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Abstract

The paper presents the results of the investigation of the measurement data
obtained onboard the spacecraft Foton M-2 by the triaxial accelerometer TAS3.
TAS3 had a sample rate equal to 1000 readings per second and produced the data
in a wide spectral range. We extracted the low-frequency component from those
data and compared it with its calculation analog that was obtained by reconstruc-
tion of the spacecraft attitude motion. The spectral analysis of functions presenting
the both results was done. It confirmed the influence of the Earth magnetic field
upon the measurement data. When we made a correction for this influence and re-
fined the position of the accelerometer onboard the spacecraft the results obtained
in these both ways, coincided with each other very exactly (the mean-root-square

error doesn't exceed 107¢ m/s? ).

T. boiizeannk, K. Ban basunxos, B.B. Ca3onon, C.10. Ueb6ykoB. AHa-
JIN3 HU3KOYACTOTHON COCTABJISAIONIE B M3MEPEHUSAIX MHUKPOYCKOPEHHUS, BbI-
NMOJIHEHHBIX Ha cnyTHuKe @omon M-2. VccienoBaHa HU3KOYAaCTOTHAsI COCTaB-
JAOIIAs B JTaHHBIX W3MEPEHUW MHUKPOYCKOPEHUS, BBINOJHEHHBIX HA CIYTHHUKE
®oToH M-2 TpeXKOMIOHEHTHBIM akcenepoMeTpoM TAS-3. DTu n1aHHbIE OTYUYEHBI
co ckopocThio BeIOOpKH 1000 0TCUETOB B CEKYH]Iy U UMEIOT IIMPOKUN YACTOTHBIN
nuarna3oH. Hu3kodacToTHasi cOCTaBISIONIAs BbIIESAIACh U3 HUX C MOMOIIBIO JIHC-
KpeTHbIX psanoB Pypee. MccienoBanne cOCTOSUIO B CPABHEHUM 3TOW COCTABIISIO-
Hieil ¢ ee pacyeTHbIM aHAJIOrOM, HAWJEHHBIM M0 PEKOHCTPYKIIMHU BpalIaTEIbLHOIO
JBIKEHUST CIyTHUKA. [locpeCTBOM CHEKTpalibHOrO aHaiu3a GyHKIH, MpecTaB-
JSOIINX PE3yJIbTaThl OMPEIENICHUS] HU3KOYACTOTHOTO MHUKPOYCKOPEHHUS O000MMHU
METOJ[aMHU, YCTAHOBJICHO BJIUSIHHE MAarHUTHOTO TOJIsI 3eMJIM Ha MTOKa3aHUs aKcelie-
pomertpa. Ilocie BHECEHUS MOMPABKU 32 TAKOE BIUSHUE PE3YJIbTAThI, MOJYYCHHBIC
STUMH JIBYMsI CIIOCOOAMH COBMAJIA CO CPEIHEKBAJIPATUUECKON OIIMOKONW MeHee

1076 m/c?.



1. Two ways of determining quasi-steady residual accelerations onboard
a spacecraft. This paper contains the analysis of the measurement data obtained
onboard the spacecraft Foton M-2 by the triaxial accelerometer TAS3. The space-
craft was a free flyer. It was in orbit during the period 31.05.2005 — 16.06.2005.
The accelerometer was produced by the company RedShift Design and Engineer-
ing BVBA (Sint Niklaas, Belgium). It was placed on the furnace Polizon and oper-
ated continuously during almost the whole flight. Its measurements served for
monitoring of microgravity environment during technological experiments.

The residual accelerations onboard a free flyer can be decomposed into two
components, vibration (high-frequency) and quasi-steady (low-frequency) ones.
Usually, the spectrum of a vibration component contains frequencies from above a
few hundredths of Hz. A quasi-steady component has the spectrum in the range
from zero to a few thousandths of Hz. We analyze below only a quasi-steady acce-
leration component. The following reasons cause it: a spacecraft attitude motion, a
gradient of the Earth gravitational field, and an atmosphere drag.

That component can be found by two ways. The first way consists in a low-
frequency filtration of measurement data of an onboard accelerometer. This way
makes high demands for sensitivity and stability of the accelerometer in a low-
frequency range. Besides, this way gives the quasi-steady acceleration component
only at the point of the accelerometer location. The second way 1s based on a re-
construction of a satellite real attitude motion and a subsequent calculation of the
acceleration along the reconstructed motion by the well-known formula. Let us
remind that formula and some related definitions.

Let a spacecraft be a rigid body and a point P be fixed with its frame. The
difference between the gravitational field strength at the point P and the absolute
acceleration of that point is called a residual acceleration at the point P. We de-
note the difference by b. This quantity plays a part of g in orbital experiments.

We assume the atmosphere drag is a sole nongravitational influence upon the
spacecraft. Then b is defined by the formula [1]

o | 3(R-T)R
R°[ R

b=rxo+ox(rxm)+ —r|+Cp,|V]|v. (1)

Here, r = @, the point O is the spacecraft mass center, ® is the absolute angular
rate of the spacecraft, the dot above a letter denotes differentiation with respect to
time t, u, is the gravitational parameter of the Earth, R 1s the geocentric radius

vector of the point O, v is the velocity of the point O with respect to the Earth
surface, p, is the atmosphere density at that point, C is the spacecraft ballistic

coefficient.

The reconstruction of the spacecraft attitude motion can be made by
processing measurement data of onboard sensors. We can do with indirect mea-
surements if we reconstruct a spacecraft attitude motion using a full system of mo-
tion equations of a rigid body. In particular, we reconstructed the motion of Foton-
12 and Foton M-2 based on measurements of triaxial magnetometers [2, 3]. The
measurement data were accumulated continually during the most part of the flight



but the procedure deals with data segments of a few hours length. The measure-
ment data on each such segment are processed jointly using the least squares me-
thod and integration of the spacecraft attitude motion equations. The procedure re-
sults in the solution of those equations that approximates measurements. Then, we
calculate the acceleration at a prescribed point of the spacecraft as a function of
time along the found solution by formula (1). This formula was derived for a gen-
eral situation without any frequency restrictions. But it gives just a quasi-steady
acceleration component in Foton’s case [4].

The second way is rather universal. It allows determining the quasi-steady
acceleration component at any point fixed with the spacecraft body but it does not
take into account possible local acceleration features. We can follow various rea-
sons when choice the point P for application of formula (1) but one reason has to
be picked out especially. We must consider as P the points, where accelerometers
were placed. Then we can compare results obtained in both discussed ways. It al-
lows us to check the accelerometers and the calculation model.

Such a comparison is made below for the accelerometer TAS3 located on-
board Foton M-2. The results, obtained in these both ways, coincided with each
other very exactly after we refined the accelerometer position and corrected the fil-
tered data for the influence of the Earth magnetic field. This influence was re-
vealed by spectral analysis of the filtered and calculated data as well as the Earth
magnetic field strength in the spacecraft fixed coordinate system.

2. Calculation of quasi-steady accelerations by reconstruction of space-
craft attitude motion. The method of the reconstruction consists in following [3].
We assign a time interval t, <t <t; and, using the measurement data, construct on

it the functions ﬁi (t) (i=1,2,3) approximating the components of the strength of
the local magnetic field in the spacecraft structural coordinate system Y,Y,Y;. The
axis Y, 1s the longitudinal axis of the spacecraft and is directed from the landing

capsule to the device unit. We suppose that the local magnetic field coincide with
the Earth one at the point O and calculate its components H;(t) (i=1,2,3) in the

Greenwich coordinate system Y,Y,Y; along the spacecraft orbit basing on the ana-

lytical model IGRF2005. Certain relations should link two sets of functions ob-
tained. The condition of the closest fit of these relations on the interval t, <t <t

defines the solution to the spacecraft attitude motion equations that approximates
the real motion.

The gravitational and some other torques are taken into account in those eq-
uations. The equations are written in the coordinate system X;X,X; formed by the

principal central axes of inertia of the spacecraft. The angles between the axes X;
and y; did not exceed several degrees. Denote by || gj; || |3 j=1 the matrix of transi-
tion from the system X;X,X; to the system Y;Y,Y;, where g;; was the cosine of the
angle between axes Y; and X;. The phase vector of the attitude motion equations

consists of the quantities g;;, J,;, and the components @; of the spacecraft angu-



lar rate @ in the system X;X,X; (i=1,2,3). The quantities g5; are calculated by
formulas g3; =0;,09,3 — 9;39,,, etc. The matrix of transition from the system

X; X, X3 to the structural coordinate system is denoted by || by; || ,3 j-1- Here, by is the

cosine of the angle between axes y; and X;. We consider the solution to the mo-

tion equations minimizing the functional

N 3
=)D [ty +n)—A; —hi(ty +n)], 2
n=0i=1
: t1_1:0
hi()= > HjOgxOb, 7=

j.k=1
as an approximation of the real attitude motion of the spacecraft on the interval
t, <t <t,. Here, A; are constant shifts in the measurement data. Functional (2) is

minimized on the initial conditions of the solution at the point t, and parameters of
the mathematical model. The latter include the parameters of the motion equations,
the shifts A;, and three angles specifying the transition matrix [|;; ||. Usually, we
take t; —t,=100+300 min and 7 = 1 min.

The example of reconstructing the attitude motion of the spacecraft is pre-
sented in Fig. 1. This figure consists of two parts. Fig. 1a illustrates the agreement

of the functions ﬁi (t) and H;(t) by the found spacecraft motion. Here, the solid
lines present the plots of the functions h;(t) defined in (2); the marks indicate the

points (to +nrt, ﬁi (ty +n7) = A ), n=0,1,..., N. The quality of the agreement is
characterized by the standard deviation o ~./® ;. /3N, where @ .. is the mini-
mum value of functional (2). We have o =1147 y in this example.

Fig. 1b presents the plots of the angular rate components ;(t). One can see

from the plots that the spacecraft motion was similar to Euler’s regular precession
of an axisymmetric rigid body with the symmetry axis x,. Foton M-2 was not ex-

actly axisymmetric but it had close inertia moments regarding to the axes X, and
X3. One can also treat that motion as the motion near the stationary rotation of a

triaxial rigid body around its principal central axis of the minimal inertia moment.
In this motion

w; =Q, @, =W sin( pQt + a), @3 =Wr cos(pQt + «), 3)

p#uz—ll)(lg—ll), -1
1,15 V(5= 1)

Here, o, Q, and W are arbitrary constants, 0 <<W <<|Q]|, I; (i=1,2,3) are the
moments of inertia of the spacecraft with respect to the axes X;, 1.e. its principal
central moments of inertia. Foton M-2 had p=0.734, r =1.032; the constants Q,
and W for each processed interval [t,,t;] are evaluated as
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I w; +1r 2wl dt.
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The accuracy of formulas (3) is characterized by the quantities

t 1/2 t 1/2
1 I(a)l—Q)zdt oW = ! j( w5 + 1 2w; —W)*dt
tl — tl _tO
t t,

o0Q =

0

The motion in Fig. 1 is characterized by the values QQ=1.149deg./s, 6Q2=10.0021
deg./s, W =0.112deg./s, and SW =0.0103deg./s.

Fig. 1 illustrates the satellite motion in the last hours of the magnetic field
measurements. The satellite motion was reconstructed in the same manner for pre-
ceding days too [3]. Table 1 presents some results obtained in 13 time intervals.
Each interval has the length of 270 min. The table contains their initial points t,
(the date and time) and the respective values of o, 2, 6Q, W, and 6W . Fig. 1

corresponds to interval 13.

Table 1. Basic results of processing the Mirage measurements

Inter- Date t, o Q, 0Q, W, oW,
val | 05/06.2005 UTC 4 deg./s | deg./s | deg./s | deg./s
23:25:30 | 2947 | 0.200 | 0.017 | 0.107 | 0.045
11:11:08 | 1318 | 0.312 | 0.014 | 0.082 | 0.045
00:11:50 | 1428 | 0.441 | 0.013 | 0.099 | 0.038
11:12:25 | 1566 | 0.521 | 0.012 | 0.066 | 0.029
00:13:07 | 1038 | 0.645 | 0.016 | 0.070 | 0.024
11:13:43 | 1231 | 0.745 | 0.0070 | 0.056 | 0.016
00:14:24 | 1381 | 0.789 | 0.0059 | 0.094 | 0.029
13:15:06 | 1111 | 0.849 | 0.0067 | 0.145 | 0.013
10:36:15 | 1340 | 0.931 | 0.0059 | 0.147 | 0.011
11:17:34 | 1094 | 1.008 | 0.0072 | 0.146 | 0.011
09:18:45 | 1136 | 1.066 | 0.0039 | 0.131 | 0.0099
09:20:02 | 1210 | 1.111 | 0.0058 | 0.114 | 0.010
09:21:20 | 1147 | 1.149 | 0.0021 | 0.112 | 0.010

— | |t [
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The table shows that the angular rate of the satellite increased and formulas
(3) became more precise coupled with this increase (note the behavior of 6Q and

oW ). The final mode of the attitude motion was formed a few days before the

flight termination. There were Q =1.3deg./s and W =0.1deg./s [5].

Fig. 2a illustrates the residual acceleration calculated by formula (1) for the
motion in Fig. 1. Calculations were made for the point P with
r =(-0.06m, 0, — 0.29m), where the sensors of the accelerometer TAS3 should be



located. The plots in the figure represent time the components of the vector
b =(b,,b,,b;) as functions of time. Here and below, components of vectors are

referred to the structural coordinate system. Calculating the last term in formula
(1), we used the ballistic coefficient obtained by processing trajectory measure-
ments [3]. The atmosphere density in (1) was calculated according to GOST R
(state standard) 25645.166-2004 — Model of the upper atmosphere for ballistic cal-
culations. The matrices [|bj; || of different intervals [ty,t,] somewhat differed from
each other. The acceleration was calculated in each interval t, <t<t, using the
matrix ||b; || obtained just for this interval.

3. Filtration of low-frequency component from TAS3 data. The accele-
rometer TAS3 measured an apparent acceleration (—b). Its sensitive axes were pa-
rallel to the axes of structural coordinate system but axes, corresponding to Y, and
Y5, had opposite directions. TAS3 had a sample rate equal to 1000 readings per

second and produced the data in a wide spectral range. The low-frequency filtra-
tion of the data was made using finite Fourier series independently for each vector
component.

Let M and N be natural numbers, z; (i=1,2,...,MN) be a segment of the
scalar measurement data. We refer the measurement z; to the instant t; =ih, h>0,
and seek the low-frequency component, contained in these data, in the form

N-1
. znt

Z(t)=ay +ayt+ E a, sin . 4)
— NMh

Here, a, are coefficients. They are found by the least squares method. The simple

explicit formulas are available to calculate them [1]. Some oscillations with rela-
tively high frequencies are often revealed in function (4) that was obtained in this
way. In order to remove them, some terms in (4) are modified using the correction-
al multipliers

N —n

an

N —N,

Here, N, is the integer part of the number N /2. As a rule, we don't use expres-

>a, (=N, +LN;+2,...N=1).

sions (4) directly but deal with their values

7.=z&), t =nh (n=0,L..,N), h=Mh. (5)
We refer to these values as the filtered data. We denote the vector components of
the filtered acceleration data by b/ (i=1,2,3).

In all examples below, expressions (4) were constructed using data segments
with a length of 270 min. They were certain of the segments listed in Table 1. The
above procedure was applied at h=0.001s, M =30000, and N =540. The spec-
trum of functions, obtained in this way, locates within the limits from 0 to 0.017
Hz. TAS3 measurements have erroneous constant biases in each vector compo-
nent. We changed on that reason the coefficient ay in (4) to obtain zero mean val-

ue of data (5). Fig. 3a presents the example of the filtered data from TAS3 mea-
surements. It illustrates the same time interval as Fig. 2a. Each coordinate system



in Fig. 3a contains a couple of plots. The plot of expression (4) has greater oscilla-
tions.

TAS3 measurements contain not only erroneous constant biases but an erro-
neous infra low-frequency component too. Such a component has frequencies less
than 0.00005 Hz. It is lacking in calculated accelerations. One should guess it by
comparing the plots in Fig. 3a with the respective plots in Figs. 2a. This effect
takes place for the other intervals of Table 1. To obtain the likeness between the
filtered low-frequency component in TAS3 data and its calculated analog, we elim-
inated the infra low-frequency component from data (5). First, we smoothed these
data by the expression

K
Z(t) = A+ Aot + DA sinz—?,

k=1
where the coefficients A, were found by the least squares method. We took
K =10 in the case of N =540. The function Z(t) represented the sought ultra
low-frequency component. Then we replaced the quantities Z, = z(t,) in (5) by the
quantities Z,, = z(t,) — Z(t,). Just new data (5) are referred bellow as filtered ones.
These new data are again the values of certain new expression (4).

Fig. 3b presents the plots of the functions z(t) — Z(t) related to interval 13.
Fluent curves in Fig. 3a present the plots of the functions Z(t). When N =540 and
K =10, the described method of filtering does not change the amplitudes of har-
monic components in the measurement data with frequencies from 3.0-107 to
8.3-10" Hz; the filtered data don’t contain harmonics with frequencies higher

than 16.7-10~> Hz and lower than 1.5-10™* Hz.

Fig. 2b gives a comparison of low-frequency component in TAS3 data on in-
terval 13 with its calculated analog. The plots, drawn by fine lines, were drawn us-
ing the filtered data; the plots, drawn by thick lines, repeat corresponding plots in
Fig. 2a. The thick lines were obtained from the respective lines in Fig. 3b by the
following way. First, we changed the sign of the function b (t) (thereby, we made

the transform —b — b ). Then, we added the constant biases to the functions b/(t)
to obtain the equalities (b;(t)) =(b;(t)) (i=1,2,3). The operator of mean value
(...) was defined above.

Fig. 2b shows the functions b;(t) and bj(t) are close. This fact is valid for
intervals 7 — 13 in Table 1. The oscillations of b, and b] in them have large ampli-
tudes and frequencies increasing coupled with Q. It is difficult to see proximity in
the case of functions b, (t), by (t) or by(t), by(t). This is valid for all intervals in

Table 1. C. Van Bavinchove, one of TAS3 creators, supposed the discrepancy was
caused of the Earth magnetic field influence. The next sections contain the analysis
confirming this hypothesis.

4. Spectral analysis of low-frequency acceleration component. Judging
from the plots in Figs. 2 and 3, the low-frequency component of the acceleration
onboard Foton M-2 can be represented as a linear combination of a few harmonics



(cyclic trends) with frequencies that are incommensurable in the general case. The
representation promises to be especially exact in intervals 7 — 13 in Table 1.
Searching for such harmonics is a typical problem of the time series analysis [8, 9].
In our case this problem was solved as follows.

Let data (5) be the filtered data of an acceleration vector component. Expres-
sion (4) that generated them contains harmonics with a fixed set of frequencies.
This set has a formal sense and does not reflect itself spectral properties of the da-
ta. In order to reveal these properties let us try to fit data (5) by the function

Zp (1) =23y +acos2zft+bsin2zft  (f >0), (6)

where a,, a, b, and f are parameters. We will seek the values of these parame-

ters by the least squares method. We make up the following expression
N

W= 17, -2,,(5)]° (7
n=0
and minimize it over a,, a, b, and f . The function ¥ =¥ (a,,a,b, f) has a lot of

local minima and only part of them corresponds to real harmonics. To find such
minima, we solve a number of identical linear least squares problems and calculate
the function
Y, (f)= min ¥(a,,b,c, f)
a,,h,c

at points of a sufficiently fine uniform grid on the interval 0 < f < 1/(25) . Then the
plot of this function is drawn and the approximate values of minimum points are
found. The abscissas of significant (in the value of ¥,) minima are the frequencies
of desired harmonics. Let the frequencies f, (k=1,2,...,M;M << N) be found in
this way. We seek the trend corresponding to them in the form

M
Xap (D =29 + Z(ak cos2r fit + by sin27 f, 1), )
k=1
where a,, a,, b,,and f, ~ f, (k=1,2,...,M) are parameters. The values of these

parameters are found by minimization of the function specified by relations (7) and
(8) using Gauss-Newton's method. This least squares problem is nonlinear. The

initial approximation to its solution is formed by the frequencies f, and the solu-
tion of the linear least squares problem (7), (8) over a,, a,, b, with these frequen-

cies.
In order to verify the found solution by simple means, we considered so-
called Schuster's periodogram [6, 7]

N

N 2 2 N
~ ~ 1
I(f)= (Z, —Z)cos2zfnh | + (Z,—2)sin2zfnh | , Z= Z
along with the function W,(f). Let data (5) under study be generated by function

(8), where N>>M . Then a, = Z, the periodogram has local maxima at points



10

f ~ f,, while a; +bg ~41(f,)(N+1) (k=1,2,...,M). Thus, studying the peri-
odogram maxima one can evaluate the frequencies and amplitudes of harmonic

components in data (5).
We present below the plots of the functions

_ W) _ 2
E(f)= N_2’ ACT) N+1«/|(f)

instead of functions W¥;(f) and I(f). The minima of the function E(f) ex-
presses the root mean square error of approximation of data (5) by sole cyclic trend
(6), while the maxima of function A(f) estimate the amplitude ~/aZ +b? .

Consider as an example the results of spectral analysis of the acceleration in
Fig. 3b. The plots of the functions E(f) and A(f) for the acceleration compo-

nents b] and b) are shown in Figs. 4a, 5a. The component b; has essentially the
same frequency properties as b; and so it is not considered in detail. The minimum
points of the functions A(f) differ from the maximum points of the respective
functions E( f) no more than 5-107¢ Hz.

Each function bj(t) or b;(t) contains several harmonics. Constructing ap-

propriate expressions (8), we take into account all clear-cut harmonics (corres-
ponding to well pronounced extrema of E(f) and A(f)) and some of slightly de-

finite ones. To analyze these expressions, we introduce the following designations.
We denote by bj ,,(t) expression (8) approximated the function bj(t) (i=1,2,3).

Plots of the functions Ab;(t) =bj(t) — by ,,(t) serve to check the approximation. We
refer to the quantity A, =./az +b? as the amplitude of a harmonic with the fre-

quency f, in (8). The frequencies and amplitudes of harmonics of b], ap (1) are de-

noted as fk(i) and Algi). We also use analogous designations in the case of functions

bi(t) and h.(t) defined in Section 2. We take 10-3 Hz and 106 m/s? as the units
for frequencies and acceleration amplitudes respectively.

The plots of functions bj(t), bj ,,(t), and Abj(t) (i=1,2) are given in Figs.
4b, 5b. We see the approximation is sufficiently exact. This fact confirms the accu-
racy of finding the frequencies fk(i) and amplitudes A&i) that are listed in Table 2.

Here, the frequencies with identical subscripts are approximately equal and empty
cells mean that corresponding harmonics are absent in a respective function.
Following the least squares method, we estimate the accuracy of determina-

tion of the quantities fk(i) and A&i) by corresponding standard deviations. These
standard deviations seem to be not adequate from the probabilistic point of view in
this situation but they give useful information. The frequency fg(l) has the least

standard deviation equal to 0.00021; standard deviations of the frequencies f1(12’3)

and f1(32’3) don’t exceed 0.001; standard deviations of the other frequencies are
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within the limits 0.001-+0.005. Standard deviations of the amplitudes Aél) and

Algm) don’t exceed 0.3 and 0.15 correspondingly.

The standard deviations of the frequencies look too small. We point out for
comparison that frequency estimations as minima of W;(f) or maxima of I(f)

have errors with the upper bound of = (2Nﬁ)_1. We have of =0.03 in our case.

This value looks too much great as the accuracy estimate of the frequencies fk(i) .
Certain of the found frequencies admit the obvious interpretation. The fre-
quencies fz(l) ~ f2(3) ~ (.37 are caused by spacecraft orbital motion. The orbital
frequency f 4 (the reciprocal quantity to the orbital period) equals 0.185 so
RS AN A (9)

Return to formulas (3). The motion, which they describe, is called the nutational
motion and its circular frequency p|Q]| is called the nutation frequency. This cir-

cular frequency corresponds to the cyclic frequency f,, = p|€2|/27 and we have
fout =2.341 for interval 13. Hence,

0% fs B = 0 2210 (10)
Just the harmonic with the greatest amplitude has the frequency f

nut »

The space-

nut °
craft nutational motion causes it. This result agrees with formula (1), where the
first two terms predominate.

To interpret some other frequencies, let us assume that the spacecraft per-
forms exact Euler’s regular precession of an axisymmetric rigid body. Then we
have to put |, =l; in (3). Euler’s precession is described usually by the nutation

angle 9, the precession angle ¢, and the angle ¢, of a proper rotation, the quanti-

ties &, @, and ¢, being constants in the exact precession. Foton M-2 had [3]

. 1-— (@) .
z¢a ¢2sz

tandx ——, |
(1-p)Q cos 9

A vector that is a constant in the absolute space has time-dependent components in
the system X;X,X;. These components are sums of constant terms and four har-

monics with the frequencies

f r :@3 fnut = M? f
o 2
The amplitudes of the harmonics have the order O(9), O(#), O(1), and 0(9%)

respectively when 3—0. There are 8~21°, f,=0904, f =3.247,

f.; =1.438 in our example. The harmonic with the frequency f.; proved to be

f +f

rot = ! pr nut »

1:r,ot :| f

pr 1:nut |

appreciable. We see in Table 2 that
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Table 2. Frequencies and amplitudes of harmonic components in the calculated and measured accelerations. Interval 13

Frequency by b, b3 b, b, bs
k mtergrrleta“ (0 AD | @ | A | £ | A® | g0 | A0 | g0 A | O |G
1 0.158 | 0.983
2 2f | 0371 | 2011 0.367 | 0.531
3 0.509 | 1.681
4 0.698 | 0.699
5 0.862 | 1.357
6 2.044 | 0.478 | 2.035 | 0.600
7 2215 | 0214 | 2215 | 0.173
8 Fnut 2.376 | 20.05 2.375 | 20.22 | 2.374 | 0.674 | 2.375 | 0.785
9 2.535 | 0.440 | 2.530 | 0.655 2.536 | 0.206 | 2.536 | 0.158
10 2.683 | 1.255 [ 2.725 | 0.588 | 2.720 | 0.926 2705 | 0.204 | 2.705 | 0.168
11 | fro =20 | 2.867 | 2.280 | 2.887 | 2.621 | 2.887 | 4.475 | 2.924 | 2.387 | 2.891 | 0.819 | 2.892 | 0.664
12 | froe = for 3.074 | 1.884 | 3.075 | 1.860 3.075 | 2.070 | 3.075 | 1.694
13 frot 3.251 | 2.018 | 3.249 | 2.948 | 3.223 | 1.691 | 3.261 | 0.764 | 3.262 | 0.614
14 3.371 | 0.212 | 3.370 | 0.174
15 3.769 | 0.790
16 | 2f., 4.746 | 0.632 | 4.750 | 0.606 4751 | 0.523 | 4751 | 0.643
17 5300 | 0.210 | 5300 | 0.259
18 6.143 | 0.474 | 6.147 | 0.357 6.145 | 0.364 | 6.145 | 0.447
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B9 ~ 15~ f (11)
We see also that

2 3 | 2 3
fl(z) ~ f1(2) R — f f1(1) ~ f1(1 ) » fl(l) 3 P N (12)

orb»

f f and f

plained by the last two terms in formula (1). In particular, the components of the
last term that describes the atmosphere drag are presented in the geocentric abso-
lute coordinate system by periodical functions with the orbital period. The second
column in Table 2 summarizes our interpretation of some found frequencies.

We performed in the same way the spectral analysis of the functions
b; (t) plotted in Fig. 2a. Its results are presented in Tables 2 and Figs. 6, 7. We

The harmonics with the frequencies f —2f,4 can be ex-

rot> 'rot ©— 'orb» rot

omitted plots relating to the function b;(t) because it has the same frequency prop-
erties as b, (t). Accuracy characteristics of the found harmonics are following. The

frequency fg(l) has the least standard deviation equal to 0.00011; standard devia-

tions of the frequencies fl(ll) and fk(2’3) (k=8,11,12,13,16) don’t exceed 0.001;
standard deviations of the other frequencies are within the limits 0.001+0.004.
Standard deviations of the amplitudes Aél) and A&m ) don’t exceed 0.14 and 0.04

respectively.
One can see from Table 2 that the functions b;(t) contain harmonics with

about the same frequencies as the functions bj(t). Therefore we used the same

principle of the frequency numbering. The close frequencies are in the same line in
Table 2. It is not surprising that the frequencies of functions b;(t) satisfy the rela-

tions (9) — (12). However amplitudes of some corresponding harmonics in b (t)
and bj(t) differ markedly. The greatest discrepancy of amplitudes takes place for

harmonics with the frequencies f1(12’3) and f1(32’3). There is only one good coinci-

dence of amplitudes. It takes place for harmonics with the frequency fg(l) ~ f
(2,3)
2

nut *

We see some coincidence in the case of frequencies f,
(2,3) (2,3)

fio fis

. Some discrepancy in

the case of frequencies and can be explained by our pared-down us-

ing the TAS3 geometrical characteristics. The single-axis sensors for different di-
rections had slightly different coordinates in this device whereas we use the same
coordinates for each sensor.

It is worth to note that the discrepancy between corresponding frequencies of
functions b, (t) and b;(t) are distinctly smaller than errors in their interpretation in

terms of f f.« and f_ .. Possibly, the inaccuracy of the interpretation is

rot »
caused by some fine details of the motion.

Now, we turn to the spectral analysis of the components of the magnetic
field strength. We investigated the functions h;(t) calculated by formulas (2) and

plotted in Fig. la. The investigation of the functions ﬁi (t) gave the same results.
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The analysis was made according to the scheme above. Its results are presented in
Table 3 and Figs. 8, 9. The table and figures are arranged in the same manner as
Table 2 and Figs. 4 — 7. The functions h,(t) and h;(t) have the same frequency
properties, so we cited the plots for h,(t) only. The quantities fl(l) and Al(l) in Ta-
ble 3 have the standard deviations equal to 0.0062 and 7000y respectively. The

frequencies f3(1) and f1(12’3) have the least standard deviations equal to 0.00019;

standard deviations of the frequencies f 4(1) and f1(22’3) don’t exceed 0.0004; stan-
dard deviations of the other frequencies are within the limits 0.0005 +0.003. Stan-
dard deviations of the amplitudes Algi), except Al(l) , don’t exceed 300y .

The functions h;(t) contain some harmonics with about the same frequen-
cies as the functions b (t) and b;(t). The first column of Table 3 gives in brackets

the number of a close frequency from Table 2. Therefore it was not surprising that
some frequencies, found in the functions h,(t), admit the obvious interpretation.

Namely, we have the relations
fl(12,3) ~ 1:rot —2f f1(22’3) ~ 1:rot — f f3(l) ~2f 1:4(1) ~3 forb
for frequencies of harmonics with large amplitudes and we have the relations
fD~ f f2) ~ f
1 8
for frequencies of harmonics with small amplitudes.
The frequencies f —2f ,, and f appear both in the functions bj(t)

orb > orb > orb >

orb > nut

and in the functions b, ;(t). But their presence in by ;(t) is much more greater —

the corresponding harmonics have much more greater amplitudes. It is worth to
compare this fact with the following one. The frequency f,., — f. is present in

functions by 3(t) and b, ;(t) too; the amplitudes of corresponding harmonics are

approximately equal in all these functions and are twice greater than amplitudes of
harmonics with frequencies f , —2f for i Dy3(t). Thus transition

b, 3(t) = b3 ;(t) doesn't change the amplitudes for the frequency f — f., which
is absent in the functions h;(t), and essentially increases the amplitudes for the

—2f f
t

ation is illustrated by comparison of Figs. 5a, 7a, and 9a. The comparison shows
that the function bj (t) inherits the frequencies from the functions b, (t) and h,(t).

I orb > rot

orb»

frequencies f which are present in the functions h, ;(t). This situ-

ro orb> 'rot»

The same inheritance takes place in the case of functions b;(t), b;(t) and h;(t)

(compare corresponding columns in Tables 2, 3). The analogous inheritance in the
case of functions bj(t), b;(t), and h,(t) is not so pronounced (see Figs. 4a, 6a, and

8a) against a background of the large amplitudes of the harmonics with the fre-
quency f, . in b/(t) and b (t). But if we calculate amplitude ratios for harmonics

with frequencies closed to 2f., in bj(t) and h,(t), we find the influence of the



magnetic field has here the same order as in the case of the functions b ;(t) and
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h, 3(t) . Quantitative characteristics of the influence will be described below.

Table 3. Frequencies and amplitudes of harmonic components
in the magnetic field strength.

Frequency h, h, hy
k mterprrletatlo fk(l) Algl), , fk(z) Algz)’ | k(3) A|£3)a ,
1 0.026 | 13960
2(1) for 0.193 | 3297
3(2) 21,4 0.339 | 20240
4(3) 0.510 | 13164
5(4) 0.700 | 1775
6(5) 0.868 | 6032
7(6) 2.039 | 3697 |2.039 | 3707
8(8) fout 2365 | 3362 |2364| 3394
9(9) 2526 | 3892 |2.526 | 3851
10(10) 2717 | 5831 |2.717 | 5849
11(11) | froe =20 2.887 | 28042 | 2.887 | 28067
12(13) frot 3.245 | 14010 | 3.245 | 14011
13 3433 | 1648 3433 | 1671
14 3.566 | 2790 |3.566 | 2770

The analogous analysis was made for interval 9 from Table 1 to investigate
the influence of variations of QO on the results obtained. New results proved to be
in a good agreement with the previous ones. We have f, , =2.586 and

foue =1.898 based on Q for interval 9. The transition b, 5(t) —bj;(t) increases
—2f., =234 and f,; =270 which are
present in the functions h, ;(t). The transition bj(t) —bj(t) increases the ampli-

the amplitudes for frequencies f,

tude for frequency 2 f_, , which is present in the function h,(t).

orb >
5. Correction of filtered TAS3 measurement data. As long as the main
frequencies of the functions bj(t) are obtained by joining up the main frequencies

of the functions b;(t) and h;(t), we can assume that the Earth magnetic field influ-

enced upon TAS3 measurements linearly. This assumption gives hope to us that
TAS3 filtered data can be corrected by the formulas

3
bf = > myh;
j=1

where m;; are constants. We suppose here and below in this Section that the sign

bl (1=12,3),

of the component b has been changed.
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If we make a correction for the magnetic field, it is naturally to make simul-
taneously some other corrections, namely, the correction for infra low-frequency
errors, the correction for the shift of TAS3 time scale, the correction for the error in
the spacecraft ballistic coefficient and the correction for misalignment of sensitive
TAS3 axes with respect to the axes y;. We specify the last correction by the vector

0=(6,,0,,0;) of infinitesimal rotation of TAS3 sensitive axes with respect to the
system Y,Y,Y;. The components of @ can be regarded both to the system y,Y,Y;

and to the system formed by sensitive axes of TAS3. The correction of the ballistic
coefficient is specified by means of multiplication of it by the factor y: yc—c.

This correction compensates short time variations of ¢ and p, within a long inter-

val in which ¢ was defined. Taking into account all these corrections and assum-
ing they allow removing all possible errors, we can write

3
b (t) + ;b3 (1) — O35 (1) ~Z (1) — D _myjh; (t+7) =
j=1

Il
—_

Cjt+ )XY +x;1+ xbP (t + 1),
j

3
b5 (t) + B3] (t) — A1b3 (1) = Z, (t) = D my;hy(t+7) = (13)
j=1
3

= Ct+ DX + X1+ b (t+7),
j=1

3
b3 (1) + 603 (1) — O,b{ (1) — Z5 (1) = > my;h;(t+7) =
j=1

3
Z C3;(t+ D)X + X1+ 7 (t+ 1),
=1

K
Zi(1)= AQ, +(t—t)) A, + DAY sin X —to) (i=1,2,3).
= Nh
Here, the functions Z;(t) compensate infra low-frequency errors in filtered data, ¢

is the shift of TAS3 time scale with respect to the time scale used for description of
spacecraft attitude motion, the functions ¢;;(t) and b}a) (t) are defined by relations

(see (1), e; are unit vectors along the axes Y;)

3
3(R-¢)R
eixc')+(o><(ei><(o)+‘ ‘ [ (R-e) ] E Cjiej, Cpalv|v= E b}a)ej,
R -
j=1

Rf
the quantities X; set the origin of TAS3 coordinate system with respect to the

spacecraft mass center, ng) (j=1,2,3) are the coordinates of the TAS3 sensor for
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the axis Yy, in the TAS3 own coordinate system,
Xl(l) =-56.2 mm, Xél) =48.5 mm, Xgl) =-57.0 mm,
Xl(z) =-36.5 mm, Xéz) =22.3 mm, X§2) =-70.5 mm,

xP=-31.0 mm, x{’=485mm, x{=-27.8 mm,

We considered relations (13) as equations for determining the unknown

quantities &, X, A(i), m;, 2, and 7. We look for these quantities in the follow-

ing way. Let 7 be given. We consider relations (13) at the points t, defined by
formulas (5). The quantities b{(t,) are calculated at filtration and we don’t exclude
the infra low-frequency component from them because this corrections are pro-
vided by functions Z;(t). The quantities C; (t, +7) and bi(a) (t, + 7) are calculated
by interpolation using finite Fourier series. Those series were constructed before-
hand basing on the proper solution of spacecraft motion equations. We obtained as
a result the overdetermined linear system with the unknown quantities &,, X;, A(ki) ,

m.., and y. We treat the problem of finding its solution as a standard linear re-

ij
gression problem. We solve it by the least squares method for each 7 at points of
the uniform grid with the step 1 s and calculate the standard deviation o, = o, (7)

of discrepancies in (13). The value 7. =argmino,(7) is considered to be the re-
quired estimate of 7. The solution of the regression problem at 7 =7, gives us the

required estimates of the quantities listed above. The standard deviations of those
quantities, calculated at 7 =7« in the framework of a linear regression problem
previously mentioned, are adopted as accuracy characteristics of the found esti-
mates. We emphasize the standard deviations are calculated at fixed 7, which is
supposed to be known, and are so-called conditional standard deviations. The un-
conditional standard deviation o, of the estimate 7. is calculated by the formula

dzo'g(f*) )

o2=20i(z+)| BN - 3K —23) 5

dr

The results of solution of the regression problem are presented in Table 4
and Figs. 10 — 12. These results were obtained for some intervals from Table 1.
They were obtained at K =10 but they almost coincide with the results for K =5
and K =3. Table 4 contains the estimates of the quantities 7, X;, y, 6, and m;;

as well as their standard deviations. The unit of 6, and oy is radian, the unit of
m;; and o 1s 1077 m/(s*- Oe).

Figs. 10a, 11a, and 12a contain the plots of the functions Bi (t) and b (1)
(i=1,2,3) defined by the left-hand sides and right-hand sides of formulas (13).
Thick lines depict the plots of the functions by (t) ; fine lines depict the plots of the
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Table 4. Estimations of TAS3 adjusting parameters. The unit of m;; and o is 1077 rn/(sz-Oe)

Interval _‘67b’ , 7, O, Xi, | Oxis X2, | Ox2s Ox35 P o,
10" m/s S mm mm mm mm mm mm

1 0.764 —48 3.0 22.3 19 -121.0 5.5 -219.8 4.5 0.929 | 0.023

2 0.675 =37 24 -13.7 13 -96.9 2.9 -229.1 2.8 1.089 | 0.016

4 0.801 22 2.5 -16.7 13 -109.8 2.5 -231.0 24 1.179 | 0.020

6 0.748 -32 1.7 1.6 12 -86.0 1.9 -227.2 1.9 1.043 | 0.020

8 0.781 -25 1.7 -7.0 5.0 -94.3 0.74 | -241.2 0.73 | 1.095 | 0.015

9 0.999 -32 1.8 -8.1 5.8 —63.6 0.83 -238.8 0.82 | 0.939 | 0.016

10 0.742 -23 1.2 -8.4 4.1 -96.1 0.57 | —235.8 0.57 | 0.900 | 0.012

11 0.745 -19 1.4 -10.9 4.3 -96.8 0.60 | -226.1 0.60 | 1.078 | 0.013

12 0.952 -23 1.9 -9.8 6.0 —-69.4 0.85 -236.4 0.84 | 0.895 | 0.017

13 0.734 15 1.2 -7.8 4.6 -104.2 | 0.66 | -229.8 0.64 | 1.040 | 0.014
Interval 0, o 0, O¢) 0 093 my; Omit | M2 | Omi2 m; Omi3
1 0.002 | 0.020 | —=0.039 | 0.017 | 0.0007 | 0.013 |-189.2 | 29 -5.1 2.1 —-87.2 3.5
2 0.040 | 0.013 | 0.014 | 0.011 0.020 | 0.0085 | -1979 | 1.9 |-16.6 1.9 |-101.8| 2.3
4 —-0.099 | 0.016 | —0.010 | 0.0099 | 0.006 | 0.0076 | —184.6 | 1.7 | —-15.8 1.9 -97.2 24
6 0.060 | 0.015 [ -0.017 | 0.0089 | 0.040 | 0.0064 | -191.0| 1.6 -5.3 1.7 -99.5 2.2
8 —0.008 | 0.012 | —0.034 | 0.0037 | 0.026 | 0.0025 | -1869 | 2.8 |-16.7| 14 -98.2 1.5
9 0.132 | 0.014 | —-0.010 | 0.0043 | 0.018 | 0.0028 | —-188.7 | 2.9 -1.8 1.9 |-1052| 2.0
10 —0.026 | 0.011 | —0.033 | 0.0030 | 0.024 | 0.0019 | —-189.0| 2.5 |-14.9 1.4 | -100.8 1.5
11 0.022 | 0.011 | -0.026 | 0.0032 | 0.012 | 0.0021 | -178.8| 3.0 |-13.5 1.4 -96.4 1.5
12 0.161 | 0.015 | —0.021 | 0.0044 | 0.022 | 0.0029 | —-185.9 | 3.1 —6.6 1.9 |-101.8| 2.0
13 —0.043 | 0.013 | —=0.040 | 0.0034 | 0.013 | 0.0022 | -184.1| 2.6 |-18.1 1.4 -99.6 1.5
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Table 4 (continuation). Estimations of TAS3 adjusting parameters. The unit of m;; and oy;; 1s 107 m/(s* Oe)

Interval | My Omoi My, Om22 My3 Oma3 | M31 | Om31 | M3y | O3 Ms3 Om33
1 6.6 32 | -1044 1.6 -26.7 3.9 -21.9 3.6 -1.9 2.3 -1694 | 2.8
2 3.1 24 | -105.9 1.7 -29.2 2.5 -14.5 2.6 -14.5 2.0 | -170.9 1.8
4 11.6 2.1 -111.4 1.7 -35.2 32 -15.2 24 -10.9 24 | -172.0 1.8
6 7.8 1.9 | -108.0 1.6 -26.5 3.0 -18.3 2.2 -17.2 22 | -176.0 1.9
8 2.8 2.8 | —-111.7 1.5 -23.9 2.3 ~11.6 2.8 | =21.7 1.8 | -171.8 1.4
9 2.2 2.9 -98.4 1.9 —6.8 2.9 -10.7 3.0 -9.8 2.3 -184.8 1.9
10 10.3 2.5 -106.3 1.5 -26.0 2.2 -25.4 2.6 -11.3 1.8 | -174.7 14
11 10.6 3.0 |-106.9 1.5 -22.6 2.2 -20.3 3.0 -28.8 1.8 | -180.5 1.4
12 6.7 3.1 -96.4 1.9 4.2 3.1 -15.3 3.2 -18.6 24 | —-188.1 1.8
13 2.3 26 | -1154 1.5 -28.2 2.5 -19.7 2.6 -20.1 1.9 | -170.2 1.4
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Table 5. Estimations of TAS3 adjusting parameters. The unit of m;; and o is 1077 rn/(sz-Oe)

Interval _?b > , T, O, X1, Ox1> Xy, Ox2> X3, Ox3> ¥ P
10 °m/s S S mm | mm mm mm mm mm
8 0.820 28 0.82 254 3.5 -83.3 0.76 | —242.1 0.77 | 1.105 | 0.016
9 1.024 26 0.79 16.2 3.9 -84.7 0.84 | -236.8 0.84 | 0937 | 0.016
10 0.793 -26 0.65 21.7 2.8 -83.5 0.61 -237.0 0.61 | 0.901 0.013
11 0.766 -19 0.57 16.3 2.9 -96.0 0.61 -226.1 0.62 | 1.083 | 0.013
12 0.988 —-18 0.74 26.0 4.1 -89.9 0.87 | -233.9 0.87 | 0.882 | 0.017
13 0.763 -19 0.64 25.0 3.1 —-85.8 0.66 | 2324 0.67 | 1.035 | 0.015
Interval | My | Oy | Mpp | O | M3 | O3
8 -190.6 | 3.0 | -16.0 1.5 |-104.4 1.5
9 -188.2 1 3.0 | -13.0 1.9 | -106.2 1.9
10 -190.5 | 2.7 | -13.1 1.5 | -1064| 1.5
11 -177.3 | 3.1 —15.8 1.4 | -100.5 14
12 -184.5| 3.2 | -18.1 1.9 | -104.2 1.9
13 -182.4 | 2.7 | -13.7 1.5 | -107.2 1.5
Interval My, | Omoy My, Oma2 | My3 | Ompz | M3y | O3y | Map | Oy Ms3 Om33
8 6.8 2.9 -108.4 1.5 -28.0 14 -5.5 2.9 -16.1 14 -171.2 1.5
9 4.4 2.9 -99.9 1.9 -20.0 1.9 -9.2 2.9 -11.5 1.9 —180.7 1.9
10 15.1 2.7 —-104.8 1.5 -27.5 1.5 -19.6 2.7 —6.7 1.5 —173.7 1.5
11 11.9 3.0 -106.9 1.4 -26.2 1.4 -16.3 3.0 -26.6 1.4 -179.0 1.4
12 8.3 32 -99.8 1.9 -22.4 1.9 -12.7 32 -17.6 1.9 -182.6 1.9
13 4.6 26 | -111.6 1.4 -29.0 1.5 -12.9 26 | —12.6 1.5 -169.8 1.5
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Table 6. Estimations of TAS3 adjusting parameters. The unit of quantities m;; and o is 1077 m/(s2 -Oe)

Interval _gb > , T, O, X5 Ox1» Xy, Ox25 X3, Ox3> ¥ o,
10°m/s S C mm | mm mm mm mm mm

8 0.781 -25 0.79 -7.0 5.0 -94.3 0.74 | -241.2 0.73 | 1.095 | 0.015
9 1.005 -25 0.79 -6.8 5.8 —88.8 0.84 | -236.4 0.83 | 0.930 | 0.016
10 0.742 24 0.61 -8.9 4.1 -92.2 0.58 | -236.3 0.57 | 0.900 | 0.012
11 0.745 -18 0.56 | —-10.3 4.3 -100.7 | 0.60 | -2254 | 0.60 | 1.077 | 0.013
12 0.958 -16 0.72 —-6.9 6.0 -99.3 0.86 | —232.7 0.85 | 0.874 | 0.017
13 0.734 -17 0.62 -8.9 4.6 -95.5 0.65 -231.3 0.64 | 1.036 | 0.014

Interval | 0, 0 093 my, Omit | M | Omi2 m; Omi3

8 —0.035 | 0.0037 | 0.026 | 0.0024 | -1869 | 2.8 |-16.7 1.4 -98.2 1.5

9 —0.023 | 0.0043 | 0.018 | 0.0028 | —-188.2| 29 |-119 19 [-1024 | 2.0

10 —0.032 | 0.0030 | 0.024 | 0.0019 | -189.0 | 2.5 | -13.3 1.4 | -101.2 1.5

11 —0.027 | 0.0032 | 0.011 | 0.0021 | -178.7| 3.0 |-14.9 1.4 -95.9 1.5

12 —0.034 | 0.0044 | 0.022 | 0.0029 | —-185.5| 3.1 -17.6 1.9 -98.3 2.0

13 —0.037 | 0.0034 | 0.013 | 0.0022 | -184.2 | 2.6 | -14.6 1.4 | -100.7 1.5

Interval | My, | Oy My | Omaa | Mp3 | Omaz | M3y | O3y | M3y | O3 M33 | Om3s

8 2.8 2.8 -111.4 14 -22.7 14 -11.5 2.8 -22.5 14 -171.9 14
9 1.3 2.9 -101.6 1.9 -19.0 1.9 -13.3 3.0 -14.4 1.9 | -181.6 1.9
10 10.8 2.5 -105.4 1.4 -23.5 1.4 -24.8 2.6 -11.2 14 | -175.1 1.4
11 10.2 3.0 -107.9 1.4 -24.5 1.4 -20.8 3.0 -29.4 1.4 | -179.9 1.4
12 4.6 3.1 -100.9 1.9 | -18.8 1.9 | -18.6 32 | -23.6 19 | -1834 1.9
13 2.8 2.6 -113.4 1.4 -25.1 1.4 -19.0 2.6 -18.5 14 | -171.3 1.4
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functions Bi (t). Figs. 10b, 11b, and 12b contain the plots of the differences
Ab; (1) =6i (t)—b;(t) (i=12,3). The functions, obtained in both ways, are in a
good agreement with each other. The differences Ab;(t) are small and look as irre-

gular oscillations with sufficiently high frequencies. The figures illustrate only in-
tervals 2, 6 and 13 but they give an idea about all intervals in Table 1.
The values of o, in Table 4 are close for all intervals but the estimates of

the most interesting fitted parameters X; were stabilized only since interval 8 (see
standard deviations o,; in Table 4). The useful signal in measurement data was

apparently lost against background of infra low-frequency errors in preceding in-
tervals. One can see from Table 1 and Figs. 10a, 11a, and 12a that amplitudes of
b,, maximal values of |b, |, |b;y|, and frequencies of these functions increased

coupled with Q. So, the low-frequency filtration enabled to extract the useful sig-
nal in b{ starting the certain value of Q.

The weighted mean values of the parameters X; in the last six rows of Table
4 are X, =—8.7 mm, X, =-90.9 mm, X; =-233.8 mm, the weights being propor-

tional to oy . The standard deviations of these mean values are oy =0.58 mm,
Oxp =7.0 mm, oy =2.4 mm. The mean values of the quantities o; in the last
six rows of Table 4 are &,; =5.0 mm, &,, =0.71 mm, 6,3 =0.70 mm. The ana-
logous estimates for the factor y are ¥ =0.993, 05 =0.065, &, =0.014. The es-
timates turned out to be fairly accurate. So, the aerodynamic term in formula (1)
was calculated correctly.

It s interesting to estimate misalignment of sensitive TAS3 axes with respect
to the axes Yy;. This misalignment is described by the angles & . The weighted

mean values of these angles in the last six rows of Table 4 are 8, =0.027(1.5°),
0, =-0.029(1.7°), 65 =0.019(1.1°). The standard deviations of these mean values
are 05, =0.036, o5, =0.0045, o5, =0.0024. The mean values of the quantities
Oy; 1n the last six rows of Table 4 are 6, =0.013, 54, =0.0037, Gy; =0.0024.

The estimates of the quantities &, and &; look fairly good. The estimate of 6, is

not so exact.
Since the angles 6, were small, it worth to solve our regression problem un-

der the condition 6, =0 (i =1, 2, 3). The results of solving this problem for the last

six intervals of Table 1 are presented in Table 5. All these results were obtain un-
der K =10. Table 5 is arranged analogously to Table 4. The values of o}, in it are

just a little larger than in Table 4 but estimates of the coordinate x; differ visibly in
these tables. In particular, we have for data in Table 5 X; =21.5 mm, X, =-87.5
mm, X3 =-234.1 mm, oy =1.9 mm, oy, =2.0 mm, oy; =2.3 mm, &, =3.4
mm, o,, =0.73 mm, &,; =0.73 mm. Of course, the difference in values of X, 1s

small in comparison with TAS3 dimensions but it is large in comparison with the
values of o,,, 0y, and &,,. We point out also the decrease of the standard devia-
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tions o, in Table 5 as against Table 4. Table 6 contains results of solving the re-
gression problem under the conditions 6, =0 and K =10 for the same intervals as

in Table 5. The results occurred distinctly closer to data in Table 4 but the standard
deviations o, remained small.

Now, we consider the estimates of coefficients m;; and their standard devia-

tions. The weighted mean values of these coefficients in the last six rows of Table
4 are
-185.8 —-133 -99.8

M ll=|| 5.8 -107.1 -20.6
-17.6 190 -177.0

1.5 2.8 2.3 28 1.6 1.7
lomjll=|1.6 3.1 43|, &y l=[28 1.6 2.5|.
23 29 3.0 29 20 16

The unit of these quantities are 10~ m/(s*-Oe). The analogous average characte-
ristics for Tables 5 and 6 are close to these. One can see in Tables 4 — 6 that the
differences between estimates of m;; in different tables have the same order as ap-

propriate o p;j. The values of m;; in Tables 4 — 6 show that the influence of the

magnetic field is approximately the same for all components b;

6. Conclusion.  The investigation of TAS3 measurement data showed that
this accelerometer was sufficiently exact and sensitive to measure quasi-steady ac-
celerations. TAS3 was designed first of all for measuring high-frequency accelera-
tions with sufficiently large amplitudes onboard spacecraft. Therefore extraction of
a quasi-steady acceleration component from its measurement data demanded spe-
cial efforts. In particular, we had to eliminate infra low-frequency errors and to
make a correction for the influence of the Earth magnetic field. The infra low-
frequency errors were apparently caused by a zero drift, a thermal influence, etc.
TAS3 didn’t have respective compensative facilities. Fortunately, the quasi-steady
acceleration at the TAS3 location was sufficiently large and had appropriate fre-
quencies as early as a few days after the beginning of the flight. Moreover, the time
dependence of the quasi-steady acceleration could be described in the very conve-
nient mathematical form owing to the specific attitude motion of the spacecratft.
The influence of the Earth magnetic field upon TAS3 readings was very small and
could not be taken into account in regular situations of the device operation. But
quasi-steady accelerations have usually so small amplitudes that the correction
needs. All listed facts caused the methods of processing the TAS3 measurement
data in low-frequency range and enabled to show utmost opportunities of this acce-
lerometer.

Our investigation demonstrated once again that the calculated way of deter-
mining the quasi-steady acceleration component is efficient. It gives detailed in-
formation about real though rather idealized accelerations in low-frequency range.
This information can be very useful in analysis of acceleration measurement data.
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Besides in some situations, this information alone gives an exact and complete de-
scription of low-frequency microgravity environment onboard spacecratft.
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