 − s1|λ/4
∫

Γ

(F (s1, σ)F (s2, σ))λ/3

|s2 − σ|λ/3|s1 − σ|λ/3dσ,

where c0 s a constant and F (s, σ) =
|s− σ|

|x(s)− y(σ)| . The properties of H�older
functions [9, sections 3.1, 5] are used in derivation of the latter inequality.
According to [1, lemma 1], F (s, σ) ∈ C1(Γ×Γ), so F (s, σ) ≤ c1 for all s, σ ∈ Γ ,
where c1 is a constant. Using the Cauchy-Bunyakovskii inequality, we obtain

∫

Γ

(F (s1, σ)F (s2, σ))λ/3

|s2 − σ|λ/3|s1 − σ|λ/3dσ ≤ c
2λ/3
1

∫

Γ

dσ

|s2 − σ|λ/3|s1 − σ|λ/3 ≤
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≤ c
2λ/3
1




∫

Γ

dσ

|s2 − σ|2λ/3




1/2 


∫

Γ

dσ

|s1 − σ|λ/3




1/2

≤ const

for any s1, s2 ∈ Γ . Hence

(17b) |A[ν](s2)−A[ν](s1)| ≤ c‖ν‖
C0(Γ)

|s2 − s1|λ/4,

where c is a constant. Therefore A[ν](s) ∈ C0,λ/4(Γ) for any density
ν(s) ∈ C0(Γ) . Similarly,

(17c) |A[ν](s)| ≤ ‖ν‖
C0(Γ)


C1

∫

Γ

(F (s, σ))λ/3

|s− σ|λ/3 dσ + C2


 ≤ ‖ν‖

C0(Γ)
c2,

where C1, C2 , c2 are constants and the inequality holds for all s ∈ Γ . It follows
from (17b) and (17c) that A[ν](s) is a bounded operator acting from C0(Γ) into
C0,λ/4(Γ) . Lemma is proved.

It follows from Lemma 2 that Y [µ2](s) ∈ C0,λ/4(Γ) , if µ2(s) ∈ C0(Γ) .
Thus, if {µ1(s), µ2(s)} is a solution to the system of equations (15), (8), and

µ1(s) ∈ Cω
q (Γ) , ω ∈ (0, 1] , q ∈ [0, 1) , µ2(s) ∈ C0,λ/4(Γ) , then the potential

(11) satis�es all conditions of the problem U. We arrive at
Theorem 2. Let Γ ∈ C2,λ ; β1(s), β2(s), f1(s), f2(s) ∈ C0,λ(Γ) ,

λ ∈ (0, 1] . If system of equations (15), (8) has a solution {µ1(s), µ2(s)} , such
that µ1(s) ∈ Cω

q (Γ) , ω ∈ (0, 1] , q ∈ [0, 1) , µ2(s) ∈ C0,λ/4(Γ) , then the
solution to the problem U exists and is given by the formula (11).

Equation (15a) is a singular Cauchy integral equation [9, p.315]. The goal of
our further analysis is to prove solvability of the system (15), (8). In addition,
we shall reduce the system (15), (8) to the uniquely solvable Fredholm integral
equation of the second kind and index zero in the appropriate Banach space.

4. Regularization of the singular integral equation. Existence theorem
Inverting the Cauchy singular operator in (15a), i.e. carrying out the
regularization of the singular integral equation in accordance with [9, section 99],
we obtain the following integral equation:

(18) µ1(s) +
1

Q1/2(s)




∫

Γ

µ1(σ)A01(s, σ) dσ + B0[ρ[µ1]](s) + S0[Y [µ2]](s) +
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+
∫

Γ

µ2(σ)A02(s, σ)dσ +
N−1∑

n=0
Gns

n


 =

Φ0(s)

Q1/2(s)
, s ∈ Γ,

where G0, . . . , GN−1 are arbitrary constants; Q1/2(s) is de�ned in (14a);

(19) A0j(s, σ) = −1

π

∫

Γ

Y1j(ξ, σ)Q1/2(ξ)

ξ − s
dξ, j = 1, 2;

S0[Y [µ2]](s) = −1

π

∫

Γ

Q1/2(ξ)Y [µ2](ξ)

ξ − s
dξ;

B0[ρ[µ1]](s) =
1

2π

∫

Γ

Q1/2(ξ)(β1(ξ) + β2(ξ))ρ[µ1](ξ)

ξ − s
dξ;

Φ0(s) =
1

π

∫

Γ

Q1/2(ξ)(f1(ξ) + f2(ξ))

ξ − s
dξ.

Let ω ∈ (0, 1] , q ∈ [0, 1) . Note that if the functions µ1(s) ∈ Cω
q (Γ) and

µ2(s) ∈ C0,λ/4(Γ) obey the equation (18) for some constants G0, . . . , GN−1 ,
then they obey the equation (15a). (This fact can be easily shown by acting with
the singular integral operator with the kernel (σ − s)−1 on the equation (18),
which transforms into the equation (15a).) Let us study properties of the functions
de�ned in (19). Obviously, Q1/2(s) ∈ C0,1/2(Γ) . If µ1(s) ∈ Cω

q (Γ) , then it follows
from the statement (b) of the Lemma 1 that ρ[µ1](s) ∈ C0,1−q(Γ) . Using the
properties of singular integrals [9, section 18], we conclude that B0[ρ[µ1]](s) ,
S0[Y [µ2]](s) , Φ0(s) are H�older continuous functions on Γ , and A0j(s, σ) is
H�older continuous function on Γ in both variables for j = 1, 2 . Moreover,
B0[ρ[µ1]](s) ∈ C0,ς(Γ) , where ς = min{1/2, 1−q, λ} ; S0[Y [µ2]](s) ∈ C0,λ/4(Γ) ;
Φ0(s) ∈ C0,η(Γ) , where η = min{1/2, λ} ; and A0j(s, σ) belongs to the
class C0,η(Γ) in s uniformly with respect to σ ∈ Γ . Therefore, if functions
µ1(s) ∈ Cω

q (Γ) , µ2(s) ∈ C0,λ/4(Γ) (here ω ∈ (0, 1] , q ∈ [0, 1) ) satisfy
equation (18), then µ1(s) belongs to C

λ/4
1/2 (Γ) automatically, i.e. q = 1/2 and

ω = min{ς, η, λ/4} = λ/4 . Thus, further on we shall look for µ1(s) in the space
C

λ/4
1/2 (Γ) .
Let us choose the constants G0, . . . , GN−1 in order to satisfy the

conditions (8). Substituting µ1(s) from (18) into (8), we obtain the linear system
of equations for determination of G0, . . . , GN−1

(20)
∫

Γ

µ1(σ)l(1)
n (σ) dσ+

∫

Γ

µ2(σ)l(2)
n (σ)dσ+

∫

Γ

1

2
(β1(ξ)+β2(ξ))ρ[µ1](ξ)gn(ξ) dξ−
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−
∫

Γ

Y [µ2](ξ)gn(ξ)dξ +
N−1∑

m=0
WnmGm = Hn, n = 1, . . . , N,

where

(21) gn(ξ) =
Q1/2(ξ)

π

bn∫

an

1

Q1/2(s)

1

ξ − s
ds, ξ ∈ Γ;

l(j)n (σ) = −
∫

Γ

Y1j(ξ, σ)gn(ξ) dξ, j = 1, 2, σ ∈ Γ;

Hn =
∫

Γ

(f1(ξ) + f2(ξ))gn(ξ) dξ; Wnm =
bn∫

an

Q−1
1/2(s)s

m ds, m = 0, . . . , N − 1.

Here Wnm are the elements of the matrix W with dimensions N × N . As is
shown in [2, lemma 7], the inverse matrix W−1 for W exists and has the elements
(
W−1

)
nm

, n = 0, . . . , N −1 , m = 1, . . . , N . Inverting the matrix W in (20),
we express the constants G0, . . . , GN−1 in terms of µ1(s) :

(22) Gn =
N∑

m=1

(
W−1

)
nm



Hm −

∫

Γ

µ1(σ)l(1)
m (σ) dσ −

∫

Γ

µ2(σ)l(2)
m (σ) dσ+

+
∫

Γ

Y [µ2](ξ)gm(ξ)dξ −
∫

Γ

1

2
(β1(ξ) + β2(ξ))ρ[µ1](ξ)gm(ξ) dξ



 .

Remark. It follows from the formulas for the integrals calculated in [13,
p. 910], that the coe�cients de�ned in (21), satisfy the identities:

N∑

n=1
gn(ξ) ≡ 0,

N∑

n=1
l(j)n (σ) ≡ 0, ξ, σ ∈

N⋃

n=1
(an, bn) , j = 1, 2;

N∑

n=1
Hn = 0;

N∑

n=1
Wnm =

∫

Γ

Q−1
1/2(s)s

mds =





0, m = 0, . . . , N − 2;

π, m = N − 1.

Therefore, if the number of slits is N = 1 then the solution to the equation (20)
is G0 = 0 .

Substituting the constants Gn from (22) into equation (18), we obtain the
integral equation for µ1(s) , µ2(s) :
(23)

µ1(s) +
1

Q1/2(s)




∫

Γ

µ1(σ)A11(s, σ) dσ +
∫

Γ

µ2(σ)A12(s, σ) dσ + S[Y [µ2]](s)


 +
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+
B[ρ[µ1]](s)

Q1/2(s)
=

Φ(s)

Q1/2(s)
, s ∈ Γ,

where

(24) A1j(s, σ) = A0j(s, σ)−
N−1∑

n=0
sn

N∑

m=1

(
W−1

)
nm

l(j)m (σ), j = 1, 2,

Φ(s) = Φ0(s)−
N−1∑

n=0
sn

N∑

m=1

(
W−1

)
nm

Hm,

S[Y [µ2]](s) = S0[Y [µ2]](s) +
N−1∑

n=0
sn

∫

Γ

Y [µ2](ξ)
N∑

m=1

(
W−1

)
nm

gm(ξ) dξ,

B[ρ[µ1]](s) = B0[ρ[µ1]](s)−

−
N−1∑

n=0
sn

∫

Γ

1

2
(β1(ξ) + β2(ξ))ρ[µ1](ξ)

N∑

m=1

(
W−1

)
nm

gm(ξ) dξ.

If {µ1(s), µ2(s)} is an arbitrary solution to equation (23), such that
µ1(s) ∈ C

λ/4
1/2 (Γ) , µ2(s) ∈ C0,λ/4(Γ) , then µ1(s) satis�es conditions (8)

automatically (this fact can be shown by direct veri�cation).
It follows from properties of functions A0j(s, σ) , B0[ρ[µ1]](s) , Φ0(s) , de�ned

in (19), and from formulas (24), that Φ(s) ∈ C0,η(Γ) , where η = min{1/2, λ} ;
the function A1j(s, σ) with j = 1, 2 is H�older continuous in both variables
and belongs to the class C0,η(Γ) in s uniformly with respect to σ ∈ Γ ;
if µ2(s) ∈ C0(Γ) , then S[Y [µ2]](s) ∈ C0,λ/4(Γ) ; if µ1(s) ∈ C

λ/4
1/2 (Γ) ,

then ρ[µ1](s) ∈ C0,1/2(Γ) and B[ρ[µ1]](s) ∈ C0,η(Γ) . Let us introduce the new
unknown function µ1∗(s) = µ1(s)Q1/2(s) ∈ C0,λ/4(Γ) instead of µ1(s) ∈ C

λ/4
1/2 (Γ)

and rewrite equation (23) in the form

(25) µ1∗(s)+A11[µ1∗](s)+B[µ1∗](s)+A12[µ2](s)+S[µ2](s) = Φ(s), s ∈ Γ,

where, taking into account (14b),

A11[µ1∗](s) =
∫

Γ

µ1∗(σ)Q−1
1/2(σ)A11(s, σ) dσ, B [µ1∗] (s) = B

[
ρ1/2 [µ1∗]

]
(s),

A12[µ2](s) =
∫

Γ

µ2(σ)A12(s, σ) dσ, S[µ2](s) = S[Y [µ2]](s).

If µ1∗(s) ∈ C0(Γ) , then A11[µ1∗](s) ∈ C0,η(Γ) , and according to Lem-
ma 1(a): ρ1/2 [µ1∗] (s) ∈ C0,1/2(Γ) , whence B [µ1∗] (s) ∈ C0,η(Γ) . From the
above arguments it follows
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Lemma 3. Let Γ ∈ C2,λ , β1(s), β2(s) ∈ C0,λ(Γ) , λ ∈ (0, 1] and

η = min{1/2, λ} . If functions µ1∗(s) , µ2(s) from C0(Γ) obey equation (25),
where Φ(s) ∈ C0,η(Γ) , then µ1∗(s) belongs to C0,λ/4(Γ) .

In terms of the function µ1∗(s) , we rewrite equation (15b) in the form

(26) µ2(s) +A21[µ1∗] + E [µ1∗](s) +A22[µ2](s) = f1(s)− f2(s), s ∈ Γ,

where, taking into account (14b): E [µ1∗](s) =
1

2
(β1(s)−β2(s))ρ1/2[µ1∗](s) and

A22[µ2](s) =
∫

Γ

µ2(σ)A+
22(s, σ)dσ, A21[µ1∗](s) =

∫

Γ

µ1∗(σ)Q−1
1/2(σ)A21(s, σ)dσ.

It follows from (16) that A21[µ1∗](s) ∈ C0,λ(Γ) for any µ1∗(s) ∈ C0(Γ) . By
Lemma 1(a) we obtain that ρ1/2[µ1∗](s) ∈ C0,1/2(Γ) for any µ1∗(s) ∈ C0(Γ) .
It follows from statement 2) of Lemma 2 that A22[µ2](s) ∈ C0,λ/4(Γ) for any
µ2(s) ∈ C0(Γ) . Hence we arrive at

Lemma 4. Let Γ ∈ C2,λ , β1(s), β2(s), f1(s), f2(s) ∈ C0,λ(Γ) ; λ ∈ (0, 1] .
If functions µ1∗(s) , µ2(s) belong to C0(Γ) and obey equation (26), then
µ2(s) ∈ C0,λ/4(Γ) .

On the basis of Lemmas 3, 4, we will look for a solution {µ1∗(s), µ2(s)} to the
system (25), (26) among functions µ1∗(s), µ2(s) ∈ C0(Γ) . Consider operators in
equation (26). Note that A21(s, σ) ∈ C0(Γ× Γ) according to (16). Therefore, it
can be veri�ed directly using Arzela-Ascoli theorem [14, p.104] that A21[µ1∗](s)

is a compact operator acting from C0(Γ) into C0(Γ) . In view of Lemma 2(1),
the operator A22[µ2](s) is compact when acting from C0(Γ) into C0(Γ) .

By Lemma 1(a), ρ1/2 [µ1∗] (s) is a bounded operator acting from C0(Γ) into
C0,1/2(Γ) . According to [16, p. 915], the space C0,1/2(Γ) is compactly embedded
into the space C0,1/4(Γ) . Therefore the operator ρ1/2 [µ1∗] (s) is compact when
acting from C0(Γ) into C0,1/4(Γ) , since it is represented as a composition of a
bounded operator acting from C0(Γ) into C0,1/2(Γ) , and a compact operator
embedding C0,1/2(Γ) into C0,1/4(Γ) . Obviously, the operator embedding the
space C0,1/4(Γ) into C0(Γ) is bounded. Therefore the operator ρ1/2 [µ1∗] (s)

is compact when acting from C0(Γ) into C0(Γ) , since it is represented as
a composition of a compact operator acting from C0(Γ) into C0,1/4(Γ) and
a bounded operator embedding C0,1/4(Γ) into C0(Γ) . Hence the operator
E [µ1∗](s) is compact from C0(Γ) into C0(Γ) as well.
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Let us study operators in equation (25). As mentioned above,

A1j(s, σ) ∈ C0(Γ× Γ)

for j = 1, 2 . Therefore, one can prove using Arzela-Ascoly theorem [14, p.104]
that A11 [µ1∗] (s) and A12 [µ2] (s) are compact operators acting from C0(Γ) into
C0(Γ) . Let us prove

Lemma 5. Let Γ ∈ C2,λ , β(s) ∈ C0,λ(Γ) , λ ∈ (0, 1] ;
ν(s) ∈ C0,γ(Γ) , where γ is a �xed number from the interval (0, 1], and
D[ν](s) =

∫

Γ

Q1/2(σ)β(σ)ν(σ)

σ − s
dσ. Then the operator D[ν](s) is bounded as

operator acting from C0,γ(Γ) into C0(Γ) .
Proof. We represent operator D[ν](s) in the form

D[ν](s) =
1

π

∫

Γ

Q1/2(σ)β(σ) (ν(σ)− ν(s))

σ − s
dσ + ν(s)b(s),

where b(s) =
1

π

∫

Γ

Q1/2(σ)β(σ)

σ − s
dσ. It follows from properties of singular integrals

[9, section 18] that b(s) ∈ C0,η(Γ) since the function Q1/2(σ)β(σ) belongs to the
class C0,η(Γ) with η = min{1/2, λ} and equals zero at each end point of the
contour Γ . Estimating the norm of D[ν](s) in C0(Γ) , where ν(s) ∈ C0,γ(Γ) ,
we obtain

‖D [ν] (·)‖
C0(Γ)

≤ 1

π




∥∥∥∥∥∥∥

∫

Γ

∣∣∣Q1/2(σ)β(σ)
∣∣∣ |σ − ·|γ−1dσ

∥∥∥∥∥∥∥C0(Γ)
‖ν‖

C0,γ(Γ)
+

+‖b‖
C0(Γ)

‖ν‖
C0(Γ)

)
≤ const ‖ν‖

C0,γ(Γ)
.

Therefore D[ν](s) is a bounded operator acting from C0,γ(Γ) into C0(Γ) . The
lemma is proved.

Now we will prove that the operator B [µ1∗] (s) is compact from C0(Γ) into
C0(Γ) . Consider operator B0

[
ρ1/2

]
(s) de�ned in (19) and acting on the function

ρ1/2(σ) from the space C0,1/4(Γ) . By Lemma 5, the operator B0
[
ρ1/2

]
(s) is

bounded when acting from C0,1/4(Γ) into C0(Γ) . The operator B
[
ρ1/2

]
(s) is

bounded from C0,1/4(Γ) into C0(Γ) since it is represented in (24) in the form of a
sum of the operator B0

[
ρ1/2

]
(s) and a �nite-dimensional, so bounded, operator.
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It follows from boundedness of the operator B

[
ρ1/2

]
(s) from C0,1/4(Γ) into

C0(Γ) and from compactness of the operator ρ1/2 [µ1∗] (s) from C0(Γ) into
C0,1/4(Γ) that B [µ1∗] (s) is a compact operator acting from C0(Γ) into C0(Γ)

since it is represented in the form of a composition of compact and bounded
operators. Hence A11 [µ1∗] (s) + B [µ1∗] (s) is a compact operator acting from
C0(Γ) into C0(Γ) .

Let us show that the operator S [µ2] (s) is compact when acting from C0(Γ)

into C0(Γ) . Consider the operator Y [µ2](s) . By Lemma 2(2) we obtain that
Y [µ2](s) is a bounded operator acting from C0(Γ) into C0,λ/4(Γ) . It follows
from [16, p. 915] that the space C0,λ/4(Γ) is compactly embedded in the space
C0,λ/5(Γ) . The operator Y [µ2] (s) is compact from C0(Γ) into C0,λ/5(Γ) since
it is represented in the form of a composition of a bounded operator acting
from C0(Γ) into C0,λ/4(Γ) and a compact operator embedding C0,λ/4(Γ) into
C0,λ/5(Γ) . Consider the operator S0 [Y ] (s) de�ned in (19) and acting on the
function Y (σ) from the space C0,λ/5(Γ) . Using Lemma 5, where β(s) ≡ 1 ,
we observe that S0 [Y ] (s) is a bounded operator, acting from C0,λ/5(Γ) into
C0(Γ) . The operator S [Y ] (s) is bounded from C0,λ/5(Γ) into C0(Γ) , since it is
represented in (24) in the form of a sum of the operator S0 [Y ] (s) and a �nite-
dimensional, so bounded, operator. It follows from boundedness of the operator
S [Y ] (s) from C0,λ/5(Γ) into C0(Γ) and from compactness of the operator
Y [µ2] (s) from C0(Γ) into C0,λ/5(Γ) that S [µ2] (s) is a compact operator acting
from C0(Γ) into C0(Γ) since it is represented in the form of a composition of
a compact operator and a bounded operator. Hence A12 [µ2] (s) + S [µ2] (s) is a
compact operator acting from C0(Γ) into C0(Γ) .

Consider columns ~µ = (µ1∗, µ2)
T , ~Φ = (Φ, f1 − f2)

T in the Banach space
C0(Γ)× C0(Γ) with the norm

‖~µ‖
C0(Γ)× C0(Γ)

= ‖µ1∗‖C0(Γ)
+ ‖µ2‖C0(Γ)

.

We rewrite system (25), (26) in the form of one equation

(27) (I + R)~µ = ~Φ , R =



A11 + B A12 + S
A21 + E A22


 ,

where I is a unit operator in the space C0(Γ) × C0(Γ). The operator R is a
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compact operator mapping the space C0(Γ)×C0(Γ) into itself since all operators
forming R are compact. Therefore (27) is a Fredholm equation of the second
kind and index zero in this space [17, p.67], [18, p.473�479], [19, section 20.5].
Thus we have proved

Lemma 6. If Γ ∈ C2,λ , β1(s), β2(s) ∈ C0,λ(Γ) , λ ∈ (0, 1] , then (27) is a
Fredholm equation of the second kind and index zero in the space C0(Γ)×C0(Γ) .

Now we will prove that (27) is uniquely solvable integral equation in the space
C0(Γ)× C0(Γ) .

Lemma 7. If Γ ∈ C2,λ , β1(s), β2(s) ∈ C0,λ(Γ) and λ ∈ (0, 1] , then the
Fredholm equation of the second kind and index zero (27) has a unique solution
~µ = (µ1∗, µ2)

T ∈ C0(Γ)× C0(Γ) for any ~Φ = (Φ, f1 − f2)
T ∈ C0(Γ)× C0(Γ) .

Proof. We shall show that the homogeneous equation (27) (with
~Φ = (Φ, f1−f2)

T ≡ (0, 0)T for s ∈ Γ ) has only trivial solution in C0(Γ)×C0(Γ) .
Suppose that ~µ0 = (µ0

1∗(s), µ
0
2(s))

T ∈ C0(Γ) × C0(Γ) is a solution to the
homogeneous equation (27). This solution converts homogeneous equations (25),
(26) into into identities. By Lemmas 3, 4: µ0

1∗(s) ∈ C0,λ/4(Γ) , µ0
2(s) ∈ C0,λ/4(Γ) .

Then the function µ0
1(s) = µ0

1∗(s)Q−1
1/2(s) belongs to the space C

λ/4
1/2 (Γ) . Besides,

the functions µ0
1(s) , µ0

2(s) convert homogeneous equations (23), (15b) into
identities. Using homogeneous identities (23), one can verify that the function
µ0

1(s) satis�es conditions (8). Acting on the homogeneous identity (23) with a
singular integral operator with the kernel (σ−s)−1 , we obtain that the functions
µ0

1(s) and µ0
2(s) obey homogeneous equation (15a). Therefore {µ0

1(s), µ0
2(s)} is

a solution to the homogeneous equations (15), (8). By Theorem 2 the function
u0[µ0

1, µ
0
2](x) de�ned by formula (11) is a solution to the homogeneous problem

U. By Theorem 1, we see that u0[µ0
1, µ

0
2](x) ≡ 0 for x ∈ R2\Γ . Using the limit

formulas for tangent and normal derivatives of potentials [1], we obtain

∂u0[µ0
1, µ

0
2](x)

∂τx

∣∣∣∣∣∣x(s) ∈ Γ+
− ∂u0[µ0

1, µ
0
2](x)

∂τx

∣∣∣∣∣∣x(s) ∈ Γ−
= µ0

1(s) ≡ 0, s ∈ Γ,

∂u0[µ0
1, µ

0
2](x)

∂nx

∣∣∣∣∣∣x(s) ∈ Γ+
− ∂u0[µ0

1, µ
0
2](x)

∂nx

∣∣∣∣∣∣x(s) ∈ Γ−
= µ0

2(s) ≡ 0, s ∈ Γ.

Consequently, µ0
1∗(s) = µ0

1(s)Q1/2(s) ≡ 0 for s ∈ Γ , so
~µ0 = (µ0

1∗(s), µ
0
2(s))

T ≡ (0, 0)T for s ∈ Γ . Therefore, the homogeneous Fredholm
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integral equation of the second kind and index zero (27) has only the trivial
solution in C0(Γ)×C0(Γ) . The statement of the lemma follows from Fredholm's
theorem [17, p.67], [18, p.473�479], [19, section 20.5].

Now we turn to the analysis of the solvability of the system (15), (8).
Let f1(s), f2(s) ∈ C0,λ(Γ) . Then the function Φ(s) , constructed with the help

of formulas (19) and (24) belongs to the class C0,η(Γ) with η = min{1/2, λ} .
By Lemma 7 equation (27) with the right side (Φ(s), f1(s) − f2(s))

T

has the unique solution (µ1∗(s), µ2(s))
T ∈ C0(Γ)× C0(Γ) , which converts

equations (25), (26) into identity. By Lemmas 3, 4: µ1∗(s) ∈ C0,λ/4(Γ) ,
µ2(s) ∈ C0,λ/4(Γ) . It folows from derivation of equations (25), (26) that the
functions µ1(s) = µ1∗(s)Q−1

1/2(s) ∈ C
λ/4
1/2 (Γ) and µ2(s) ∈ C0,λ/4(Γ) convert

equations (23) and (15b) into identities. Using identity (23), one can verify that
µ1(s) satis�es conditions (8). Acting on the identity (23) by a singular integral
operator with the kernel (σ − s)−1 , we obtain that µ1(s) and µ2(s) satisfy
equation (15a). Thus we have proved the following statement.

Lemma 8. Let Γ ∈ C2,λ ; β1(s), β2(s), f1(s), f2(s) ∈ C0,λ(Γ) ; λ ∈ (0, 1] .
Then the system of equations (15), (8) has a solution {µ1(s), µ2(s)} such
that µ2(s) ∈ C0,λ/4(Γ) , µ1(s) ∈ C

λ/4
1/2 (Γ) . Moreover, this solution can be

written as {µ1∗(s)Q−1
1/2(s), µ2(s)} , where the functions µ1∗(s) ∈ C0,λ/4(Γ) and

µ2(s) ∈ C0,λ/4(Γ) form the unique solution of equation (27) in the space
C0(Γ)× C0(Γ) , assured by Lemma 7.

Remark. The system of equations (15), (8) has no more than one solution
{µ1(s), µ2(s)} such that µ1(s) ∈ Cω

q (Γ) , µ2(s) ∈ C0,ω0(Γ) , where ω ∈ (0, 1] ,
q ∈ [0, 1) , ω0 ∈ (0, 1] . This statement can be proved using technique of the
proof of Lemma 7. Consequently, the solution assured by Lemma 8 is unique.

The existence theorem for the problem U follows from Lemma 8 and Theo-
rem 2.

Theorem 3. Let Γ ∈ C2,λ ; β1(s), β2(s), f1(s), f2(s) ∈ C0,λ(Γ) ;
λ ∈ (0, 1] . A solution to the problem U exists and is given by the formula (11),
where functions µ1(s) ∈ C

λ/4
1/2 (Γ) and µ2(s) ∈ C0,λ/4(Γ) form a solution to the

system of equations (15), (8), assured by Lemma 8.
By Theorem 1, a solution to the problemU obtained in Theorem 3 is unique. It
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follows from [1, theorem 5.3] that the solution to the problem U given by formula
(11) satis�es condition (1) with ε = −1/2 . The explicit formulas for singularities
of the gradient of the solution at the ends of the slits Γ will be presented in the
next section.

5. Behavior of the gradient of a solution at the ends of the slits.
Let x(d) be one of the end points of the contour Γ : x(d) ∈ X ; d = an or
d = bn , n = 1, . . . , N . Let us study the asymptotic behavior of the directional
derivative ∂u[µ1, µ2]

∂w
(x) of a solution to the problem U in the direction of

w = (cos ϑ, sin ϑ) , ϑ ∈ [0, 2π] , in a neighborhood of the point x(d) slit
along Γ . Consider polar coordinates (|x − x(d)| cos ϕ, |x − x(d)| sin ϕ) in the
neighborhood of x(d) . Assume that ϕ ∈ (α(d), α(d) + 2π) if d = an and
ϕ ∈ (α(d) − π, α(d) + π) if d = bn . Remind that α(s) is the angle between
the direction of the axis Ox1 and the tangent vector τx to the contour Γ at the
point x(s) . Accordingly, α(d) = α (an + 0) if d = an , and α(d) = α (bn − 0) if
d = bn . Thus, the angle ϕ varies continuously in the neighborhood of the point
x(d) slit along the contour Γ . Denoting

µd
1(s) = µ1(s)|s− d|1/2 = Q−1

1/2(s)µ1∗(s)|s− d|1/2,

we obtain at the end points of Γ that µd
1(d) = µan

1 (an + 0) if d = an and
µd

1(d) = µbn
1 (bn − 0) if d = bn . Studying the behavior of ∇u[µ1, µ2](x) at the

ends of the contour Γ with the help of the technique developed in [1, 2], we arrive
at the following statement.

Theorem 4. Let x → x(d) ∈ X and x /∈ Γ . Then the following formula
for the directional derivative of a solution to the problem U in the direction of
w = (cos ϑ, sin ϑ) holds in the neighborhood of the point x(d) :

∂u[µ1, µ2]

∂w
(x) =

µd
1(d)

2|x− x(d)|1/2 cos


ϑ− ϕ + α(d)

2
+

πm

2


−

−(−1)mµ2(d)

2π
[cos(ϑ− α(d)) ln |x− x(d)| − ϕ sin(ϑ− α(d))] + O(1),

where m = 0 if d = an and m = 1 if d = bn ; n = 1, . . . , N . Here O(1)

denotes a function continuous at the point x(d) , as well as in its neighborhood
slit along Γ .
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It follows from Theorem 4, that, generally, derivatives of a solution to the

problem U behave as O
(|x− x(d)|−1/2

)
+O(ln |x−x(d)|) near the end x(d) of

the contour Γ . However, if µd
1(d) = µ2(d) = 0 , then the gradient of a solution

∇u[µ1, µ2](x) is bounded and even continuous both in point x(d) and in its
neighborhood slit along Γ .

6. Asymptotic behavior of potentials at in�nity.
In this section we discuss asymptotic behavior of potentials v[µ1](x)

and w [µ2] (x) as |x| → ∞ . Let τy = (cos α(σ), sin α(σ)) and
ny = (sin α(σ),− cos α(σ)) be tangent and normal vectors to Γ at the point
y(σ) ∈ Γ . Consider in the plane R2 polar coordinates with the origin in the
point (0, 0) . Let the polar coordinates of a point y(σ) ∈ Γ be |y(σ)| and θ(σ) .
Let the polar coordinates of a point x ∈ R2 \ Γ be r = |x| and φ . It follows
from [6, section 1.5] that the asymptotic formulas hold

w[µ2](x) =
ie−iπ/4

2
√

2πk
F1(φ)

eikr

√
r

[
1 + O

(
1

r

)]
, r →∞,

v[µ1](x) =
e−iπ/4

2

√√√√ k

2π
F2(φ)

eikr

√
r

[
1 + O

(
1

r

)]
, r →∞,

where
F1(φ) =

∫

Γ

µ2(σ)e−ik|y(σ)| cos(θ(σ)−φ) dσ,

F2(φ) =
∫

Γ

ρ[µ1](σ) sin
(
α(σ)− φ

)
e−ik|y(σ)| cos(θ(σ)−φ) dσ.

The asymptotic formulas hold both for the case k = Re k and for the case
Im k > 0 .
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