

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 67 за 2008 г.</u>

<u>Галанин М.П.</u>, Гузев М.А., Низкая Т.В.

Исследование критического поведения неевклидовой модели сплошной среды

Рекомендуемая форма библиографической ссылки: Галанин М.П., Гузев М.А., Низкая Т.В. Исследование критического поведения неевклидовой модели сплошной среды // Препринты ИПМ им. М.В.Келдыша. 2008. № 67. 22 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2008-67</u>

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В. Келдыша Российской академии наук

М.П. Галанин, М.А. Гузев, Т.В. Низкая

Исследование критического поведения

неевклидовой модели сплошной среды

Москва

Аннотация

Работа посвящена исследованию модели сплошной среды с дефектами, предложенной в [5-7]. В модели для описания дефектов введен дополнительный термодинамический параметр - тензор кривизны, отвечающий за несовместность упругой деформации. В препринте исследованы свойства предложенной модели в плоско-деформированном случае. Показано, что существует предельная интенсивность внешней нагрузки, при превышении которой решение, соответствующее классической теории упругости, становится неустойчивым. Результатом этого является появление неупругой деформации и отличие параметра неевклидовости от нуля. В отличие от классической теории пластичности, эта критическая нагрузка зависит не только от свойств материала, но также и от размеров области. Для нахождения предельной нагрузки сформулирована задача на собственные значения, реализован численный алгоритм ее решения.

M.P. Galanin, M.A. Guzev, T.V. Nizkaya

The investigation of critical behaviour of the non-euclidean model of a solid Abstract

The aim of the work is investigation of the non-euclidean model of defected solid, presented in [5, 7]. The defects are represented in the model by an additional thermodynamical parameter - the deformation curvature tensor, measuring the incompatibility of the elastic strain. The model equations are considered here in a simplified plain-strain form. It is shown that there exists a threshold value for the external load. Exceeding this value violates the stability conditions for the classical elasticity solution. As a result, the inelastic counterpart of deformation appears and the non-euclidity parameter becomes non-zero. Unlike the traditional plasticity theory this critical load depends not only on the material properties, but also on the size of the domain. To find the critical load intensity a special eigenvalue problem is stated and a numerical procedure is provided for its solution.

Содержание

1	Вве	сдение	3			
2	Математическая модель материала с неевклидовой					
	структурой упругих деформаций					
	2.1	Геометрические характеристики деформируемой				
		сплошной среды	3			
	2.2	Модификация классической модели	4			
	2.3	Вывод уравнений модели в случае плоской деформации	4			
3	Исследование устойчивости классического решения					
	3.1	Условия устойчивости на малых временах	7			
	3.2	.2 Численная реализация алгоритма				
	3.3 Тестовые задачи					
		3.3.1 Критическая нагрузка при одноосном растяжении/сжатии	10			
		3.3.2 Критическая нагрузка при неоднородном деформировании	12			
4	Зак	лючение	12			

1 Введение

Проблема полного описания физико-механических свойств материалов обусловила потребность в разработке новых теоретических моделей их поведения в различных условиях. Известно, что в физических теориях прочности и пластичности [1] неупругое поведение твердых тел объясняется наличием дефектов в их кристаллической структуре (дислокаций, дисклинаций и других типов дефектов). Анализ таких физических моделей еще в пятидесятые годы XX века привел Кондо [2] и Билби [3] к выводу о необходимости использовать при их описании неевклидовы геометрические объекты, запрещенные в классической теории упругости. Необходимость обобщения классической теории в наиболее четкой форме была установлена С.К.Годуновым [4]. В работах [5-7] предложены варианты неевклидовых моделей сплошной среды, в которых учтено взаимодействие различных дефектных структур. В данной работе рассотрена схема неевклидовой модели, в которой обобщение классической теории упругости выполнено путем введения в модель одного дополнительного параметра - тензора кривизны, ассоциированного с тензором упругой деформации (см. также [8]). Тензор кривизны характеризует несовместность упругих деформаций, так что в линейном приближении условие равенства нулю этого тензора совпадает с условиями совместности Сен-Венана [4, 9].

Для нового параметра в работах [5-7] получено уравнение переноса вдоль поля скоростей. В упругом случае это уравнение является линейным и однородным и в силу начальных условий имеет только тривиальное решение. В общем случае упругая деформация уже не совпадает с полной, и в уравнении для тензора кривизны появляется источник.

В данной работе рассмотрен один из вариантов неевклидовой модели, в котором источник неупругих деформаций зависит от напряжений и тензора кривизны. В плоско-деформированном случае (когда единственным дополнительным параметром является скалярная кривизна) исследовано поведение решений этой модели в зависимости от внешних условий. Для этого в уравнениях модели выделен параметр, явным образом отвечающий за интенсивность внешней нагрузки. Показано, что существует критическое значение этого параметра, при превышении которого решение, соответствующее классической теории упругости, становится неустойчивым. Разработан и реализован программно алгоритм нахождения критической интенсивности для распределенной по границе силовой или кинематической нагрузки.

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 08-01-00581-а).

2 Математическая модель материала с неевклидовой структурой упругих деформаций

2.1 Геометрические характеристики деформируемой сплошной среды

С геометрической точки зрения сплошная среда представляет собой множество точек (частиц) в трехмерном евклидовом пространстве. Каждой частице можно сопоставить набор чисел ξ^{α} , $\alpha = 1, 2, 3$ (лагранжевы характеристики) и рассматривать траектории частиц $\mathbf{x}(\xi, t)$. В качестве лагранжевых характеристик обычно выбирают координаты частицы в начальный момент времени, так что

$$\xi^{\alpha}(\mathbf{x},0) = x^k \delta^{\alpha}_k.$$

Здесь и далее принято суммирование по повторяющимся индексам. Зависимость $\mathbf{x}(\xi, t)$ задает отображение из начальной конфигурации среды в текущую. Основной гипотезой механики сплошных сред является гипотеза сплошности, говорящая о том, что отображение начального состояния среды в конечное является гладким и взаимнооднозначным. Деформация среды (изменение длин векторов и углов между ними) определяется квадратичной формой:

$$|d\xi| = d\xi^{\alpha} d\xi^{\alpha} = G_{ij} dx^i dx^j, \quad G_{ij} = \frac{\partial \xi^{\alpha}}{\partial x^i} \frac{\partial \xi^{\alpha}}{\partial x^j}.$$

В качестве меры деформации естественно рассматривать отклонение метрического тензора G_{ij} от начального значения - тензор Альманси [9]:

$$A_{ij}(x,t) = \frac{1}{2} \left(\delta_{ij} - G_{ij} \right) = \frac{1}{2} \left(\delta_{ij} - \frac{\partial \xi^{\alpha}}{\partial x^i} \frac{\partial \xi^{\alpha}}{\partial x^j} \right).$$
(1)

Произвольному симметричному тензорному полю $\varepsilon_{ij}(\mathbf{x}, t) = \varepsilon_{ji}(\mathbf{x}, t)$ можно поставить в соответствие метрический тензор по формуле $g_{ij} = \delta_{ij} - 2\varepsilon_{ij}$ [4]. Если соответствующая метрика является евклидовой, то существует глобальное отображение $\xi(\mathbf{x}, t)$, такое, что

$$g_{ij} = \frac{\partial \xi^{\alpha}}{\partial x^i} \frac{\partial \xi^{\alpha}}{\partial x^j},$$

и тензор ε_{ij} является тензором Альманси для некоторой реальной конфигурации. Необходимым и достаточным условием евклидовости метрики является равенство нулю тензора кривизны Римана-Кристоффеля [10]:

$$R_{ijkl} = S_{ijkl} - g^{ps}(\Gamma_{jl,s}\Gamma_{ki,p} - \Gamma_{jk,s}\Gamma_{li,p}) = 0, \qquad (2)$$

где g^{ps} - компоненты матрицы, обратной к $g_{ps},$ то есть $g^{pq}g_{qs}=\delta^p_s,$

$$S_{ijkl} = \frac{\partial \Gamma_{jk,i}}{\partial x^l} - \frac{\partial \Gamma_{jl,i}}{\partial x^k},$$

а $\Gamma_{ij,k} = \frac{1}{2} \left(\frac{\partial g_{kj}}{\partial x^i} + \frac{\partial g_{ki}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^s} \right)$ - компоненты связности, согласованной с метрикой. В трехмерном пространстве тензор кривизны полностью определен тензором второго ранга - тензором Риччи $R_{ij} = R_{ipsj}g^{ps}$.

В случае малых деформаций, когда $|\varepsilon_{ij}| << 1$, нелинейными слагаемыми в (2) можно пренебречь. Тогда $R_{ijkl} \approx S_{ijkl}$ и условие евклидовости, записанное относительно ε_{ij} , принимает следующий вид:

$$R_{ij} = \frac{\partial^2}{\partial x_k \partial x_j} \varepsilon_{ik} + \frac{\partial^2}{\partial x_i \partial x_k} \varepsilon_{kj} - \frac{\partial^2}{\partial x_i \partial x_j} \varepsilon_{kk} - \frac{\partial^2}{\partial x_k \partial x_k} \varepsilon_{ij} = 0.$$
(3)

Это условие известно в литература как условие совместности малых деформаций (условие Сен-Венана) [4, 9].

Для тензора Альманси известно уравнение переноса вдоль заданного поля

скоростей $v_i(x,t)$ в неограниченной среде [4]:

$$\frac{DA_{ij}}{Dt} \equiv \frac{dA_{ij}}{dt} + A_{il}\frac{\partial v^l}{\partial x^j} + A_{lj}\frac{\partial v^l}{\partial x^i} = \frac{1}{2}\left(\frac{\partial v_j}{\partial x^i} + \frac{\partial v_i}{\partial x^j}\right) \equiv e_{ij},$$

$$A_{ij}(x,0) = 0,$$
(4)

где

$$\frac{d}{dt} = \frac{\partial}{\partial t} + v_l \frac{\partial}{\partial x^l}.$$

Уравнение переноса для тензора кривизны R_{ijkl} в неограниченной среде имеет вид [5-7]:

$$\frac{DR_{lijq}}{Dt} \equiv \frac{dR_{lijq}}{dt} + \frac{\partial v^p}{\partial x^l} R_{pijq} + \frac{\partial v^p}{\partial x^i} R_{lpjq} + \frac{\partial v^p}{\partial x^j} R_{lipq} + \frac{\partial v^p}{\partial x^q} R_{lijp} = 0,$$
(5)
$$R_{lijq}(x,0) = 0.$$

В силу начальных условий эта задача Коши имеет единственное тривиальное решение $R_{ijkl} \equiv 0$, однако при других начальных данных решение может быть и отличным от нуля.

Таким образом, тензор R_{ijkl} можно рассматривать как дополнительный "скрытый" параметр (тождественно равный нулю при нулевых начальных условиях), который следует включить в число переменных модели для обеспечения ее геометрической замкнутости. В теории упругости есть и другие "скрытые" параметры (тензор кручения, тензор неметричности [5-8]), однако расширение модели за счет включения тензора кривизны в число дополнительных параметров является естественным шагом, поскольку связано с отказом от условий совместности Сен-Венана.

2.2 Модификация классической модели

В классической механике деформируемого твердого тела энергетическое состояние материала без учета тепловых процессов определяется единственным параметром - тензором упругой деформации ε . Рассмотрим расширение классической модели, включив в набор термодинамических параметров тензор кривизны метрики, ассоциированной с тензором упругих деформаций. В этом случае плотность внутренней энергии является функцией тензора упругой деформации и тензора Риччи: $U = U(\varepsilon_{ij}, R_{ij}).$

Если материал упругий, то тензор упругой деформации совпадает с тензором Альманси $\varepsilon_{ij} = A_{ij}$ и удовлетворяет уравнению (4), а тензор кривизны тождественно равен нулю в силу уравнения (2) и начальных условий.

Иначе обстоит дело при неупругом деформировании, когда $\varepsilon_{ij} \neq A_{ij}$ и в уравнение для ε_{ij} вводится источник неупругих деформаций E_{ij} :

$$\frac{D\varepsilon_{ij}}{Dt} = e_{ij} - E_{ij},$$
$$\varepsilon_{ij}(x,0) = 0.$$

Тогда уравнение переноса для "эффективного" тензора Риччи $R_{ij} = R_{ijkl}g^{kl}$, связанного с ε_{ij} , записывается в виде:

$$\frac{DR_{ij}}{Dt} = I_{ij},\tag{6}$$

где правая часть I_{ij} определяется через источник E_{ij} . Это уравнение может иметь нетривиальное решение в зависимости от вида E_{ij} .

2.3 Вывод уравнений модели в случае плоской деформации

Рассмотрим случай плоской деформации среды - предположим, что $v_3 = 0$ и ни одна из величин не зависит от x_3 .

В качестве дополнительных гипотез примем, что:

- 1. Плоской является не только полная деформация, но и упругая.
- 2. Скорости частиц малы, так что мы пренебрегаем конвективными слагаемыми в уравнениях переноса и инерционным слагаемым в уравнении равновесия.
- 3. Деформации малы: $|A_{ij}| \ll 1, |\varepsilon_{ij}| \ll 1.$

С учетом этих предположений уравнение для тензора упругой деформации принимает вид:

$$\frac{\partial \varepsilon_{ij}}{\partial t} = e_{ij} - E_{ij}, \quad i, j = 1, 2;
\frac{\partial \varepsilon_{i3}}{\partial t} = 0, \quad i = 1..3.$$
(7)

Здесь и далее все индексы пробегают значения от 1 до 2, если не указано иного.

Уравнение переноса (8) для тензора R_{ij} имеет следующий вид:

$$\frac{DR_{iq}}{Dt} = \frac{\partial^2 E_{kk}}{\partial x^i \partial x^q} - \frac{\partial^2 E_{ki}}{\partial x^q \partial x^k} - \frac{\partial^2 E_{kq}}{\partial x^i \partial x^k} + \Delta E_{iq} - 2E_{lj}R_{lijq}.$$
(8)

В плоском случае тензор Риччи полностью определен своим следом - скалярной кривизной $R = R_{ij}g^{ij}$. С учетом сделанных предположений $g_{ij} \approx \delta_{ij}$, $g^{ij} \approx \delta^{ij}$ и уравнение переноса для скалярной кривизны дается соотношением:

$$\frac{1}{2}\frac{\partial R}{\partial t} = \Delta E_{kk} - \frac{\partial^2 E_{ij}}{\partial x^i \partial x^j} - E_{kk}R,$$

$$R(x,0) = 0.$$
(9)

Связь между напряжениями и деформациями определяется видом внутренней энергии $U(\varepsilon_{ij}, R)$. При малых ε, R можно ограничиться квадратичными слагаемыми в разложении U:

$$\rho_0 U = \frac{\lambda_1}{2} (\varepsilon_{kk})^2 + \mu_1 \varepsilon_{ij} \varepsilon_{ij} + \nu \varepsilon_{kk} R + \frac{\mu_2}{4} R^2.$$

Тогда:

$$\sigma_{ij} = 2\mu_1 \varepsilon_{ij} + \lambda_1 \varepsilon_{kk} \delta_{ij} + \nu R \delta_{ij}, \quad i, j = 1, 2$$

$$\sigma_{33} = (2\mu_1 + \lambda_1) \varepsilon_{kk} + \nu R.$$

Отсюда следует

$$\varepsilon_{ij} = \frac{1}{2\mu_1} \left(\sigma_{ij} - \lambda_1 \varepsilon_{kk} \delta_{ij} - \nu R \delta_{ij} \right),$$

$$\varepsilon_{kk} = \frac{\sigma - 2\nu R}{2\mu_1 + 2\lambda_1}, \quad \sigma \equiv \sigma_{11} + \sigma_{22}.$$
(10)

Для переменной J_{ij} , двойственной к R_{ij} , имеем:

$$J_{ij} \equiv \rho \frac{\partial U}{\partial R_{ij}} \approx \rho_0 \frac{\partial U}{\partial R} \frac{\partial R}{\partial R_{ij}}.$$

С учетом того, что при малых деформациях $\rho_0 \approx \rho$ и $\partial R / \partial R_{ij} = g^{ij} \approx \delta^{ij}$,

$$J_{ij} = \delta_{ij}J/2, \quad J = 2\nu\varepsilon_{ll} + \mu_2 R/2.$$

Источник необратимых деформаций определяется видом диссипативной функ-

ции. В [8] предложен источник следующего вида:

$$E_{ij} = \xi \left(\sigma_{ij} - \delta_{ij} \Delta J + \frac{\partial^2 J}{\partial x^i \partial x^j} \right), \xi \ge 0, \tag{11}$$

где ξ - параметр, определяющий интенсивность источника.

Поскольку процесс неупругого деформирования носит пороговый характер, то $\xi > 0$ только при выполнении некоторых условий на σ_{ij} и *J*. Мы не будем сейчас конкретизировать вид ξ , поскольку нас интересует лишь качественное поведение решения в моменты времени непосредственно после "включения" источника, и положим $\xi = \xi_0 = const$.

Уравнения равновесия запишем в предположении отсутствия объемных сил:

$$\begin{cases} \sigma_{ij,j} \equiv \frac{\partial \sigma_{ij}}{\partial x^j} = 0, & x \in D, \\ \sigma_{ij}n_j = p_i, & x \in S_f, \\ u_i = u_i^*, & x \in S_u. \end{cases}$$
(12)

Из (15),(11) следует

$$\frac{\partial E_{ij}}{\partial x^j} = 0$$

поэтому (9) можно переписать в виде:

$$\frac{1}{2}\frac{\partial R}{\partial t} = \Delta E_{kk} - E_{kk}R, \quad E_{kk} = \xi \left(\sigma - \Delta J\right).$$

Подставив сюда выражение для Ј и учитывая (10), получим

$$\frac{1}{2}\frac{\partial R}{\partial t} = -\xi \left(\hat{L}\left(\Delta\sigma\right) + b\Delta^2 R\right) - \xi \left(\sigma - h\Delta\sigma - b\Delta R\right)R,\tag{13}$$

где $\hat{L} = (h\Delta - I), h = \frac{\nu}{\mu_1 + \lambda_1}, b = \left(\frac{\mu_2}{2} - \frac{2\nu^2}{\mu_1 + \lambda_1}\right), I$ - единичный оператор. Чтобы выразить $\Delta \sigma$ через R, проинтегрируем уравнение (9) с учетом (7) и тождества $\Delta e_{kk} - 2\frac{\partial^2 e_{ij}}{\partial x_i \partial x_j} \equiv 0$. Тогда имеем:

$$\frac{1}{2}R = \Delta \varepsilon_{ll} - \frac{\partial \varepsilon_{ij}}{\partial x_i \partial x_j} - \int_0^t E_{kk}Rdt.$$

Подставляя в это выражение ε_{ij} из (10) и используя уравнения равновесия, получаем:

$$\Delta \sigma = q\mu_1 \left(h\Delta - E\right) R + 2q\mu_1 \int_0^t E_{kk} R dt,$$

где $q = \frac{2(\lambda_1 + \mu_1)}{\lambda_1 + \mu_1}$. Уравнение (13) для кривизны имеет четвертый порядок, поэтому необходимо наложить два условия в каждой точке границы.

Выберем их следующим образом:

$$R = 0, \hat{L}R = \Delta\sigma = 0, \quad x \in S_1,$$
$$\frac{\partial R}{\partial n} = 0, \quad \frac{\partial \hat{L}R}{\partial n} = 0, \quad x \in S_2, \partial D = S_1 \cup S_2.$$

Условия на S_1 означают отсутствие дефектов на этой части границы, а условия на S₂ - равенство нулю потока дефектов.

Таким образом, система уравнений для вычисления R приобретает вид:

$$\begin{cases} \frac{1}{2} \frac{\partial R}{\partial t} = -\xi \left(\hat{L} \left(\Delta \sigma \right) + b \Delta^2 R \right) - \xi \left(\sigma - h \Delta \sigma - b \Delta R \right) R, \\ R = 0, \hat{L}R = \Delta \sigma = 0, \quad x \in S_1, \\ \frac{\partial R}{\partial n} = 0, \frac{\partial \hat{L}R}{\partial n} = 0, \quad x \in S_2, \partial D = S_1 \cup S_2, \\ R(x,0) = 0, \\ \Delta \sigma = q \mu_1 \left(h \Delta - E \right) R + 2q \mu_1 \int_0^t E_{kk} R dt, \end{cases}$$
(14)

В (14) входит след тензора напряжений $\sigma=\sigma_{ll},$ который находится из уравнений равновесия:

$$\begin{cases} \sigma_{ij,j} = 0, \quad x \in D, \\ \sigma_{ij}n_j = p_i, \quad x \in S_f, \\ u_i = u_i^*, \quad x \in S_u, \\ \sigma_{ij} = 2\mu_1(\varepsilon_{ij}) + (\lambda_1\varepsilon_{ll} + \nu R)\delta_{ij}, \\ \varepsilon_{ij} = A_{ij} + \int_0^t E_{ij}dt, \quad A_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}). \end{cases}$$
(15)

Система (14), (15) всегда имеет решение $R \equiv 0$, $\Delta \sigma \equiv 0$, соответствующее классической теории упругости. Однако при некоторых условиях это решение оказывается неустойчивым относительно малых возмущений начальных данных.

3 Исследование устойчивости классического решения

3.1 Условия устойчивости на малых временах

Рассмотрим поведение решения системы (14) на малых временах после начала действия источника: $t = t_0 + \tau$, где $\tau \ll 1/(||\sigma||\xi)$. В этих условиях

$$\int_{t_0}^t E_{ij} dt = O(\delta), \text{ где } \delta = \tau \xi \|\sigma\| \ll 1,$$
(16)

поэтому интегральными членами, связанными с накопленной неупругой деформацией, можно пренебречь:

$$\varepsilon_{ij} \approx A_{ij}, \qquad \Delta \sigma \approx q \mu_1 \left(h \Delta - E \right) R.$$

Это позволяет записать уравнение для R в следующем виде:

$$\frac{1}{2}\frac{\partial R}{\partial t} = -\xi \left(q\mu_1 \hat{L}^2 R + b\Delta^2 R \right) + \xi \left(-\sigma + hq\mu_1 \hat{L}R + b\Delta R \right) R.$$

Оно является объектом дальнейшего исследования. Нас интересует устойчивость относительно малого возмущения начальных данных решения следующей задачи:

$$\begin{cases} \frac{1}{2} \frac{\partial R}{\partial t} = -\xi \left(q \mu_1 \hat{L}^2 R + b \Delta^2 R + \sigma \right) + \xi \left(h q \mu_1 \hat{L} R + b \Delta R \right) R, \\ R = 0, \hat{L} R = 0 \quad x \in S_1, \\ \frac{\partial R}{\partial n} = 0, \frac{\partial \hat{L} R}{\partial n} = 0 \quad x \in S_2, \partial D = S_1 \cup S_2, \\ R(x, t_0) = \epsilon \cdot R_0(x), \epsilon << 1. \end{cases}$$

Сюда входит величина $\sigma = \sigma_{ll}$, которая зависит от приложенной к телу нагрузки. Параметр, отвечающий за интенсивность нагрузки, можно выделить явно, если записать уравнения равновесия в следующем виде:

$$\begin{cases} \sigma_{ij,j} = 0, & x \in \Omega, \\ u_i = P \cdot \beta_i, & x \in S_u, \\ \sigma_{ij}n_j = P \cdot \alpha_i, & x \in S_f. \end{cases}$$
(17)

где α_i, β_i - заданные функции, а P - интенсивность нагрузки.

При выполнении условия (16) тензор напряжений в (15) представим в виде:

$$\sigma_{ij} = 2\mu_1 A_{ij} + \lambda_1 A_{ll} + \nu R \delta_{ij} \equiv \sigma_{ij}^{\scriptscriptstyle \Gamma YK}(u) + \nu R \delta_{ij}.$$

Поскольку A_{ij} линейно зависит от u_i , то можно записать $u_i = u_i^p + u_i^R$, тогда задача (17) расщепляется:

$$\begin{cases} \sigma_{ij,j}^{\text{гук}}(u^p) = 0, & x \in \Omega, \\ u_i^p = P \cdot \beta_i, & x \in S_u, \\ \sigma_{ij}^{\text{гук}}(u^p)n_j = P \cdot \alpha_i, & x \in S_p. \end{cases} \begin{cases} \sigma_{ij,j}^{\text{гук}}(u^R) + \nu R_{,i} = 0, & x \in \Omega, \\ u_i^R = 0, & x \in S_u, \\ \sigma_{ij}^{\text{гук}}(u^R)n_j = -\nu R\delta_{ij}n_j, & x \in S_p. \end{cases}$$

В силу линейности решение первой задачи запишется в виде:

$$u^p = P \cdot u^0, \sigma^p_{ij} = P \cdot \sigma^0_{ij},$$

где $\sigma_{ij}^0 = \sigma_{ij}^{\text{гук}}(u^0)$ - решение при P = 1. Решение второй задачи зависит от распределения R:

$$u^R = u^R(R), \quad \sigma^R_{ij} = \sigma^{\text{ryk}}_{ij}(u^R) + \nu R\delta_{ij}, \quad \sigma^R(\beta R) = \beta \sigma^R(R).$$

Таким образом, след тензора напряжений представим следующим образом:

$$\sigma = P \cdot \sigma_0 + \sigma^R(R).$$

Подставляя это выражение в правую часть уравнения для кривизны (13), получим следующую начально-краевую задачу с параметром:

$$\begin{cases} \frac{1}{2} \frac{\partial R}{\partial t} = -\xi \left(A + P\sigma_0 I\right) R + \xi N(R), \\ R = 0, \hat{L}R = 0 \quad x \in S_1, \\ \frac{\partial R}{\partial n} = 0, \frac{\partial \hat{L}R}{\partial n} = 0 \quad x \in S_2, \partial D = S_1 \cup S_2, \\ R(x, t_0) = \epsilon \cdot R_0(x), \end{cases}$$
(18)

где $A = q\mu_1 \hat{L}^2 + b\Delta^2$ - линейный самосопряженный дифференциальный оператор, а $N(R) = (hq\mu_1 \hat{L}R + b\Delta R - \sigma^R(R))R$ - нелинейный оператор 2-й степени однородности по $R: N(\beta R) = \beta^2 N(R)$.

Для системы (18) условие устойчивости по первому приближению состоит в положительной определенности линейного оператора в правой части:

$$C_P = A + P\sigma_0 I > 0.$$

Оператор C_P является, как и A, самосопряженным, а, значит, его положительная определенность эквивалентна положительности всех собственных значений $\lambda_m(P) > 0$:

$$C_P R_m = \lambda_m(P) R_m,$$

$$R_m = 0, \hat{L} R_m = 0 \quad x \in S_1,$$

$$\frac{\partial R_m}{\partial n} = 0, \frac{\partial \hat{L} R_m}{\partial n} = 0, \quad x \in S_2, \partial D = S_1 \cup S_2,$$
(19)

Можно показать, что собственные числа $\lambda_m(P)$ являются непрерывными функциями своего аргумента в окрестности выбранного значения P при условии

$$\int_D (\sigma_0(x) R_m(x, P) dV \neq 0.$$

Заметим, что если оператор $A = (L^2 + b\Delta^2)$ не является положительно определенным, то классическое решение будет неустойчивым даже при отсутствии напряжений. Это не имеет физического смысла, поэтому далее будем предполагать, что A > 0, то есть все $\lambda_m(0) > 0$. Таким образом, для определения границ области устойчивости необходимо найти такие P^* , для которых $\lambda_{min}(P^*) = 0$. Для этого надо вычислить минимальное положительное и максимальное отрицательное собственные значения P следующей задачи:

$$AR = -P\sigma_0 R,$$

$$R = 0, \hat{L}R = 0 \quad x \in S_1,$$

$$\frac{\partial R}{\partial n} = 0, \frac{\partial \hat{L}R}{\partial n} = 0 \quad x \in S_2.$$
(20)

Собственные функции, соответствующие этим значениям, представляют собой основную моду растущего возмущения и дают представление о картине распределения дефектов в первые моменты развития неустойчивости.

3.2 Численная реализация алгоритма

Для нахождения собственных значений реализован численный алгоритм, основанный на методе линеаризации [11]. Перепишем задачу (20) в виде системы:

$$\begin{cases}
(h^{2} + \frac{b}{q\mu_{1}})\Delta W - 2hW + R = -\frac{P}{q\mu_{1}}\sigma_{0}R, \quad x \in D\\
\Delta W - R = 0, \quad x \in D\\
R = 0, W = 0, \quad x \in S_{1}, \\
\frac{\partial R}{\partial n} = 0, \frac{\partial W}{\partial n} = 0, \quad x \in S_{2}.
\end{cases}$$
(21)

Проведем дискретизацию задачи. Для этого выберем в $W_2^1(D)$ счетную всюду плотную систему функций $\{\phi_k\}$, таких, что $\phi_k(x) = 0$, $x \in S_1$ и разложим по ней решение, ограничившись конечным числом слагаемых:

$$R = \sum_{k=0}^{N} R_k \phi_k(x), W = \sum_{k=0}^{N} W_k \phi_k(x).$$

Домножая уравнения на функции из этого набора и интегрируя по области с учетом граничных условий, получим

$$\begin{cases} \sum_{k=0}^{N} W_k \int_D \left((h^2 + \frac{b}{q\mu_1}) \nabla \phi_k \nabla \phi_m - 2h \phi_k \phi_m \right) + \\ + \left(1 + \frac{P}{q\mu_1} \right) \sum_{k=0}^{N} R_k \int_D \sigma_0 \phi_k \phi_m dV = 0, \\ \sum_{k=0}^{N} R_k \int_D \left(\nabla \phi_k \nabla \phi_m \right) dV = \sum_{k=0}^{N} W_k \int_D \phi_k \phi_m dV \end{cases}$$

В итоге получим конечномерную задачу на собственные значения. Для ее решения воспользуемся методом линеаризации [11]. Рассмотрим расширенный набор переменных **X**:

$$X_{2k} = R_k, X_{2k+1} = W_k, \ k = 0...N,$$
$$X_{2N+2} = (1 + P/(q\mu_1)) = \gamma.$$

. Тогда задача на собственные значения примет вид нелинейного уравнения:

$$A\mathbf{X} - X_{2N+2}B\mathbf{X} = 0.$$

Применив к нему метод Ньютона, получим:

$$(A - B\gamma_s)\,\delta x - Bx\delta\gamma = 0,$$

где $\delta x = x^{s+1} - x^s$, $\delta \gamma = \gamma^{s+1} - \gamma^s$, x_0, γ_0 заданы. В этой системе 2N + 2 линейных уравнений для определения 2N + 3 неизвестных. Собственные функции линейной задачи определены с точностью до множителя, поэтому в качестве дополнительного уравнения можно использовать следующее условие:

$$\sum_{p=0}^{2N+2} (B_{pq} x_q^s) \delta x_p^{s+1} = 0.$$

3.3 Тестовые задачи

3.3.1 Критическая нагрузка при одноосном растяжении/сжатии

Рассмотрим прямоугольную пластину с линейными размерами l_x, l_y , которая с одного конца жестко закреплена, а с другого к ней приложена равномерно распределенная сила (см. рис.1).

Рис. 1: Задача одноосного деформирования

Уравнения равновесия имеют вид:

$$\begin{cases} \sigma_{ij,j} = 0, x \in D = [0; l_x] \times [0; l_y], \\ u_i = 0, x = 0, \\ \sigma_{xx} = P, \ \sigma_{xy} = 0, x = l_x, \\ \sigma_{ij}n_j = 0, y = 0, \ y = l_y. \end{cases}$$

Решение этой задачи в напряжениях [9, с.484] известно:

$$\sigma_{xx} = P, \sigma_{yy} = 0, \ \sigma_{xy} = 0,$$

так что $\sigma = P = const.$ Для простоты положим в уравнении (21) параметр b = 0.

Линеаризованное уравнение несовместности при отсутствии дефектов на

границе $(S1 = \partial D)$ имеет вид:

$$\begin{cases} \frac{1}{2}\frac{\partial R}{\partial t} = -\xi \left(\hat{L}^2 R + \frac{P}{q\mu_1}R\right) = 0, \hat{L} = (h\Delta - I)\\ R = 0, \hat{L}R = 0, \quad x \in \partial D. \end{cases}$$

Задача на собственные значения

$$\begin{cases} \hat{L}^2 R_{km} + \lambda_{km} R_{km} = 0, \lambda = \frac{P}{q\mu_1}, \\ R_{km} = 0, \hat{L} R_{km} = 0, \quad x \in \partial D, \end{cases}$$

может быть решена аналитически:

$$R_{km}(x,y) = A \sin\left(\frac{\pi kx}{l_x}\right) \sin\left(\frac{\pi my}{l_y}\right).$$
$$\lambda_{km} = -\left(h\left[\left(\frac{\pi k}{l_x}\right)^2 + \left(\frac{\pi m}{l_y}\right)^2\right] + 1\right)^2$$

Все собственные значения отрицательны, а критическая нагрузка определяется максимальным из них:

$$P_{crit} = -q\mu \left(h \left[\left(\frac{\pi}{l_x} \right)^2 + \left(\frac{\pi}{l_y} \right)^2 \right] + 1 \right)^2.$$

Отсюда видно, что потеря устойчивости возможна только при сжатии.

Критическая нагрузка зависит от размеров пластины l_x, l_y и параметра h, однако в любом случае $|P_{crit}| > q\mu$, то есть возникновение несовместности происходит при напряжениях порядка модуля сдвига. Это на несколько порядков больше наблюдаемых в эксперименте значений предела пластичности. Такой неудовлетворительный количественный результат связан с грубостью выбранного источника неупругой деформации (11).

Для тестирования численного алгоритма описанная выше задача решена численно. В качестве начального приближения в итерационном процессе использовано значение $\lambda_0 = 0$ и функция $R_0 = R_{11} + 0.1R_{32}$. В таблице 1 приведены результаты сравнения численного и точного решения - погрешность определения минимального собственного значения и количество итераций

h	0.1	0.05	0.025	0.0125
$\delta\lambda/\lambda$	0.0162	0.00408	0.001022	0.000257
M	5	5	5	6

Таблица 1: Погрешность вычисления собственного значения

М, необходимых для достижения результатов на различных сетках. Видно, что при сгущении сетки погрешность убывает квадратично.

3.3.2 Критическая нагрузка при неоднородном деформировании.

Рассмотрим прямоугольную пластину с линейными размерами l_x , l_y , которая с одного конца закреплена, а на другом конце изогнута по известному закону (см. рис.2).

Рис. 2: Задача неоднородного деформирования

Уравнения равновесия для такой пластины имеют вид:

$$\begin{cases} \sigma_{ij,j} = 0, x \in D = [0; l_x] \times [0; l_y], \\ u_i = 0, x = 0, \\ u_x = Pg(y), ; \sigma_{xy} = 0, x = l_x, \\ \sigma_{ij}n_j = 0, y = 0, y = l_y. \end{cases}$$
где $g(y) = 2^n \left(\frac{y}{l_y} - 0.5\right)^n$.

Параметр *P* здесь имеет смысл максимального смещения на правой границе пластины.

Для этой задачи распределение σ будет уже неоднородным, а задача на собственные значения при b = 0 примет вид:

$$\begin{cases} \hat{L}^2 R + P \frac{\sigma_0(x,y)}{q\mu} R = 0, \\ R = 0, \hat{L}R = 0, \quad x \in S. \end{cases}$$

На рисунках 3 и 4 приведены поле перемещений $u_i(x)$ (стрелками), поле объемных напряжений σ (слева) и собственная функция R (справа) при различных значениях параметра n (постоянная, линейно и квадратично распределенная нагрузки).

На рис.3 верхний и нижний края пластины свободны ($\sigma_{ij}n_j = 0$). На рис.4 они закреплены по вертикали ($u_y = 0, \sigma_{xy} = 0$).

При симметричном деформировании (четные n) потеря устойчивости происходит только при $P = P_{crit} < 0$, что соответствует сжатию. При кососимметричном деформировании (нечетные n) существует пара критических значений разного знака $P = \pm P_{crit}$.

4 Заключение

В плоско-деформированном случае исследовано поведение решения уравнения переноса для скалярной кривизны. Показано, что если напряжения в среде невелики, то небольшие возмущения нулевого начального условия не приводят к росту скалярной кривизны, то есть решение, соответствующее классической теории упругости, является устойчивым. Однако если напряжения превышают некоторый критический уровень, устойчивость теряется и сколь угодно малые возмущения приводят к возникновению в материале несовместной деформации.

В системе уравнений выделен параметр, отвечающий за интенсивность внешней нагрузки. Для заданного распределения внешней нагрузки реализован численный алгоритм нахождения ее критической интенсивности.

Рис. 3: Собственные функции и поля напряжений при различной нагрузке (верхний и нижний края пластины свободны)

Рис. 4: Собственные функции и поля напряжений при различной нагрузке (верхний и нижний края пластины закреплены)

Список литературы

- [1] Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1987. 248с.
- [2] Kondo K. On the geometrical and physical foundations of the theory of yielding // Proc. Japan Nat. Congr. Appl. Mech. 1953. V. 2. P. 41-47.
- Bilby B. A., Bullough R., Smith E. Continuos distributions of dislocations: a new application of the methods of non-Reimannian geometry // Proc. Roy. Soc. London. 1955. V. 231. P. 263-273.
- [4] Годунов С.К., Роменский Е.И. Элементы механики сплошных сред и законы сохранения. Новосибирск: Науч. книга, 1998. 268 с.
- [5] Гузев М.А., Мясников В.П. Термомеханическая модель упругопластического материала с дефектами структуры// МТТ. 1998. Т. 4. С. 156–172.
- [6] Мясников В.П., Гузев М.А. Аффинно-метрическая структура упругопластической модели сплошной среды// Труды МИАН. М: Наука. 1998.
 Т. 223. С. 30–37.
- [7] Мясников В.П., Гузев М.А. Геометрическая модель дефектной структуры упруго-пластической сплошной среды//ПМТФ. 1999. Т. 40. с. 163– 173.
- [8] Гузев М.А., Макаров В.В. Деформирование и разрушение сильно сжатых горных пород вокруг выработок // Владивосток: Дальнаука. 2007. 232 с.
- 9 А.И. Лурье. Теория упругости. М.: Наука, 1970. 940 с.
- [10] П. К. Рашевский. Курс дифференциальной геометрии. М.: ГИТТЛ, 1956. 420 с.
- [11] Н.Н. Калиткин. Численные методы. М.:Наука, 1978. 512 с.