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Annotation

This preprint presents results of a reconstruction of the spacecraft Foton M-2

attitude motion by measurements of the accelerometer TAS3. The Foton M-2

attitude was already reconstructed by measurements of the Earth magnetic �eld
and the angular rate. The TAS3 measurement data have been used for this pur-
pose for the �rst time. These data contain secondary clear-cut component, which
had unknown (three years ago) origin and made impossible their direct use for
reconstruction of a spacecraft attitude motion. The secondary component proved
to be caused by the Earth magnetic �eld. Understanding this fact allowed to in-
troduce the proper correction of the TAS3 data into the processing procedure and
to use them for the reconstruction. The given preprint contains descriptions of
the improved procedure of processing TAS3 data and results of its testing and ap-
plication. Testing consisted in the direct comparison of the motion reconstructed
in a new way with the motion reconstructed by magnetic measurements. The new
procedure allowed to reconstruct the real attitude motion of Foton M-2 in the
period 09.06.2005 � 14.06.2005 when magnetic measurements were not made.

Ò. Áîéçåëèíê, Ê. Âàí Áàâèíõîâ, Â.Â. Ñàçîíîâ, Ñ.Þ. ×åáóêîâ.
Îïðåäåëåíèå âðàùàòåëüíîãî äâèæåíèÿ ñïóòíèêà Ôîòîí Ì-2 ïî äàí-
íûì èçìåðåíèé ìèêðîóñêîðåíèÿ. Ïðèâåäåíû ðåçóëüòàòû ðåêîíñòðóêöèè
íåóïðàâëÿåìîãî âðàùàòåëüíîãî äâèæåíèÿ ñïóòíèêà Ôîòîí Ì-2 ïî äàííûì
èçìåðåíèé àêñåëåðîìåòðà TAS-3. Âðàùàòåëüíîå äâèæåíèå ýòîãî ñïóòíèêà
óæå áûëî íàéäåíî ðàíåå ïî äàííûì èçìåðåíèé ìàãíèòíîãî ïîëÿ Çåìëè è
óãëîâîé ñêîðîñòè. Äàííûå TAS-3 èñïîëüçîâàíû äëÿ ýòîé öåëè âïåðâûå. Ýòè
äàííûå ñîäåðæàò ÷åòêî âûäåëÿåìóþ äîïîëíèòåëüíóþ ñîñòàâëÿþùóþ, ïðî-
èñõîæäåíèå êîòîðîé íåñêîëüêî ëåò íàçàä áûëî íåèçâåñòíî è êîòîðàÿ äåëà-
ëà íåâîçìîæíûì èõ ïðÿìîå èñïîëüçîâàíèå äëÿ ðåêîíñòðóêöèè âðàùàòåëü-
íîãî äâèæåíèÿ. Êàê âûÿñíèëîñü âïîñëåäñòâèè, äîïîëíèòåëüíàÿ ñîñòàâëÿþ-
ùàÿ âûçâàíà âëèÿíèåì ìàãíèòíîãî ïîëÿ Çåìëè. Îáíàðóæåíèå ýòîãî ôàêòà
ïîçâîëèëî ó÷åñòü ïðè îáðàáîòêå äàííûõ TAS-3 íåîáõîäèìóþ ïîïðàâêó è èñ-
ïîëüçîâàòü èõ äëÿ ðåêîíñòðóêöèè âðàùàòåëüíîãî äâèæåíèÿ Ôîòîíà Ì-2.
Â ñòàòüå îïèñûâàåòñÿ ìîäèôèöèðîâàííûé ñïîñîá îáðàáîòêè äàííûõ TAS-3
è ðåçóëüòàòû åãî òåñòèðîâàíèÿ è ïðèìåíåíèÿ. Òåñòèðîâàíèå ñîñòîÿëî â ïðÿ-
ìîì ñðàâíåíèè äâèæåíèÿ, ðåêîíñòðóèðîâàííîãî íîâûì ñïîñîáîì, ñ äâèæåíè-
åì, ïîñòðîåííûì ïî ìàãíèòíûì èçìåðåíèÿì. Íîâûé ñïîñîá ïîçâîëèë íàéòè
ôàêòè÷åñêîå äâèæåíèå Ôîòîíà Ì-2 â ïåðèîä 09.06.2005 � 14.06.2005, êîãäà
ìàãíèòíûå èçìåðåíèÿ íå ïðîâîäèëèñü.
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1. Introduction. Starting from frequency properties, one can divide residual
accelerations onboard the free �yers Foton in two parts: high-frequency and quasi-
steady components. The high-frequency component is caused by elastic vibrations
of a spacecraft body and by functioning onboard equipments. It has frequencies
from above 1 Hz. The quasi-steady component is due to a spacecraft attitude
motion as a rigid body, the gradient of the Earth gravitational �eld, and the
atmosphere drag. Its spectrum lies within the range from 0 to 0.005 Hz.

Let us consider measurement data produced by a high-frequency accelerom-
eter onboard a spacecraft. We suppose the accelerometer is precise enough so
we can �lter the correct quasi-steady component from its measurement data and
clear away low frequencies from the high-frequency component. These two compo-
nents have a di�erent mechanical sense. The high-frequency component relates to
the point, where the accelerometer is installed. It is very di�cult and practically
impossible to recalculate it for another point. On the contrary, the quasi-steady
component contains, in principle, full information about a spacecraft motion as
a motion of a rigid body.

There is a simple formula for calculation of quasi-steady accelerations along
a given spacecraft motion. We remind it coupled with some de�nitions. Let a
spacecraft be a rigid body moving along a low Earth orbit and let a point P be
�xed with its frame. The di�erence between the gravitational �eld strength at
point P and the absolute acceleration of this point is called a residual acceleration
at point P . We denote the di�erence by b. It plays a part of the gravitational
acceleration g in orbital experiments in physics of �uids and material science.
We assume that only the atmosphere drag is signi�cant among nongravitational
forces acting upon the spacecraft. Then b is de�ned by the formula [1]

b = r× ω̇ + (ω × r)× ω +
µe

|R|3

[
3 (R · r)R

|R|2
− r

]
+ cρa|v|v . (1)

Here, r =
−→
OP ; the point O is the spacecraft center of mass; ω is the absolute

angular rate of the spacecraft; the dot above a symbol denotes di�erentiation
with respect to time t; µe is the gravitational parameter of the Earth; R is the
geocentric radius vector of point O; v is the velocity of point O with respect to
the Earth surface; ρa is the atmosphere density at point O; c is the spacecraft
ballistic coe�cient.

If we reconstruct somehow a real spacecraft motion, we can calculate a real
acceleration at point P by formula (1). This formula was derived for a general
situation without any frequency restrictions. But for the Foton spacecraft it gives
just a quasi-steady acceleration component. A spacecraft attitude motion can
be reconstructed by processing measurement data from onboard sensors: magne-
tometers, angular rate sensors, accelerometers, etc.

The usual approach is as follows. Let we have measurement data from a
sensor and the data cover a su�ciently long time interval of an uncontrolled

3



�ight. First, we determine the real spacecraft attitude motion on that interval by
statistical processing the measurement data. At that, we use spacecraft attitude
motion equations, which are kinematic and dynamic equations of a rigid body.
We �nd the solution of these equations that provides the best approximation of
the measurement data. This solution is considered to be a reconstruction of the
real motion. Then, we calculate along the solution the acceleration at any point
of the spacecraft by formula (1).

We applied successfully this approach in the cases when a spacecraft attitude
motion was reconstructed by Earth magnetic �eld measurements [2], angular rate
measurements [3, 4], and acceleration measurements [4, 5]. This approach allowed
us to process all measurements that were obtained in Foton M-2 and were es-
sential for analyzing quasi-steady accelerations excepting measurements of the
high-frequency triaxial accelerometer TAS3. The TAS3 measurement data con-
tain secondary clear-cut component, which had unknown (three years ago) origin
and made impossible their direct use for reconstruction of a spacecraft attitude
motion. The secondary component proved to be caused by the Earth magnetic
�eld [6]. Understanding this fact allowed to introduce the proper correction of
the TAS3 data into the processing procedure and to use them for the recon-
struction. The given preprint contains descriptions of the improved procedure
of processing TAS3 data and results of its testing and application. Testing con-
sisted in the direct comparison of the motion reconstructed in a new way with
the motion reconstructed by measurements of the Earth magnetic �eld. The new
procedure allowed to reconstruct the real attitude motion of Foton M-2 in the
period 09.06.2005 � 14.06.2005 when magnetic measurements were not made.

It may seem strange to reconstruct a spacecraft attitude motion by accelera-
tion measurements. Magnetometers are better �t for this purpose. But there are
at least two reasons that make such work of some use. First, we don't have an-
other data. Second, we can use acceleration measurements for all kinds of testing:
for testing measurement data in the low-frequency range, for testing spacecraft
attitude motion equations, etc. These both reasons take place in the case of TAS3
data from Foton M-2.

2. Mathematical model of spacecraft attitude motion. The spacecraft
is assumed to be an axially symmetric rigid body. To write equations of its motion
and relations, used in processing measurement data, we introduce the following
four right-hand Cartesian coordinate systems.

The system Ox1x2x3 is �xed with the spacecraft body and is formed by its
principal central axes of inertia. Point O is the spacecraft mass center; axis Ox1
coincides with the spacecraft axis of symmetry and is directed from the capsule
to the device unit. The spacecraft inertia tensor has the matrix diag (I1, I2, I2)
in this system. We suppose that system Ox1x2x3 is used for interpretation of
measurement data implemented by various onboard sensors.
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The auxiliary coordinate system Oy1y2y3 serves for writing down the equa-
tions of spacecraft attitude motion. Axis Oy1 coincides with axis Ox1. Axes Ox2
and Ox3 are obtained from axes Oy2 and Oy3 by rotating system Oy1y2y3 through
the angle ϕ around axis Oy1. To specify a kinematic relation between systems
Ox1x2x3 and Oy1y2y3 we assume that absolute angular rate of the latter system
has zero component along axis Oy1. Let w2, w3 be components of this angular
rate along axes Oy2, Oy3 and let the spacecraft absolute angular rate ω have
components (ω1, ω2, ω3) in system Ox1x2x3. Then ϕ̇ = ω1 and

ω2 = w2 cosϕ+ w3 sinϕ , ω3 = −w2 sinϕ+ w3 cosϕ . (2)

Greenwich system CY1Y2Y3 is connected with the Earth. Its origin is in the
Earth center; plane CY1Y2 coincides with the equator plane; axis CY1 intersects
the Greenwich meridian, the axis CY3 is directed to the North Pole.

The quasi inertial system CX1X2X3 serves for graphic representation of the
spacecraft attitude motion. Axis CX2 is directed along the vector R×Ṙ at every
instant; axis CX3 lies in plane CY1Y2 and is directed to the ascending node of the
spacecraft osculating orbit. The absolute value of the angular rate of this system
did not exceed 5◦ per day.

We denote the transition matrix from system Oy1y2y3 to Greenwich system
by ‖ aij ‖ 3

i,j=1. Here, aij = cos(OYi
∧Oyj). The matrix elements are expressed as

functions of the angles γ, δ, and β, which are de�ned in the following way. System
CY1Y2Y3 can be transformed to system Oy1y2y3 by three sequential rotations (we
suppose point O coincides with point C): (1) by angle δ + π/2 around axis CY2,
(2) by angle β around new axis CY3, (3) by angle γ around new axis CY1, which
coincides with axis Oy1.

We specify the attitude of axis Oy1 with respect to system CX1X2X3 by the
angles θ and ψ. Here, θ is the angle between axis Oy1 and plane CX1X2; ψ is
the angle between axis OX1 and the projection of axis Oy1 onto plane CX1X2.
The unit vector of axis Oy1 has the components (cos θ cosψ, cos θ sinψ,− sin θ)
in system CX1X2X3. We use also another angle Λ = arccos (cos θ sinψ) between
axes Ox1 and CX2.

The complete system of the spacecraft motion equations consists of two sub-
systems. The �rst subsystem describes the motion of point O; the second one
describes the rotation of system Oy1y2y3. The �rst subsystem is written in Green-
wich coordinate system taking into account the real Earth gravitational �eld and
the atmosphere drag. The �eld are represented by series in terms of solid spherical
harmonics up to the order (16,16) inclusive. The atmosphere density are calcu-
lated according to model [7]. The solutions of the �rst subsystem were found from
the condition of the best approximation of NORAD two line elements [2, 5].

The second subsystem consists of Poisson's kinematic equations for the �rst
two rows of the matrix ‖ aij ‖ as well as Euler's dynamic equations for the angular
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rates w2, w3. We take into account four external torques in Euler's equations:
gravitational and restoring aerodynamic ones, the torque from the Earth magnetic
�eld, and the constant torque permanently directed along axis Ox1. Calculating
the aerodynamic torque, we assume the external envelope of the spacecraft is
a sphere, its center being in axis Ox1. Calculating the torque from the Earth
magnetic �eld, we assume the own spacecraft dipole moment is parallel to axis
Ox1. The second subsystem has the form

ẇ2 + λω1w3 = −3µe

R5 (1− λ)y1y3 + pEρavv3 −mh′3 ,

ẇ3 − λω1w2 =
3µe

R5 (1− λ)y1y2 − pEρavv2 +mh′2 ,

ȧ11 + w2a13 − w3a12 = ωea21 , (3)

ȧ12 + w3a11 = ωea22 , ȧ13 − w2a11 = ωea23 ,

ȧ21 + w2a23 − w3a22 = −ωea11 ,

ȧ22 + w3a21 = −ωea12 , ȧ23 − w2a21 = −ωea13 ,

ω1 = Ω + ε(t− t0) , λ =
I1
I2
, R =

√
y2

1 + y2
2 + y2

3 , v =
√
v2

1 + v2
2 + v2

3 .

Here, yi, vi, and h′i are the components of the vectors R, v (see Section 1), and H,
the Earth magnetic �eld strength at point O, in system Oy1y2y3; the parameters
p and m specify the aerodynamic and magnetic torques respectively; εI1 is the
constant torque along axis Ox1; ωe is the angular rate of the Earth rotation; E
is the scale factor. We use in (3) the solution of Euler's equation ω̇1 = ε in the
explicit form with the constant parameter Ω. A choice of the instant t0 will be
speci�ed below.

We use 1000 s as a unit of time and 1000 km as a unit of length when
numerical integrating equations (3). Then the units of the other quantities are
following: [vi] = km/s, [ωi] = [wi] = 10−3s−1, [p] = cm/kg, [h′i] = 0.1Oe,
[m] = 10−5Oe−1s−2, [ε] = 10−6s−2, [ρa] =kg/m3, E = 1010. The atmosphere
density is calculated according to model [7]. The Earth magnetic �eld is calcu-
lated according to the analytical model IGRF2005. The third row of the transition
matrix ‖ aij ‖ is calculated at integration as a cross-product of its two �rst rows.
We de�ne a motion of system Ox1x2x3 and functions ω2(t), ω3(t) for a solution
of equations (3) by the relation ϕ = Ω(t− t0)+ε(t− t0)2/2 and formulas (2). The
variables a1i and a2i are not independent owing to orthogonality of the matrix
‖ aij ‖. On this reason, the initial values of a1i and a2i are expressed in terms of
the angles γ, δ, and β.

The parameter λ in (3) is known: λ = 0.27. The parameters p, m, and ε
are estimated by processing the measurement data along with initial values of a
spacecraft attitude motion, i. e. they are �tted parameters.
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Equations (3) and some other mathematical models in this preprint are sim-
pler than analogous models used in [2] (nevertheless, we take into account the
additional external torque produced by the Earth magnetic �eld). We did that
to reduce the total number of �tted parameters and to avoid the use of a priori
information and regularization techniques in statistical procedures. To compen-
sate this simpli�cation we content ourselves with processing of simple spacecraft
motions when the component ω1 of the angular rate is su�ciently large [2, 3].

3. The statistical technique of reconstruction of Foton M-2 attitude
motion by magnetic �eld measurements. Equations (3) were tested by using
them in processing magnetic measurements made onboard Foton M-2 and by
comparing the results of this processing with results [2]. There was the equipment
Mirage onboard Foton M-2. It measured the magnetic �eld inside the capsule
during space experiments. That �eld was close to Earth's one and so we used
equations (3) and Mirage measurements for reconstructing the attitude motion
of the spacecraft by means of usual statistical techniques. We described brie�y
the technique used below (see details in [2]).

Magnetic �eld measurements, obtained in a time interval t0 ≤ t ≤ t0 + T of
several hours, were processed jointly. At �rst, we constructed the discrete Fourier
series ĥi(t) (i = 1, 2, 3) approximating components of the measured magnetic
�eld in system Ox1x2x3 in that interval. The root-mean-square errors of the
approximation were usually less than 200γ (1γ = 10−5 Oe). Then we calculated
the numbers tn = t0 + nT/N , h(n)

i = ĥi(tn), where n = 0, 1, . . . , N . They served
input information for searching a solution of equations (3) describing the real
spacecraft motion in the interval t0 ≤ t ≤ t0 + T . We named the values h(n)

i by
pseudo-measurements. There were usually T = 100− 300 min, T/N = 1 min for
Foton M-2.

Following the least squares method, we considered a solution of system (3) as
reconstruction of the real spacecraft motion in the interval t0 ≤ t ≤ t0 + T if it
provided minimum to the functional [2]

Φ =
3∑

i=1

{
N∑

n=0

[
h

(n)
i − hi(tn)

]2
− (N + 1)∆2

i

}
, (4)

hi(t) =
3∑

j,k=1

Hj(t)ajk(t) , ∆i =
1

N + 1

N∑
n=0

[
h

(n)
i − hi(tn)

]
.

Here, ∆i are the estimates of constant biases in the pseudo-measurements h(n)
i ;

Hi(t) are the components of H (see Section 2) in Greenwich system. The quanti-
ties Hi(t) were calculated using the model IGRF2005. We always used the initial
point t0 of the processed interval as the instant t0 in (3). Functional (4) was min-
imized over 9 quantities: p, m, ε, Ω, w2(t0), w3(t0), γ(t0), δ(t0), β(t0). The �rst
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four quantities specify system (3), the other quantities specify its solution. We
solved the minimization problem by Gauss�Newton's method.

We used appropriate standard deviations to characterize the accuracy of ap-
proximating the pseudo-measurements and scattering the �tted quantities. The
standard deviations were calculated under the assumptions that errors in the
pseudo-measurements h(n)

i were uncorrelated random variables with the same
dispersion, errors in the pseudo-measurements with the same inferior index i had
the same mean value (the quantities ∆i in (4) are just the estimates of theses
mean values).

The standard deviations were calculated in the following way. Let Φmin be the
value of functional (4) at its minimum point, C be the matrix of Gauss�Newton's
normal equations at that point (2C is approximately equal to the matrix of the
quadratic form d2Φ at the minimum point of Φ). Then the standard deviation of
errors in pseudo-measurements is estimated by the quantity

σH =

√
Φmin

3N − 9
.

The standard deviations of the �tted parameters are equal to the square roots of
corresponding diagonal elements of the matrix σ2

HC
−1. We denote the standard

deviations of the parameters p, m, and ε by σp , σm , and σε.

4. Real attitude motion of Foton M-2. The technique above was applied
for reconstructing the spacecraft motion in 6 time intervals. Some results are pre-
sented in Table 1 and in Figs. 1, 3 (we numbered �gures according to episodes
of motion rather than in the order of their citing in the text). The table contains
certain characteristics of the intervals and the solutions of system (3) that ap-
proximate the motion. In particular, it contains the parameters p, m, ε and the
standard deviations σH , σp , σm , σε. The �rst column of the table contains (in
brackets) the days of June 2005 that contains the respective interval. The �gures
are cited only for intervals 1, 4. They illustrate the accuracy of approximation
of pseudo-measurements and the spacecraft attitude motion relative to system
CX1X2X3.

Each of Figs. 1, 3 are divided naturally into three parts � left-hand, mid-
dle and right-hand. The right-hand parts illustrate the quality of approximation
of pseudo-measurements by the functions hi(t) de�ned in (4). Here, solid lines
present plots of these functions on the interval t0 ≤ t ≤ t0 + T ; marks indicate
the points

(
tn, h

(n)
i −∆i

)
, n = 0, 1, . . . , N . The middle parts of the �gures con-

tain the plots of the angular rates ωi(t). There are two plots in each coordinate
system. The plots, obtained by minimization of (4), are depicted by lines without
marks. The left-hand sides of the �gures contain the plots of time dependence
of the angles Λ, θ, and ψ that represent the attitude of axis Ox1 with respect
to system CX1X2X3. There are again two plots in each coordinate system. The
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plots, obtained by minimization of (4), are depicted by lines without marks.
These examples demonstrate the worse accuracy of approximation of pseudo-

measurements than it was obtained in [2] by using more complicated mathemat-
ical models. Here, the values of σH are about half as much again than in [2].
Nevertheless, the accuracy obtained is quite enough for our purposes. The stan-
dard deviations of initial angles γ(t0), δ(t0), β(t0) are about 1.2◦ in the given
examples; standard deviations of the angular rates Ω = ω1(t0), w2(t0) = ω2(t0),
w3(t0) = ω3(t0) are here about 0.002 deg./s. The mechanical interpretation of
the found motion one can �nd in [2, 3].

5. The statistical technique of reconstruction of Foton M-2 attitude
motion by acceleration measurements. To reconstruct the spacecraft atti-
tude motion by TAS3 measurement data we use at bottom the same technique
as in Section 3. We take a time interval t0 ≤ t ≤ t0 +T and, using low-frequency
�ltration of TAS3 data, construct in it the functions Bi(t) (i = 1, 2, 3), which
specify vector components of the quasi-steady acceleration in system Ox1x2x3.
These functions have the form of discrete Fourier series and contain the frequen-
cies not more the 0.017 Hz [6]. We don't use the functions directly but deal with
their values tn = t0 + nT/N , B(n)

i = Bi(tn), n = 0, 1, . . . , N . We refer to these
values as the �ltered data. TAS3 measurements have erroneous constant biases
in each vector component. We changed on that reason the mean value of each
function Bi(t) in the interval t0 ≤ t ≤ t0 +T to obtain zero mean value of �ltered
data B(n)

i , n = 0, 1, . . . , N .
Formula (1) gives the expressions for vector components of a quasi-steady

acceleration in system Ox1x2x3 in terms of variables of equations (3) and co-
ordinates of point P . We would consider this point as a location of TAS3. But
in fact, various TAS3 single-axis sensors have certain shifts with respect to each
other. We suppose point P is the origin of the TAS3 own coordinate system and
axes of that system are parallel to axes Oxi (i = 1, 2, 3). We denote by x(i)

j the
coordinates of the TAS3 sensor for axis Oxi in the TAS3 coordinate system. Then
we can write idealized calculation analogs for the functions Bi(t) (with correct
mean values) in the following form [6]

bi = bai +
3∑

j=1

cij

[
xj + x

(i)
j

]
, bai = cρavui (i = 1, 2, 3) , (5)

c11 = ω2
2 + ω2

3 +
µe

R3 (3γ
2
1 − 1) , c23 = ω̇1 − ω2ω3 +

3µe

R3 γ2γ3 ,

c32 = −ω̇1 − ω3ω2 +
3µe

R3 γ3γ2 , etc. ,

u1 = v1 , u2 = v2 cosϕ+ v3 sinϕ , u3 = v3 cosϕ− v2 sinϕ ,
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γ1 =
y1

R
, γ2 =

y2 cosϕ+ y3 sinϕ

R
, γ3 =

y3 cosϕ− y2 sinϕ

R
.

Here, xj are the coordinates of point P in system Ox1x2x3; one has to use sub-
stitution of indices 1 → 2 → 3 → 1 in order to obtain the other cij.

The values of x(i)
j in mm are:

x
(1)
1 = −56.2 , x

(1)
2 = 48.5 , x

(1)
3 = −57.0 ,

x
(2)
1 = −36.5 , x

(2)
2 = 22.3 , x

(2)
3 = −70.5 ,

x
(3)
1 = −31.0 , x

(3)
2 = 48.5 , x

(3)
3 = −27.8 .

Formulas (5) don't take into account the in�uence of the Earth magnetic �eld
on the TAS3 data as well as infra low-frequency errors in them. We mentioned
this in�uence in Section 1 and we refer frequencies in the range 0÷ 0.0005Hz to
infra low-frequencies. We adopt models [6] for representation of these in�uence
and errors and write out the relations:

Bi(t) ≈ ∆bi + B̂i(t, τ) (i = 1, 2, 3),

B̂i(t, τ) = bi(t+ τ) +
3∑

j=1

mijhj(t+ τ) + χi(t), (6)

χi(t) = Ai0(t− t0) +
K∑

k=1

Aik sin
πk(t− t0)

T
,

where ∆bi, τ , mij , and Aik are constant parameters; functions bi(t) and hi(t) (see
(4)) are calculated along an appropriate solution of equations (3). As before, the
initial point t0 of the processed interval coincides with the instant t0 in (3). The
sense of some terms in (6) are following. The terms with hi(t) characterize the
in�uence of the Earth magnetic �eld on the measurements; the terms ∆bi +χi(t)
compensate infra low-frequency errors (including erroneous constant biases) in
the measurements. The number K must not be large in order to the frequency
K/2T was below signi�cant frequencies of functions (5).

We try to �t relations (6) by the least squares method and consider the
functional

Φb =
3∑

i=1

{
N∑

n=0

[
B

(n)
i − B̂i(tn, τ)

]2
− (N + 1)∆2

bi

}
, (7)

∆bi =
1

N + 1

N∑
n=0

[
B

(n)
i − B̂i(tn, τ)

]
.

10



It is obtained by transformation of the standard functional of least squares
method that arises at �tting relations (6) for the points t = tn (n = 0, 1, . . . , N)
[4, 5]. We minimize the functional over initial conditions of a solution of equa-
tions (3) at the point t0 and the parameters p, m, ε, τ , c, xi , mij , Aik . There
are 26 + 3K parameters in aggregate.

We treat functional (7) in the following way. We join 25 + 3K of its argu-
ments except τ in the vector z and consider (7) as the function Φb(z, τ). The
minimization of Φb(z, τ) over z and τ is reduced to calculating the function

Φ̂b(τ) = min
z

Φb(z, τ)

at a sequence of points τn (n = 1, 2, . . . ), which converges to the limit τ∗ =

argmin Φ̂b(τ). We minimize Φb(z, τ) over z, when τ was �xed, by Gauss�Newton's
method. The quantities τ∗ and z∗ = argmin Φb(z, τ∗) are desired estimates of τ
and z. We separate τ from the complete set of arguments of function (7) to
simplify a preparation of the computer code for minimizing Φb(z, τ). We took
τ1 = 0 and used results of processing Mirage data in an appropriate time interval
as an initial approximation to the minimum point of Φb(z, 0) in case of χi(t) ≡ 0
(i = 1, 2, 3). Then we passed to case of χi(t) 6= 0, etc.

We used appropriate standard deviations to characterize the accuracy of the
approximation of �ltered data and scattering in the estimates τ∗, z∗. The standard
deviation σb of errors in pseudo-measurements B(n)

i and the standard deviation
στ of τ∗ were calculated by the formulas

σb =

√
Φ̂b(τ∗)

3N − 3K − 26
, σ2

τ = 2σ2
b

[
∂2Φ̂b(τ∗)

∂τ 2

]−1

.

We evaluated the second derivative in the last formula by di�erence approxima-
tion.

Standard deviations of the components of z∗ were calculated under assumption
that τ = τ∗ was known exactly. Such standard deviations are called conditional
ones. We found them in the following way. Let C be the matrix of normal equa-
tions, which appear at minimizing Φb(z, τ∗) over z by Gauss-Newton's method;
at that, C is calculated at the point z∗ and 2C ≈ ∂2Φb(z∗, τ∗)/∂z

2. Then the
conditional standard deviations of the components of z∗ are equal to the square
roots of corresponding diagonal elements of the matrix σ2

bC
−1. We denote the

conditional standard deviations of the quantities p, m, ε by σp , σm , σε .

6. Real attitude motion of Foton M-2 (continuation). The accelerometer
TAS3 operated since 31.05.2005 till 14.06.2005. Mirage operated since 31.05.2005
till 09.06.2005. So we can reconstruct the spacecraft motion by two ways for time
interval within the period 31.05 � 09.06 and we can reconstruct the spacecraft
motion in the remaining �ight using TAS3 data.

11



An acceleration and a strength of a magnetic �eld have quite di�erent physical
nature. Therefore we compare measurement data of these quantities by compar-
ing the spacecraft motions reconstructed in both ways above. This comparison
was made for 6 time intervals listed in Table 1. Table 2 and Figs. 1 � 4 contain
the results of processing the acceleration data in those intervals at K = 5. Ta-
ble 2 contains some �tted parameters minimizing functional (7) and appropriate
standard deviations. The reconstructed motions in intervals 1, 4 are presented
in �gures. The plots with marks in left-hand and middle parts of Figs. 1, 3 de-
scribe the spacecraft attitude motion relative to system CX1X2X3. These plots
are de�ned at τ ≤ t − t0 ≤ T + τ . One can compare the plots with marks and
without them in the �gures and feel that spacecraft motions, found in both above
ways, coincide su�ciently well. The same precision of coincidence take place for
the other intervals in Tables 1, 2.

Left-hand and right-hand parts of Figs. 2, 4 illustrate the accuracy of approxi-
mation of �ltered data by their calculated analog. The left-hand parts contain the
plots of functions ∆bi + B̂i(t, τ). They are depicted by solid lines. The marks near
these plots show the �ltered data

(
tn + τ, B

(n)
i

)
, n = 0, 1, . . . , N . The right-hand

parts of Figs. 2, 4 contain the plots of the residuals e(n)
i = B

(n)
i − B̂i(tn, τ)−∆bi

(n = 0, 1, . . . N ; i = 1, 2, 3). These plots are the broken lines with vertexes in
the points

(
tn + τ, e

(n)
i

)
. The standard deviation σb is a quantitative characteris-

tic of the approximation accuracy. Its values are given in �gure captions and in
Table 2. These values are about the same as in [6], though we used there another
way of constructing the calculated analog of functions Bi(t). The �gures and the
values of σb in Table 2 demonstrate that correction for the magnetic �eld and
elimination of infra low-frequency errors allow to �t rather exactly acceleration
measurement data with their calculated analog.

Middle parts of Figs. 2, 4 contain the plots of the functions bi(t) (see (5)).
These plots illustrate the level of quasi-steady accelerations nearby the TAS3
location in intervals 1 and 4.

Conditional standard deviations of the initial angles γ(t0), δ(t0), β(t0) of found
solutions don't exceed 1.5◦; conditional standard deviations of the corresponding
quantities Ω, w2(t0), w3(t0) are less than 0.002 deg./s. These estimates are very
close to the estimates obtained by processing Mirage measurements. The esti-
mates of parameters p, m, ε and their standard deviations in Table 2 are about
the same for each interval as in Table 1.

We can obtain some information about accuracy of our motion reconstruction
comparing the estimates of c, τ , xi, and mij found by the technique of Section
7 with analogous estimates found in a di�erent way. The estimates of ballistic
coe�cient c in Table 2 are closed to the value 0.0016 m2/kg that was obtained
by processing trajectory measurements [2]. The estimates of xi, τ , and mij in the
table will be compared with the estimates obtained in [6] for the case when the

12



axes of the TAS3 own coordinate system were supposed to be parallel to the axes
of system Ox1x2x3. Let us begin with estimates of xi. Their mean values were
x1 = 21.5mm, x2 = −87.5mm, x3 = −234.1mm. The standard deviations of
the estimates of x2 and x3 were less than 1mm, the standard deviations of the
estimate of x1 was about 5mm. These estimates di�er in a way from the estimates
in Table 2. The di�erence of estimates for x3 is especially large and stable; it is
about 10 cm. The estimates of τ in Table 2 lies in the same range as estimates of
this quantity in [6], but the have more large scattering. The estimates of mij in
Table 2 have su�ciently small scattering which exceeds just slightly in the most
cases the corresponding values of σmij. These estimates di�er from estimates
of the same quantities in [6] but are rather similar to them. The results of [6]
are following (in units of Table 2): m11 ≈ −186, m12 ≈ −100, m22 ≈ −107,
m33 ≈ −177 and |mij| < 30 for the other such coe�cients.

Figs. 5 � 13 and Table 3 present the results of reconstruction of the Foton M-

2 attitude motion after 09.06.2005 when Mirage didn't operate. All results were
obtained at K = 10. We used method [4] to �nd initial approximation to the
minimum point of Φb(z, 0) at χi(t) ≡ 0. Figs. 6, 8, 10, 11, and 13 are analogous
to Figs. 2, 4. Figs. 5, 7, 9, and 12 illustrate the the spacecraft motion and look
like the left-hand and middle parts of Figs. 1, 3. Table 3 is similar to Table 2 but
contains two additional columns with values of t0 and T . Judging from the �gures,
the errors of motion reconstruction and measurement approximation in this series
of time intervals are about the same as in the previous one. But comparing Tables
2 and 3 shows that the errors increased a little.

Conditional standard deviations of initial conditions of the found motions can
be summarized as follows: the errors in the angles γ(t0), δ(t0), β(t0) don't exceed
2.3◦; the errors in the angular rates Ω, w2(t0), w3(t0) are less than 0.0035 deg./s.
The estimates of parameters p, m, etc. and their standard deviations in Table
3 look somewhat more scattered than in Table 2. Two large positive values of
τ for intervals 10 and 13 seem to be anomalous. These two intervals supplied
anomalous estimates of x2, x3, m23, and m32.

The jumps of τ at transitions from interval 11 to interval 12, and from interval
12 to interval 13 look anomalous too. Intervals 11 and 12 have the overlap with
the length of 2 hours; intervals 12 and 13 have the overlap with the length of an
hour. We reconstructed the motion in a few intermediate intervals within the sum
of intervals 11, 12, and 13. Each intermediate interval had the length of 300 min.
The time shift τ seemed to be a smooth function of t0 for them. It is di�cult
to �nd the reason of this e�ect. It can consist in using a secondary minimum
of functional (7), bugs in data, etc. But possible reasons are not so important.
The calculated quasi-steady acceleration proved to be su�ciently close (see Figs.
10, 11, 13). Figs. 9, 12 illustrate the motion in the pairs of overlapping intervals.
Each �gure contains plots of the angles Λ, θ, ψ, and the angular rates ωi for two
solutions of equations (3). The conjunction of the solutions is not good in both
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cases but one can feel some �uency of the reconstructed motion.

7. Conclusion. This preprint contains the results of processing measurement
data produced by two di�erent sensors onboard spacecraft Foton M-2. These sen-
sors are the magnetometers of the equipmentMirage and the accelerometer TAS3.
Measurement data of di�erent kinds were processed separately by analogous sta-
tistical techniques based on the full system of the spacecraft attitude motion
equations. The motions obtained by processing acceleration measurements were
compared directly with the motions obtained by processing magnetic �eld mea-
surements. The latter motions were considered as reference ones.

The correction of TAS3 measurement data for the Earth magnetic �eld and
elimination of infra low-frequency errors allowed to achieve a good coincidence of
spacecraft motions reconstructed in di�erent ways. This good coincidence is not
surprising because acceleration measurements contain some information about
the Earth magnetic �eld in their additional low-frequency component. We have
to note the favorable circumstance that frequencies of these additional compo-
nents di�er successfully from the motion frequencies. We have to note also a high
accuracy of TAS3 acceleration measurements. If they are used in a proper man-
ner then they give a su�ciently accurate reconstruction of the spacecraft attitude
motion.

The use of correction TAS3 data for the Earth magnetic �eld allowed to
reconstruct the real attitude motion of Foton M-2 during the period 09.06.2005
� 14.06.2005, in which there were not magnetic measurements. It allowed to
calculate real quasi-steady accelerations onboard the spacecraft at the time.
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