

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 1 за 2009 г.</u>

<u>Гинзбург С.Л., Дьяченко В.Ф.,</u> <u>Палейчик В.В.</u>

3D расчеты поглощения электромагнитной волны плазмой

Рекомендуемая форма библиографической ссылки: Гинзбург С.Л., Дьяченко В.Ф., Палейчик В.В. 3D расчеты поглощения электромагнитной волны плазмой // Препринты ИПМ им. М.В.Келдыша. 2009. № 1. 12 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2009-1</u>

ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ им. М.В. КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК

С.Л. Гинзбург, В.Ф. Дьяченко, В.В. Палейчик

3D РАСЧЕТЫ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ПЛАЗМОЙ

Москва

S.L. Ginzburg, V.F. Dyachenko, V.V. Paleychik

3D COMPUTATIONS OF ABSORPTION OF AN ELECTROMAGNETIC WAVE BY PLASMA.

Abstract

Tree-dimensional computer code is considered plasma-field interaction in the frame of the equations of Maxwell – Vlasov. The absorption by electrons of the incident wave energy is calculated for the different tips vacuum-plasma boundary.

С.Л. Гинзбург, В.Ф. Дьяченко, В.В. Палейчик

ЗD РАСЧЕТЫ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ПЛАЗМОЙ

<u>Аннотация</u>

Трехмерная компьютерная модель взаимодействия плотной плазмы с электромагнитным полем в рамках уравнений Максвелла – Власова применена для расчета коэффициента поглощения плазмой энергии падающего потока при различных конфигурациях границы вакуум-плазма.

Введение

Данная работа является продолжением работ [1] – [2], в которых влияние формы поверхности на процесс поглощения энергии волны плазмой численно исследуется в двумерной постановке.

Постановка задачи

Взаимодействие электромагнитной волны с бесстолкновительной плазмой описывается системой уравнений Максвелла – Власова:

$$\frac{\partial \mathbf{E}}{\partial t} - rot\mathbf{B} + \int \mathbf{v}^{+} f^{+} d\mathbf{p} - \int \mathbf{v}^{-} f^{-} d\mathbf{p} = 0,$$
$$\frac{\partial \mathbf{B}}{\partial t} + rot\mathbf{E} = \mathbf{0},$$
$$\frac{\partial f^{\pm}}{\partial t} + \mathbf{v}^{\pm} \frac{\partial f^{\pm}}{\partial \mathbf{x}} \pm (\mathbf{E} + [\mathbf{v}^{\pm} \times \mathbf{B}]) \frac{\partial f^{\pm}}{\partial \mathbf{p}} = 0,$$

где **E** - напряженность электрического поля, **B** - магнитная индукция, f^+ и f^- - функции распределения ионов и электронов, соответственно.

Здесь и далее в качестве единиц измерения [*] используются следующие: время $[t] = 1/\omega, \omega$ - круговая частота падающего излучения, расстояние $[\mathbf{x}] = c/\omega, c$ - скорость света, поле $[\mathbf{E}] = [\mathbf{B}] = mc\omega/e, m$ и e - масса покоя и заряд электрона, концентрация $[n = \int f d\mathbf{p}] = m\omega^2/4\pi e^2$, импульс $[\mathbf{p}] = mc$, энергия $[H = -\mu + (\mu^2 + \mathbf{p}^2)^{1/2}] = mc^2, \ \mu = m^{\pm}/m$, скорость $[\mathbf{v} = \partial H/\partial \mathbf{p}] = c$. Палающая электромагнитная волна (излучение) – круговая поляризованн

Падающая электромагнитная волна (излучение) – круговая поляризованная монохроматическая волна с постоянной амплитудой, распространяющаяся вдоль оси *z* :

$$E_x = B_y = aCos(z-t), E_y = -B_x = aSin(z-t).$$

Полагая, что мощное электрическое поле волны ионизует поверхностный слой практически мгновенно, считаем плазму в начальный момент полностью ионизованной. В то же время пренебрежем имеющимся в ней тепловым движением, и будем считать ее холодной и неподвижной, так что функция распределения частиц в этот момент имеет вид:

$$f^{\pm}(0, x, y, z, p_x, p_y, p_z) = n_0(x, y, z)\delta(p_x)\delta(p_y)\delta(p_z).$$

Облучаемая плазма расположена в пространстве с $z \ge 0$ и имеет бугорчатую поверхность. В расчетах участвовали бугорки двух видов: цилиндры и параболоиды с круговым основанием и собственной осью в направлении оси координат z. На рис.1 представлены проекции плазмы на координатные плоскости (x,y), (x,z) и (y,z) для обоих типов бугорков.

Рис.1 Проекции цилиндра (a, б) и параболоида (a, c) на координатные плоскости (x,y), (x,z) и (y,z) при t=0.

Плазма в начальный момент времени имеет периодическую структуру по осям x и y, которую она сохраняет и при t > 0.

Функция $n_0(x,y,z)$ описывает вид изображенного на рис.1 поверхностного слоя и имеет смысл концентрации частиц плазмы, одинаковой для ионов (протонов) и электронов при единичном заряде ионов, с выполненным условием квазинейтральности плазмы в начальный момент.

Параметрами задачи являются амплитуда волны a, начальная концентрация ионов и электронов n_0 , характеристики начальной конфигурации плазмы: z_0 – минимальное расстояние от плоскости z=0 до границы выступа, относительный диаметр d, определяющий диаметр круга $D = d \times X$ в основании выступа, h – высота выступа. Область расчета: 0 < x < X, 0 < y < Y, 0 < z < Z.

Граничные условия задачи формулируются следующим образом :

$$E_x + B_y = 2aCost$$
 и $E_y - B_x = -2aSint$ при $z = 0$,

что, очевидно, описывает заданную падающую волну с круговой поляризацией и допускает возможность отраженной от плазмы волны,

$$E_x - B_y = 0$$
 и $E_y + B_x = 0$ при $z = Z$,

означающих отсутствие падающей извне волны в глубине плазмы.

Конечно, еще подразумеваются периодические граничные условия по осям *x* и *y*.

Основные принципы расчетного алгоритма, т.е. разностная схема для уравнений Максвелла и метод макрочастиц для уравнения Власова изложены в работах [3,4].

2. Результаты расчета

В данном разделе все результаты приводятся в указанных выше единицах измерения.

Основным результатом каждого варианта расчета является, очевидно, набранная электронами к моменту времени *t* кинетическая энергия

$$W(t) = \int_{0}^{X} dx \int_{0}^{Y} dy \int_{0}^{Z} dz \int Hf d\mathbf{p}.$$

Варианты характеризуются средним по времени значением доли κ поглощаемой электронами энергии падающей волны U(t) ($\kappa(t) = W(t)/U(t)$, где $U(t) = (a^2 \times X \times Y \times t))$.

В описываемых вариантах начальная концентрация ионов и электронов плазмы постоянна, $n_0 = 10$. Масса иона $\mu^+ = 1837$. Амплитуда волны a = 0.01. Расстояние от плоскости z = 0 до нижней границы выступа $-z_0 = 2$, Z = 7.

В первой серии расчетов бугорок представляет собой круглый цилиндр, который расположен в ячейке размером $X \times Y \times Z$ и характеризуется относительным диаметром d и высотой выступа h.

В дальнейших расчетах в качестве основного варианта выбран вариант с параметрами: X = Y = 3, d = 0.6, h = 0.8.

Значения энергии W(t) и коэффициента поглощения κ в зависимости от значения одного из этих параметров на рис.2 – 5 получены в предположении, что другие параметры остаются неизменными.

На рис.2а и 2б показана зависимость от времени кинетической энергии электронов W(t) для трех вариантов, отличающихся значением d (2a) и для трех вариантов, различающихся значением h (2б), при прочих равных условиях.

Рис.2а Кинетическая энергия электронов W(t) для значений d = 0.3, 0.6, 0.9 (пунктиром отмечена энергия падающей волны U(t)).

Рис.26 Кинетическая энергия электронов W(t) для значений h = 0.4, 0.8, 1.2 (пунктиром отмечена энергия падающей волны U(t)).

На рис.3 – 4 приводятся зависимости коэффициента поглощения k от значения относительного диаметра d или высоты выступа h, при прочих равных условиях.

Как показывают графики, по обоим рассматриваемым параметрам существует некоторая область оптимальных значений d и h; максимальная интенсивность поглощения энергии $\kappa = 0.8$ достигается при d = 0.6 и h = 0.8.

При падении волны на плоскую поверхность $\kappa = 0$ – имеет место практически полное отражение, как и следовало ожидать [1].

Очевидно, значения d и h влияют на коэффициент поглощения k: чем меньше d и h, тем ближе поверхность плазмы к плоской, тем больше доля отраженной волны и меньше k; чем больше относительный диаметр d, тем также поверхность плазмы ближе к плоской и k снова становится меньше, но есть предел; с увеличением h величина k опять уменьшается.

На рис.5 дается зависимость величины κ от периода X = Y.

Рис.5 Зависимость коэффициента поглощения κ от периода X = Y (d = 0.6, h = 0.8).

Итак, видно, что максимум $\kappa = 0.8$ получается при значениях параметров $d = 0.6, h = 0.8, 1.2 < X = Y \le 4.$

Общее свойство выступов при указанных выше оптимальных значениях параметров – относительно удлиненные по высоте и сравнительно тонкие цилиндры. Зависимость от значений X = Y (линейного размера одного периода структуры) невелика в данных пределах. Такие выступы, однако, неестественны при случайном происхождении бугорков поверхности, для которых, кажется, более естественно примерное равенство $d \times X \sim 2h \sim X/2 \sim Y/2$. Оно и выполняется в действительности.

Энергия электронной компоненты W растет, главным образом, за счет вовлечения в процесс новых электронов. Это можно видеть при сравнении между собой фазовых портретов электронов на моменты времени t = 50 и t = 100, вдоль всех координатных осей.

На рис.6(а, б) показаны все фазовые портреты электронов на два момента времени t = 50 и t = 100 в основном варианте расчета (X = Y = 3, d = 0.6, h = 0.8).

Рис.6а Проекции фазовых портретов p_x , p_y , p_z электронов, t = 50.

Рис.66 Проекции фазовых портретов p_x , p_y , p_z электронов, t = 100. Обращают на себя внимание: 1) почти полное сходство всех трех (p_x, p_y, p_z) проекций фазовых портретов вдоль осей x и y на один и тот же момент времени, что естественно; 2) расширение во времени областей p_x , p_y , $p_z \neq 0$ вдоль оси z с заметным сужением конусообразных облаков с ростом z; 3) некоторое увеличение предела модулей импульсов по сравнению с двумерным расчетом (~ 0.3 вместо 0.1 для |p|); 4) для компоненты p_z отчетливо видна асимметрия в виде примерно двукратного превосходства положительных значений импульса над отрицательными; 5) некоторый рост максимальных значений всех импульсов при сравнении обоих моментов времени в пользу t = 100. Последнее означает, что рост энергии плазмы происходит не только за счет вовлечения новых электронов, но и возрастания удельных энергий.

На рис.7 показана кинетическая энергия ионной компоненты (вариант X = Y = 3, d = 0.6, h = 0.8). Она почти на два порядка меньше электронной и появляется позже.

На рис.8 изображены проекции фазовых портретов ионов в момент *t* = 100 для этого же варианта.

Рис.8 Проекции фазовых портретов p_x , p_y , p_z ионов, t = 100. Импульс ионов монотонно растет и к моменту $t = 100 \text{ max}|\mathbf{p}|$ достигает 3.

Все предыдущее относилось к случаю a = 0.01. Зависимость коэффициента поглощения κ от амплитуды волны электромагнитного поля представлена в таблице 1 (X = Y = 3, d = 0.6, h = 0.8).

Таблица 1	к(а).
a	К
0.0001	.45
0.0005	.70
0.001	.80
0.01	.80
0.02	.80

Заметим, что при малых амплитудах предположение о полной ионизованности плазмы может оказаться сомнительным.

На рис.9(а, б) приведены фазовые портреты электронов на два момента времени t = 100 и t = 150 в варианте с параметрами:

 $a = 0.02, z_0 = 2, X = Y = 3, Z = 15, d = 0.6, h = 0.8.$

Этот вариант расчета отличается от основного значениями амплитуды *а* электромагнитного поля и граничным значением *Z*, увеличенным почти вдвое.

Рис.9а Проекции фазовых портретов p_x , p_y , p_z электронов, t = 100.

Рис.96 Проекции фазовых портретов p_x , p_y , p_z электронов, t = 150. В этом варианте, также как и в основном, коэффициент поглощения k = 0.8.

Следует сравнить между собой фазовые портреты на рис.66 и рис.9а. Помимо увеличения глубины проникновения электромагнитного поля почти вдвое, обращает на себя внимание увеличение не только средних импульсов электронов (граница плотного облака электронов), что естественно для увеличенной в два раза амплитуды электромагнитной волны, а и заметное возрастание импульсов так называемых «горячих» электронов, в особенности компоненты p_z (полный импульс электронов |**p**| становится уже около 0.45!). Это находит подтверждение на рис.96, где еще заметнее последний эффект.

Во второй серии расчетов бугорки имеют форму параболоида с круговым основанием, максимальная высота которого – h. В таблице 3 приведены значения коэффициента поглощения κ для бугорков цилиндрической формы k_c и в форме параболоида κ_p (при прочих равных условиях основного варианта расчета т.е. a = 0.01, $z_0 = 2$, X = Y = 3, Z = 7, d = 0.6, h = 0.8).

Таблица 3

n	κ_c	κ_p
.8	.8	.15
1	.7	.2
2	.25	.4

Литература

- 1. В.Ф.Дьяченко, В.С. Имшенник. Об аномальном взаимодействии мощных световых потоков с плотной плазмой. // Физика плазмы. 1979, Т. 5, Вып. 4.
- 2. С.Л. Гинзбург, В.Ф.Дьяченко, В.С. Имшенник, В.В. Палейчик. Об аномальном поглощении световых потоков плотной плазмой. // ВАНТ, серия: Теоретическая и прикладная физика, 2007, Вып. 2-3.
- 3. В.Ф.Дьяченко. О расчетах задач бесстолкновительной плазмы. // ЖВМ и МФ. 1985, № 4.
- 4. В.Ф.Дьяченко. Десять лекций по физической математике. // Издательство «Факториал», г. Москва, 1997.

Введение	
§1 Постановка задачи	
§2 Результаты расчета	4
Литература	