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1 Introduction

The purpose of this paper is to show that the supercompiler HOSC [6, 7]
terminates for any input program.

The paper [6] describes the internal structure of HOSC 1.0, an experimen-
tal supercompiler for a higher-order call-by-name language1.

1The source code of HOSC is publicly available at http://hosc.googlecode.com.

http://hosc.googlecode.com
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An attempt to proof that HOSC 1.0 terminates for any input program
failed, and resulted in constructing a counter-example (see Section 6). How-
ever, the source of non-termination having being identified, the supercompiler
was modified to produce the version HOSC 1.1, which, unlike HOSC 1.0 (see
Appendix B), is guaranteed to terminate. In the following, unless otherwise
stated, “HOSC” will mean “HOSC 1.1”.

We use the framework for proving termination of abstract program trans-
formers developed by Sørensen [14], since HOSC can be considered as an
abstract program transformer of partial process trees.

Informally speaking, given a source program, HOSC constructs its partial
process tree in the following way [6]. First, it creates a single-node tree, whose
root is labeled with the program’s target expression. Then HOSC proceeds
by adding children to the leaves of the tree, until all nodes in the tree become
processed.

Let β be an unprocessed node.

1. If β is trivial, β.expr is “metaevaluated”, by performing a driving step.

2. If β has an ancestor α, such that α.expr ' β.expr, then α becomes a
function node for β, i.e. a special “return” edge β ⇒ α is added to the
tree, thereby making the node β a processed one.

3. If β has an ancestor α, such that α.expr l β.expr, then β.expr is gen-
eralized.

4. If β has an ancestor α, such that α.expr Ecβ.expr, then α.expr is
generalized.

5. Otherwise β.expr is “metaevaluated” by performing a driving step.

Performing a driving step is followed by adding to β child nodes labeled
by the expressions produced by metaevaluating β.expr.

Theorem 1 (HOSC termination). The supercompiler HOSC 1.1 terminates
for any source program.

Following is the outline of the proof.

• Step 1 cannot be repeated indefinitely, since the expressions in the child
nodes produced by driving a trivial node are strictly smaller in size than
the expression in the parent node.

• Step 2 cannot lead to non-termination, since it only adds a “return”
edge to the process tree, and, for a finite tree, this cannot be repeated
indefinitely.
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• Therefore, any sequence of steps 1 and 2 is finite. Suppose that HOSC
performs either step 3 or 4, generalizing an expression labeling a node.
We will show that an expression cannot be generalized infinitely many
times, since each generalization reduces the “size” of the expression.

• Finally, we have to show that step 5 cannot be repeated indefinitely.
This follows from the fact that E|ρ (based on Ec) is a well-quasi-order
relation, for which reason any infinite sequence of steps 5 includes a
step 4.

The rest of the paper is organized as follows.
Section 2 presents the part of Sørensen’s framework that is essential for

our proof of termination.
Section 3 explains why additional requirements were imposed in the defi-

nition of the homeomorphic embedding relation E|ρ (used as a whistle), and
why they are essential if the language is a higher-order one.

Section 4 shows that E|ρ is a well-quasi-order on any set of expressions
labeling nodes of a process tree. (Although, it is not true for an arbitrary set
of expressions.)

Finally, section 5 shows that HOSC terminates for any source program,
since it meets Sørensen’s conditions sufficient for an abstract program trans-
former to terminate.

2 Abstract program transformers

In general, we use the same notation as in [6]. However, we need to distinguish
HLL expressions (which may appear in source HLL programs as well as in
process trees) from let-expressions (which may only appear in process trees).

• E denotes the set of all HLL expressions,

• L denotes the set E extended with the set of all let-expressions.

Note that an HLL expression e ∈ E is considered to be equivalent to let in e).

Definition 2 (Quasi-order). Let S be a set with a relation ≤. Then (S,≤)
is a quasi-order if ≤ is reflexive and transitive. We write s < s′ if s ≤ s′ and
s′ 6≤ s.

Definition 3 (Well-founded quasi-order). Let (S,≤) be a quasi-order. Then
(S,≤) is a well-founded quasi-order if there is no infinite sequence s0, s1, . . . ∈
S with s0 > s1 > . . ..

Definition 4 (Well-quasi-order). Let (S,≤) be a quasi-order. Then (S,≤) is
a well-quasi-order if, for every infinite sequence s0, s1, . . . ∈ S, there are i < j
with si ≤ sj.
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Definition 5 (Trees over sets of expressions). Let L be a set of expressions.
A (partial) process tree t (see [6]) is a tree over L if ∀γ ∈ t : γ.expr ∈ L.

The set of all trees over L will be denoted as T (L)

Definition 6 (Abstract program transformers). An abstract program trans-
former on L is a map M : T (L)→ T (L).

The supercompiler HOSC is a program transformer on L, where L is the
set of all HLL expressions extended with let-expressions.

Definition 7 (Termination of program transformers). (1) An abstract pro-
gram transformer M on L terminates on t ∈ T (L) if M i(t) = M i+1(t) for
some i. (2) An abstract program transformer M on L terminates if M ter-
minates on all singletons t ∈ T (L).

In the following, for the sake of brevity, the initial tree will be denoted by
t0, and the tree produced after the i-th transformation step by ti.

Proposition 8 (Cauchy transformers). Let (L,≤) be a well-founded quasi-
order. An abstract program transformer M on L is a Cauchy transformer
if

ti+1 = ti{γ := t′}

for a node γ, and one of the following conditions is satisfied:

• γ ∈ leaves(ti) and γ.expr = t′.root.expr

• γ.expr > t′.root.expr

Proposition 9 (Finitary continuous predicates). Let {L1,L2} be a partition
of L, (L1,≤1) a well-quasi-order, and (L2,≤2) a well-founded quasi-order.
Let p : T (L)→ B be defined as

p(t) =


0 if ∃α, β : α is an ancestor of β,

α.expr, β.expr ∈ L1 and α.expr ≤1 β.expr
0 if ∃α, β : α→ β, α.expr, β.expr ∈ L2 and α.expr 6 >2β.expr
1 otherwise

Then p is a finitary continuous predicate.

Definition 10 (Interior of a tree). A set of nodes is the interior of a tree t
if it consists of the root and all non-leaf nodes of t.

The interior of a tree t will be denoted as t0.

Proposition 11. Let p : T (L)→ B be a finitary continuous predicate. Then
q, defined as q(t) = p(t0) is also a finitary continuous predicate.
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e ::= v | c(e1, . . . , en) | f(e1, . . . , en)

Figure 1: First order language: the syntax of expressions

Theorem 12 (Sørensen). Let abstract program transformer M : T (L) →
T (L) maintain predicate p : T (L)→ B. If

1. M is Cauchy, and

2. p is finitary and continuous,

then M terminates.

3 Homeomorphic embedding E|ρ
The most sophisticated part of a supercompiler is the algorithm of general-
ization, whose purpose is to ensure termination of supercompilation for any
input program by preventing the construction of an infinite process tree. The
most difficult problem is to decide which expression is worth to be general-
ized. For historical reasons, this part of the generalization algorithm is called
a whistle [15, 16].

An approach to ensuring termination that has gained popularity in su-
percompilation and similar program transformation techniques is the use of
the homeomorphic embedding relation [8, 9]. A whistle based on the home-
omorphic embedding relation compares the expression labeling the current
node with expressions in ancestor nodes. If the whistle finds out that the two
expressions are syntactically similar, the supercompiler generalizes one of the
expressions to avoid constructing an infinite path in the partial process tree.
Hence, the essential property of the whistle is that it eventually blows for a
sequence of expressions produced by driving. In technical terms, it means that
the whistle is based on a well-quasi-order.

3.1 The basis: a first-order language

Let us consider a first-order expression language [13, 14], whose syntax is
shown in Fig. 1, and the arity of functors (function names and constructors) is
fixed and finite. The well-known definition of the homeomorphic embedding
relation for this language is given in Fig. 2. The subtle point is that all
variables are assumed to be free and are not distinguished from each other.

Let E0 be the set of expressions defined by the grammar in Fig. 1.
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Variables Diving Coupling

v1 E v2

∃i : e E e′i
e E φ(e′1, . . . , e

′
k)

∀i : ei E e′i
φ(e1, . . . , ek) E φ(e′1, . . . , e

′
k)

Figure 2: First-order language: embedding

Theorem 13 (Kruskal). (E0,E) is a well-quasi-order provided that the set
of functors (function names and constructors) is finite.

Proof. Replacing all variables with a fixed constant (a nullary constructor)
that is different from all other functors, we get expressions without variables
and can reuse the proof given in [3].

The relation defined in Fig. 2 possesses the following property, essential for
supercompilation: if an expression is embedded into another one by coupling,
there can be found a non-trivial generalization of the expressions.

3.2 Bound variables

Unlike the first-order supercompiler considered by Sørensen, the supercom-
piler HOSC deals with HLL, a higher-order language, whose expressions may
contain bound variables appearing in λ-abstractions and case-expressions.
Conceptually, bound variables introduced by case-expressions are not differ-
ent from bound variables introduced by λ-abstractions. For this reason, in
the following, the problems related to bound variables will only be explained
using λ-abstractions.

During the check for homeomorphic embedding, a λ-abstraction may be
treated as a “special” constructor. However, this simplistic approach would
cause problems during supercompilation, since embedding by coupling might
not imply the existence of a non-trivial generalization. For example, if bound
and free variables were not distinguished, the following expressions would be
“näıvely” considered as embedded by coupling, despite there being no non-
trivial generalization:

λx y → Pair x y

λx y → Pair y x

However, if bound variables are distinguished from each other, the above ex-
pressions are not considered to be embedded. Indeed, despite the syntactic
similarity of the expressions, the nameless functions they denote are entirely
different semantically. For this reason, the definition of the extended home-
omorphic embedding in [6] involves a table ρ , which is used to record the
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correspondence between bound variables. Let E1 denote the embedding re-
lation “enhanced” by taking into account the correspondence between bound
variables.

Unfortunately, E1 is not subtle enough, because for two expressions related
by coupling there still may not exist a non-trivial generalization. For example,
for the expressions

λx → x

λx → (S x)

For this reason, Section 4.3 in [6] introduces an additional requirement:
an expression whose free variables have been already registered in the table ρ
is not allowed to dive into another expression. Let E2 denote the embedding
relation E1 refined with the requirement of Section 4.3.

3.3 Higher-orderness and the arity of application

Kruskal’s theorem is applicable to the first-order language defined in Fig 1)
due to the fact that the arity of functors (function names and constructors) is
fixed, the set of functors appearing in an input program is finite, and driving
never produces functors not appearing in the input program.

However, in the case of a higher-order language, a function can be cur-
ried, so that, potentially, driving is able to produce function calls of arbitrary
“arity”: f, f x, f x y, . . . . In addition, variable can take functional val-
ues. Thus it seems natural to treat function names as variables, rather than
functors, in which case function applications may be represented by special
constructors. But this can still be done in two different ways.

1. We may introduce a single binary constructor App, its first argument
being the head of the application (which can also be an application),
and its second argument being the argument of the application. Let us
denote this encoding of application as A2.

2. We may not allow the head of an application to be an application again
by introducing a set of different constructors App2, App3 . . . having dif-
ferent arities. Let us denote this encoding as A∗.

Thus the expression f x y can be represented in one of the following ways:

1. f x y = App(App(f, x), y)

2. f x y = App3(f, x, y)

In both cases, if e1 and e2 are related via E2 by coupling, there exists a non-
trivial generalization. It is also clear that the encoding A2 causes the whistle
to blow more often than the encoding A∗.
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iterate (λn → S n)

(λv u → Cons u (iterate v (v u))) (λn → S n)

(λu → Cons u (iterate (λn → S n) ((λn → S n) u)))

Cons Z (iterate (λn → S n) ((λn → S n) u)))

u iterate (λn → S n) ((λn → S n) u))

Figure 3: Driving the expression iterate (λn →Sn)

In principle, both encodings might be used in a supercompiler. However,
the encoding A2 is not suitable for the supercompiler HOSC, because HOSC,
upon encountering a λ-abstraction, tries to transform the body of the λ-
abstraction.

For example, let us consider the target expression iterate (λn →S n).
A few driving steps produce the tree shown in Fig. 3.

Using the encoding A2 results in the root expression being embedded by
coupling into the right lower one:

App(iterate, λn→ S n) ≤c App(App(iterate, λn→ S n), App(λn→ S n, u))

So the root expression gets generalized to

let f = iterate in f (λn→ S n)

and the function iterate does not get specialized with respect to its first
argument.

However, the use of the encoding A∗ does cause the function iterate to
be specialized, and, in general, provides more opportunities for specialization.
For this reason, the definition of the homeomorphic embedding relation given
in [6] is (implicitly) based on the encoding A∗. Let the relation defined in [6]
be denoted as E3.

4 Well-quasi-order E|ρ
The purpose of this section is to show that E|ρ (which is the same as E3) is a
well-quasi-order relation on any sequence of expressions produced by driving
in the process of supercompilation. Recall that E3 is E refined with additional
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requirements. In the following subsections we will show that, despite addi-
tional requirements, E is still a well-quasi-order on a sequence of expressions
produced by metacomputation.

Definition 14 (Expressions reachable by metacomputation). Given an input
program prog, an expression e is said to be reachable by metacomputation if
it appears in the process tree produced by driving prog. The set of expressions
reachable by metacomputation of prog will be denoted by M(prog).

In the following sections we show thatE1 is a well-quasi-order onM(prog).
This is done by changing the representation of bound variables so that Kruskal’s
theorem will be applicable.

First of all, we have to get rid of bound variables introduced by case-
expressions and λ-abstractions.

4.1 Replacing case-expressions with constructors

Let us get rid of bound variables in case-expressions. It can be done by rep-
resenting a case-expression as a composition of a special case-constructor and
a λ-abstraction in each of its branches. The name of the case-constructor is
determined by the type of the case-expression’s argument. The first argument
of the case-constructor holds the case-expression’s argument, the next argu-
ments hold the case-expression’s branches (represented by λ-abstractions).
The branches are sorted according to the order in which constructors are
enumerated in the declaration of the data type.

For example, the expression

case x of {Z → Z; S y → S y;}

is represented as

CaseNat(x, Z, λy → S y)

Now let prog be an input program. Since prog is finite, the number of
data type declarations in prog is finite. Therefore, the number of possible case-
constructors is also finite. Driving is unable to produce new case-constructors,
since case-expressions inM(prog) are either eliminated by reduction or intro-
duced by unfolding of function definitions. Thus the set of case-constructors
appearing in M(prog) is finite.

4.2 Replacing variable names with de Bruijn indices

Unfortunately, driving is able to produce a (potentially) infinite number of
bound variables in λ-abstractions. Fortunately, we can eliminite the names
of bound variables by replacing them with de Bruijn indices [2], which are
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natural numbers, such that an index k denotes the number of binders that
are in scope between that occurrence and its corresponding binder.

When performing the check for homeomorphic embedding, de Bruijn in-
dices can be treated as just special nullary constructors. It will be shown
that, unlike variable names, the set of de Bruijn indices in M(prog) is finite.

Upon replacing variable names with de Bruijn indices, the above expression
takes the form:

CaseNat(x, Z, λS 1)

The result of encoding an expression e using case-constructors and de
Bruijn indices will be denoted by E1[[e]], the result of encoding a program
prog by E1[[prog]].

Lemma 15 (E1, E, E1). e1 E1 e2 ⇔ E1[[e1]] E E1[[e2]]

Proof. By structural induction over pairs of original expressions and encoded
expressions.

Let ME1(prog) denote {E1[[e]] | e ∈M(prog)}.

Lemma 16. De Bruijn indices appearing in ME1(prog) are bounded.

Proof. De Bruijn indices appearing in E1[[prog]] (and, hence, in the encoded
target expression) are bounded, just because E1[[prog]] is finite. An index in
ME1(prog) cannot exceed the least upper bound for the indices in E1[[prog]],
because, if an expression e′ is produced by a driving step from an expression
e, indices in E1[[e′]] cannot be greater than indexes in E1[[e]] and E1[[prog]].
Indeed, consider the driving rules (listed in Appendix C).

• D1, D2, D8. A driving step does not change de Bruijn indices.

• D3. The de Bruijn index corresponding to the reduced λ-abstraction
disappears (becomes a free variable), all other indices do not change.

• D4. The indices inside the context do not change. The indices in the
unfolded function definition are bounded, since the input program is
finite.

• D5. Since driving in HOSC performs normal order β-reduction, the de
Bruijn index corresponding to v0 disappears after the reduction step.
All other indices remain unchanged.

• D6, D7. This case is analogous to D5.

Lemma 17. (M(prog),E1) is a well-quasi-order.
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Proof. A number of constructors in ME1(prog) is finite due to Lemma 16.
Thus (ME1(prog),E) is a well-quasi-order. So, due to Lemma 15, (M(prog),E1

) is also a well-quasi-order.

Note that de Bruijn indices remain bound, when applying rules D5, D6

and D7, due to HOSC performing β-reduction in normal order ! Reducing an
expression in non-normal-order may cause de Bruijn indices to grow:

(λx → (λy z → y) (λv → x)) w ⇒ (λx z v → x) w

Or, in terms of de Bruijn indices:

( λ→ ( λλ→ 2) ( λ→ 2)) w ⇒ ( λλλ→ 3) w

4.3 Extended de Bruijn indices

Let us refine the encoding E1 in order to take into account the additional
restriction imposed by E2: an expression whose free variables have been al-
ready registered in the table ρ is not allowed to dive into another expression
(Section 4.3 in [6]).

This requirement can be accounted for by adding to each de Bruijn in-
dex a subindex k, such that k equals the number of binders and enclosing
constructors that are in scope between that occurrence and its corresponding
binder.

While a de Bruijn index only depends on the structure of enclosing λ-
abstractions, its subindex takes into account the structure of enclosing λ-
abstractions and constructors.

Let E2 denote the encoding E1 refined with subindices. Here are 2 exam-
ples:

e E2[[e]]

λx → x λ→ 11

λx → S x λ→ S 12
The equality of the two extended indices is defined as the equality of

the corresponding indices and subindices. When checking two expressions
for homeomorphic embedding, we treat different extended indices as different
constructors.

Lemma 18 (E2, E, E2). e1 E2 e2 ⇔ E2[[e1]] E E2[[e2]]

Proof. By structural induction over pairs of original expressions and encoded
expressions (as in the proof of Lemma 15).

Let ME2(prog) denote {E2[[e]] | e ∈M(prog)}.

Lemma 19. De Bruijn subindices appearing in ME2(prog) are bounded.
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Proof. Virtually the same as for Lemma 16.

Lemma 20. (M(prog),E2) is a well-quasi-order.

Proof. The number of constructors in ME2(prog) is finite due to Lemma 16.
Thus (ME2(prog),E) is a well-quasi-order. So, due to Lemma 18, (M(prog),E2

) is also a well-quasi-order.

4.4 The problem of arity

In the encoding E2, applications are represented by binary constructors (en-
coding A2 in Section 3.3). Let us introduce a new encoding E3, in which,
unlike E2, applications are represented by a set of constructors with different
arities (encoding A∗ in Section 3.3).

The Hindley-Milner typing discipline infers principal types for expressions
in a program. A principal type may contain type variables, which, in turn,
may be instantiated with different concrete types in different typing contexts.
Let us consider a simple function id:

id :: a → a;

id = λx → x;

The type of id is id :: ∀a.a → a. Since the type variable a is universally
quantified and is instantiated depending on the context, we cannot reason
about the arity of the symbol id in a simple way. Indeed, the symbol id may
be of an arbitrary arity in a certain context. For instance, id may be applied
to an arbitrary number of arguments, each one also being id!

id

id id

id id id

...

id id id id ...

This is possible owing to the function id being a polymorphic one.
Thus, if the type of an expression e0 (or, in particular, a variable) is poly-

morphic, then there can be constructed a well-typed expression e = e0 e1 . . . en
of any arity n.

However, if a type t0 of an expression e0 does not contain type variables
(i.e. is monomorphic), then it can be easily shown that in any well-typed
expression e = e0 e1 . . . en the arity n is bounded.

If we consider idA, a concretization of id for a concrete type A, then the
arity of idA in any context cannot exceed 1, since an expression idA e has the
non-functional type idA e :: A.

The following examples shed some light on why the Hindley-Milner typing
discipline prevents the generation of expressions of unbounded arity:
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t ::= τ (type variable)
| t→ t (arrow)
| TyCon ti (type constructor)

Figure 4: Syntax of HLL types

f = λx → f f x;

h = λx → h x h;

f1 = λx y → f1 (x y) y;

f2 = λx y → f2 x (y x);

Although the above function definitions might produce expressions with un-
bounded arity, they are just not well-typed.

Definition 21 (The arity of an application). The arity a[[e]] of an application
e is defined inductively as follows:

a[[v]] = 0
a[[f ]] = 0
a[[λv0 → e0]] = 0
a[[c ei]] = 0
a[[case e0 of {ci vik → ei;}]] = 0
a[[e0 e1 . . . en]] = n

Lemma 22 (E3, E, E3). e1 E3 e2 ⇔ E3[[e1]] E E2[[e3]]

Proof. By structural induction over pairs of original and encoded expressions
(analogously to Lemmas 15 and 18).

The language HLL is typed according to Hindley-Milner type discipline
[1]. The syntax of types is shown in Fig. 4.

Definition 23 (Monomorphic type). A type is monomorphic if it does not
contain type variables.

Definition 24 (The arity of a type). The arity A(t) of a type t is defined
inductively as follows:

A[[α]] = 0
A[[t1 → t2]] = 1 +A(t2)
A[[TyCon ti]] = 0

Let ME3(prog) denote {E3[[e]] | e ∈M(prog)}.
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We need to show that Kruskal’s theorem is valid for the set ME3(prog).
If we succeed in proving that the arity of expression types in ME3(prog) is
bounded, this will imply that the arity of expressions in ME3(prog) is also
bounded. Hence, it will be possible to encode all applications in ME3(prog)
by a finite number of constructors. Hence, Kruskal’s theorem will be shown
to be applicable.

Unfortunately, the arity of polymorphic types is difficult to predict, as type
variables in a polymorphic type can be instantiated with functional types,
thereby increasing the arity of the type. On the other hand, the arity of
monomorphic type is well-defined, since they do not contain type variables.

We will show that, for a monomorphically typed program, the arity of
expressions produced by driving is bound, because the arity of their types is
bound.

The subtle point, however, is that although the supercompilation algo-
rithm implemented in HOSC takes into account the fact that the input pro-
gram is typable, it does not explicitly deal with concrete types.

Thus, we can use the following trick. Given a polymorphically typed input
program prog, we can replace it with a monomorphically typed progm, such
that HOSC produces the same process tree for prog and progm. Hence, if
the arities of applications inME3(progm) are bound, then the same is true of
ME3(prog), just because ME3(progm) =ME3(prog).

In the following section we describe the monomorphization procedure for
a source program prog.

4.4.1 Monomorphization

In order to infer types according to Hindley-Milner type system, a graph
of function calls is constructed [12], to produce a directed graph consisting
from strongly connected components sorted in a reversed topological order.
Functions within a certain component are monomorphic in a sense that all
occurrences of a function name defined in this component have the same type
(possibly with type variables). Functions defined in a component SCCj do
not depend on functions defined in components SCCi for i < j. We also
assume that there is a special component SCC0 corresponding to the target
expression.

Monomorphization transforms a program prog into a new program progm
operationally equivalent to the original one. At the beginning the program
progm is the same as the original program prog. We assume that a type is
explicitly assigned to every subexpression and function name in progm.

Let A be an arbitrary, but fixed, base type, say defined as

data A = A;
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Every step of monomorphization reduces the dependency graph of strongly
connected components in the following way.

1. If some types assigned to the target expression and its subexpressions
contain type variables, we replace these type variables with A, thereby
making the target expression monomorphic. Thus, the component SCC0

becomes monomorphic.

2. Choose a component SCCi with a minimal i > 0. If there is no such
component then, monomorphization is completed.

3. If the component SCC0 does not depend on SCCi, delete SCCi from
the dependency graph and go to Step 2.

(a) Embed an instance of the component SCCi into the component
SCC0 in the following way. Take one occurrence of a function
name f defined in SCCi. This occurrence has a monomorhic type
since SCC0 is already monomorphic. Replace this occurrence with
fi, where fi is a new function name. Copy the function definitions
f . . . g from SCCi to SCC0 renaming the functions to fi . . . gi.
If the component SCCi has function names with types containing
type variables that do not depend on the context, then instantiate
these type variables with the base type A. At this step the compo-
nent SCC0 remains monomorphic: the occurrence f within SCC0

was monomorphic, so (in the context of this occurrence) we un-
ambiguously assigned monomorphic types to all (sub)expressions
within the copied definitions.

If the component SCC0 still refers to SCC0, repeat 3(a). Otherwise, go
to Step 2.

Lemma 25. Monomorphization of a program terminates in a finite number
of steps.

Proof. The number of vertices (strongly connected components) and the num-
ber of edges (call dependencies) in the original graph are finite. Step 1 is
executed once and doesn’t change these numbers. Step 2 doesn’t change the
number of vertices and the number of edges. Performing Step 3 deletes a
vertex so the number of edges is reduced. For a certain SCCi, Step 3(a) is
performed while there are occurrences of function names defined in SCCi and
used in SCC0. But the number of such occurrences if finite, and performing
Step 3(a) eliminates one of them.

In other words, monomorphization of a program terminates, because the
graph of inter-component dependencies is acyclic, and each occurrence of a
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function name defined in a component has the same type within this compo-
nent.

Lemma 26. The process tree produced by driving a monomorphized version
of a program is the same as the tree produced by driving the original program
(modulo the indices in function names).

Proof. The monomorphized versions of function definitions f1, . . . , fi are the
same as the original definition f (modulo indices in function names). On the
other hand, the driving algorithm implemented in HOSC does not depend
on concrete function names. Thus, by erasing indices in a process tree pro-
duced by driving a monomorphized program progm, we obtain the tree that
is produced by driving the original program prog.

4.4.2 Boundedness of arity

Lemma 27. The arities of applications in expressions produced by driving a
program prog is bounded by the maximal arity of types assigned to subexpres-
sions in the monomorphized program progm.

Proof. Consider the process tree produced by driving progm. All expressions
labeling the nodes are monomorphic. So it is sufficient to show that the arities
of types assigned to all subexpressions produced by driving are bounded. This
is true of the expression in the root node, which is the target expression of
progm. Let us show that the boundedness of the arities of applications is
preserved by a driving step.

• D1, D2, D3, D8. Replacing an expression with one of its subexpressions
cannot increase the maximum arity of types related to this expression.

• D4. The maximal arity after this step is not greater than that at the
previous step and is not greater than the maximal arity of type of subex-
pressions in the definition of f0.

• D5, D6, D7. The maximal arity of type cannot increase since type(v0) =
type(e0), type(vik) = type(e′k), type(v e′j) = type(pi), correspondingly.

Thus, the arity of applications produced by driving progm is bounded. So, by
Lemma 26, the arity of applications produced by driving prog is bounded as
well.

Corollary 28. The set of constructors App2, . . . , Appn appearing inME3(prog)
is finite.

Theorem 29. (M(prog),E3) is a well-quasi order.
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e E3[[e]]

map f App2(map, f)

map (compose f g) App2(map, App3(compose, f, g))

λx → Cons x Nil λ→ Cons(12, Nil)

case x of

{Z → x; S b → f (g b);}
CaseNat(x, x, λ→ App2(f, App2(g, 13)))

Figure 5: Examples of encoding

Proof. Consider ME3(prog). The set of constructors in ME3(prog) is finite
due to Lemmas 16, 19 and 27. Thus, (ME3(prog),E) is a well-quasi order.
So it follows from Lemma 22 that (M(prog),E3) is a well-quasi order.

Corollary 30. Since E3 coincides with E|ρ, we have shown that E|ρ is a
well-quasi order on M(prog).

Corollary 31. The relation Ec|ρ is a well-quasi order on M(prog).

Proof. Follows from the theorem 29 and Higman’s lemma [3].

4.5 Encoding E3
There are examples of embedding and non-embedding via E|ρ in section 4.5
in [6]. Encodings E3 of some expressions from mentioned examples are shown
in Fig 5.

An encoding similar to E1 was used in [10] to solve name-capture problem
for deforestation.

Encoding expressions via E3 eliminates the need for mapping ρ for the
extended embedding E|ρ.

5 Termination of the supercompiler HOSC 1.1

The theorems and proofs of this section are modified versions of theorems and
proofs in [14].

The idea is to show that the conditions of the theorem 12 are satisfied.
We will not consider operation fold explicitly, since in [6] this operation

was only used to make the algorithm of residual program construction less
cumbersome. From now we assume that a leaf is a processed one if conditions
for performing a fold step hold.
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Lemma 32. The supercompiler HOSC is a Cauchy transformer.

Proof. Define the relation � on L as follows:

let x′1 = e′1, . . . , x
′
m = e′m in e′ � let x1 = e1, . . . , xn = en in e⇔ m = 0 & n ≥ 0

It is a routine to show that � a well-founded quasi-order. Let us show that
at every step i of partial process tree construction

ti+1 = ti{γ := t′}

for some leaf γ, and one of the following conditions is satisfied:

• γ ∈ leaves(ti) and γ.expr = t′.root.expr (driving),

• γ.expr � t′.root.expr (generalization).

It suffices to consider each of the operations that can be performed by HOSC:

1. ti+1 = drive(ti, β) = ti{β := t′}, where β ∈ leaves(ti) and t′ =
β.expr → e1, . . . , en. Then:

β.expr = t′.root.expr

2. ti+1 = abstract(ti, β, α) = ti{β := let x1 = e1, . . . , xn = en in e →},
where α = ancestor(t, β, l), α.expr 6' β.expr, β is a non-trivial
node, α.expr, β.expr ∈ E , α.exprl β.expr, (e, {}, θ) = α.expr u β.expr,
β.expr = eθ. Then α.expr ≡ e and β.expr ≡ α.exprθ, but α.expr 6'
β.expr, that is n > 0. Thus:

β.expr � let x1 = e1, . . . , xn = en in e = t′.root.expr

3. ti+1 = abstract(ti, α, β) = ti{α := let x1 = e1, . . . , xn = en in e →},
where α = ancestor(t, β, Ec), α.expr 6 lβ.expr, β is a non-trivial
node, α.expr, β.expr ∈ E , α.exprlβ.expr, (e, θ1, θ2) = α.expruβ.expr,
α.expr = eθ1. Then α.expr 6≡ e, but α.expr = eθ1, that is n > 0. Thus:

α.expr � let x1 = e1, . . . , xn = en in e = t′.root.expr

Definition 33 (Set of expressions at a driving step). Set of expressions at a
driving step Mi

SC(prog) is defined as a set of expressions labeling a tree ti at
i-th step of partial process tree construction.

Definition 34 (Set of expressions of supercompilation). Set of expressions
of supercompilation MSC(prog) is defined as a union of sets:

MSC(prog) =
⋃
Mi
SC(prog)



21

Lemma 35. (E ∩MSC(prog),E3) is a well-quasi-order.

Proof. Consider ME3(prog). It is a routine to show that generalization e =
let vi = ei; in eg does not increase de Bruijn indices, de Bruijn subindices
and maximal arity of application. It follows from Lemma 29 that (E ∩
MSC(prog),E3) is a well-quasi-order.

Corollary 36. The relation E|ρ is a well-quasi-order on E ∩MSC(prog).

Proof. Analogously to the corollary 30.

Corollary 37. The relation Ec|ρ is a well-quasi-order on E ∩MSC(prog).

Proof. Analogously to the corollary 31.

Lemma 38. HOSC maintains a finitary, continuous predicate when con-
structing a partial process tree.

Proof. Define l : L → E by:

l(let vi = ei; in eg) = eg{vi := ei}

Define w on L by:

e1 w e2 ⇔ (S[[l(e1)]] > S[[l(e2)]]) ∨ (S[[l(e1)]] = S[[l(e2)]] ∧ l(e1) m l(e2))

Since l is a well-founded quasi-order, it is a routine check that v is also a
well-founded quasi-order. Consider the predicate q : T (l)→ B defined as:

q(t) = p(t0)

where t0 – is an interior of t and the predicate p : T (l)→ B:

p(t) =

 0 if ∃α, β : α = ancestor(t, β, Ec) and α, β are non-trivial
0 if ∃α, β : α→ β, α, β are trivial are α.expr 6A β.expr
1 otherwise

The sets of non-trivial and trivial expressions constitute a partition ofMSC(prog).
Ec|ρ – is a well-quasi-order on the set of non-trivial expressions ofMSC(prog)
andv is a well-founded quasi-order on the set of trivial expressions ofMSC(prog).
Thus (see Proposition 11), p and q are finitary and continuous predicates. Let
us show that HOSC maintains q.

Given a tree t and a node β, we say that β is good in t if the following
conditions both hold:

(i) β is non-trivial, β is not a leaf of t ⇒
ancestor(t, β,Ec) = •
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(ii) ∃α : α→ β and α is trivial ⇒ α.expr A β.expr

A tree t is good if all its leaves are good.
It is easy to see that q(t) = 1 if t is good. Thus it suffices to show that for

any i ti is good. We proceed by induction on i.
For i = 0, (i)-(ii) are both vacuously satisfied.
For i > 0, suppose that ti is good. Consider different operations for

producing ti+1:

1. ti+1 = drive(ti, β) = ti{β := t′}, where β ∈ leaves(ti) and t′ =
β.expr → e1, . . . , en and e1, . . . , en = D[[β.expr]]. We need to verify
that β and children(ti+1, β) are good in ti+1.

Consider β: (1) if β is non-trivial, the algorithm guarantees that con-
dition (i) is satisfied for β, condition (ii) follows from the induction hy-
pothesis, (2) if β is trivial, then condition (i) is satisfied in a trivial way
for β, condition (ii) follows from the induction hypothesis.

Consider children(ti+1, β): (1) if β is non-trivial, conditions (i) and (ii)
are vacuously satisfied for children(ti+1, β) (2) if β is trivial then con-
dition (i) is satisfied in a trivial way, and condition (ii) also holds since
∀i : β.expr A ei, – it is important, that driving of a trivial node results
in nodes with expressions of a smaller size (see 6).

2. ti+1 = abstract(ti, β, α) = ti{β := let x1 = e1, . . . , xn = en in e →
}, where α = ancestor(t, β, l), α.expr 6' β.expr, β is non-trivial,
α.expr, β.expr ∈ E , α.exprlβ.expr, (e, {}, θ) = α.expruβ.expr, β.expr =
eθ. We need to check that β is good in ti+1.

Condition (i) is satisfied in a trivial way. From the induction hypothesis
and the fact that l(βi.expr) = l(let x1 = e1, . . . , xn = en in e) =
l(βi+1.expr), it follow that condition (ii) holds.

3. ti+1 = abstract(ti, α, β) = ti{α := let x1 = e1, . . . , xn = en in e →},
where α = ancestor(t, β, Ec), α.expr 6 lβ.expr, β is non-trivial,
α.expr, β.expr ∈ E , α.expr l β.expr, (e, θ1, θ2) = α.expr u β.expr,
α.expr = eθ1. Analogously to the prevous case: we need to check that
α is good ti+1.

Condition (i) is satisfied in a trivial way. From the induction hypothesis
and the fact that l(αi.expr) = l(let x1 = e1, . . . , xn = en in e) =
l(αi+1.expr), it follow that condition (ii) holds.

Corollary 39. The construction of a partial process tree by the supercompiler
HOSC terminates.

Proof. From Lemmas 32 and 38 it follows that the conditions of the theo-
rem 12 hold.
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data D = F (D → D);

λf → apply (F (λx → f (apply x x)))(F (λx → f (apply x x)))

where

apply = λx → case x of { F f → f; };

Figure 6: Fixed point operator using a global definition

data D = F (D → D);

λf → (λy → case y of { F g → g; })

(F (λx → f ((λy → case y of { F g → g; }) x x)))

(F (λx → f ((λy → case y of { F g → g; }) x x)))

Figure 7: Fixed point operator without global definitions

6 Possible non-termination of HOSC 1.0

The supercompiler HOSC 1.0 may non-terminate. Consider the sample pro-
gram in Fig. 6, in which the fixed point operator is defined without using
explicit recursion. On this program by HOSC 1.0 terminates, because non-
trivial nodes are encountered (and checked by whistle) while constructing the
partial process tree.

apply (F (λx → f (apply x x)))(F (λx → f (apply x x)))

However, if we unfold the calls to apply by inlining its definition, HOSC
1.0 does not terminate any more! The reason is that driving the modified
program (Fig. 7) produces an infinite sequence of trivial nodes, which are not
examined by the whistle.

This subtle problem is fixed in HOSC 1.1 (see Appendix B).

7 Related work

The first complete and formal description of a supercompiler with a proof of
its termination can be found in Sørensen’s Master’s Thesis [13]. Sørensen’s
supercompiler deals with a first-order call-by-name functional language. Later
Sørensen developed a framework for proving termination of program trans-
formers (working with trees) [14].

Mitchell and Runciman developed a supercompiler Supero for a subset of
Haskell programming language (call-by-name) [11]. A proof of termination of
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Supero was not published.
Jonsson and Nordlander developed a supercompiler for a higher-order

functional language with the call-by-value semantics [5] and proved its termi-
nation [4].

This work differs from [11, 5] in the following.

• When checking for homeomorphic embedding, HOSC makes the distinc-
tion between free and bound variables: bound variables may only be
embedded into corresponding bound variables. So the whistle used in
HOSC blows less frequently than the whistles in [11, 5], which results in
fewer over-generalizations.

• HOSC’s whistle blows only for expressions that are related by coupling at
the top level. It ensures the existence of a non-trivial most specific gener-
alization. So HOSC always performs a generalization in an unambiguous
way. In [11, 5] the whistle blows even if the expressions are related by
diving, which leads to certain ambiguity in the process of generalization.

• In [11, 5] all global definition are assumed to be of fixed arity, and all
applications of global functions are required to be saturated. In or-
der to eliminate partial applications of global functions, additional λ-
abstractions are inserted in the program. HOSC does not have such
limitation and allows any (well-typed) partial applications.

The main contribution of the present work is the proof that the extended
homeomorphic embedding (making distinction between free and bound vari-
ables) is still a well-quasi-order on the set of expressions produced by super-
compiling a program (rather than on an arbitrary set of expressions). This is
sufficient, however, for ensuring termination of supercompilation. In addition,
the use of a weaker homeomorphic relation enables the supercompiler to avoid
over-generalization in some subtle cases.
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A HOSC 1.0: minor bugs and errors

In [6] there are a few minor bugs and misprints.
Section 5.2 should begin as follows:

Common functor rule has the form:

(v, {v := e1} ∪ θ1, {v := e2} ∪ θ2)⇒ . . .

and can only be applied on condition that

e1 Ece2 or e1 Eve2

The 7th rule of driving (Section 6, Fig. 5) should be the following:

D[[con〈case v e′j of {pi → ei;}〉]]⇒
[
v e′j , con〈ei{v e′j := pi}〉

]
B HOSC 1.1: what is different from HOSC 1.0

In HOSC 1.1 the division of nodes into trivial and non-trivial ones is somewhat
different from that in HOSC 1.0, taking into account the sizes of expressions.

The size of an expression e is denoted by S[[e]] and is inductively defined
as follows:

S[[v]] = 1
S[[f ]] = 1
S[[c ei]] = 1 +

∑
i S[[ei]]

S[[λv → e]] = 1 + S[[e]]
S[[e1 e2]] = S[[e1]] + S[[e2]]
S[[case e0 of {ci vik → ei;}]] = 1 + S[[e0]] +

∑
i S[[ei]]

S[[letrec f = e1 in e2]] = 1 + S[[e1]] + S[[e2]]

A node β is said to be non-trivial if one of the following conditions is
satisfied:

1. β.expr = con〈f〉,
2. β.expr = con〈case v ej of {pi → ei;}〉,
3. β.expr = con〈(λv → e0) e1〉 and S[[(λv → e0) e1]] ≤ S[[e0{v := e1}]],
4. β.expr = con〈case cj e′k of {ci vik → ei;}〉 and

S[[case cj e′k of {ci vik → ei;}]] ≤ S[[ej{vjk := e′k}]]
Otherwise, β is said to be trivial.

Unlike HOSC 1.0, a non-trivial node satisfying condition 3 or 4 can be con-
sidered as a base or repeat node in a partial process tree. Thus the algorithm
of constructing residual programs has been modified: the rules corresponding
to non-trivial nodes satisfying condition 3 or 4 are completely analogously to
the rules C1

7 , C2
7 and C3

7 in [6].
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C Driving rules

Since driving rules presented in [6] have to be individually referenced in the
text, we reproduce them here, providing rule names.

D[[v ei]] ⇒ [v, ei] (D1)

D[[c ei]] ⇒ [ei] (D2)

D[[λv0 → e0]] ⇒ [e0] (D3)

D[[con〈f0〉]] ⇒ [con〈unfold(f0)〉] (D4)

D[[con〈(λv0 → e0) e1〉]] ⇒ [con〈e0{v0 := e1}〉] (D5)

D[[con〈case cj e′k of {ci vik → ei;}〉]] ⇒
[
con〈ej{vjk := e′k}〉

]
(D6)

D[[con〈case v e′j of {pi → ei;}〉]] ⇒
[
v e′j , con〈ei{v e′j := pi}〉

]
(D7)

D[[let vi = ei; in e]] ⇒ [e, ei] (D8)
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