
Keldysh Institute  •  Publication search

Keldysh Institute preprints  •  Preprint No. 31, 2010

Klyuchnikov I.G.

Supercompiler HOSC: proof of
correctness

Recommended form of bibliographic references:  Klyuchnikov I.G. Supercompiler HOSC: proof of
correctness. Keldysh Institute preprints, 2010, No. 31, 28 p.  URL:
http://library.keldysh.ru/preprint.asp?id=2010-31&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2010-31&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/preprint.asp?id=2010-31&lg=e


KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Ilya G. Klyuchnikov

Supercompiler HOSC: proof of correctness

Moscow
2010



Ilya G. Klyuchnikov. Supercompiler HOSC: proof of correctness

The paper presents the proof of correctness of an experimental supercompiler
HOSC dealing with higher-order functions.

Supported by Russian Foundation for Basic Research projects No. 08-07-
00280-a and No. 09-01-00834-a.

И.Г. Ключников. Суперкомпилятор HOSC: доказательство кор-
ректности

В работе приводится доказательство корректности экспериментального
суперкомпилятора HOSC, работающего с функциями высших порядков.

Работа выполнена при поддержке проектов РФФИ № 08-07-00280-a и
№ 09-01-00834-a.



3

Содержание
1 Introduction 3

2 Input language 4

3 Transformation relation HOSC 6

4 The theory of improvement 9

5 Proof of correctness 10
5.1 Transformation relation HOSC0 . . . . . . . . . . . . . . . . . 11
5.2 Transformation relation HOSC1/2 . . . . . . . . . . . . . . . . 15

5.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Transformation relation HOSC . . . . . . . . . . . . . . . . . . 16

5.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Typing and correctness 19

7 Discussion 22

8 Related work 24

References 25

1 Introduction

The paper [9] describes the internal structure of HOSC, an experimental su-
percompiler for a higher-order call-by-name language. In this paper we prove
the correctness of transformations performed by HOSC. We show that for
any input program, the corresponding residual program is equivalent to an
original one.

In the context of supercompilation the problem of correctness is, in a
sense, ortogonal to the problem of termination. In this paper we abstract
from the problem of termination and reformulate supercompilation of higher-
order functions in the form of a transformation relation.

In [10] we have already shown that the supercompiler HOSC 1.1 terminates
for any input program. Since HOSC 1.1 satisfies the transformation relation
formulated in this paper, this implies the total correctness of the supercompiler
HOSC 1.1.

In order to prove correctness of our transformation relation, we use the
theory of improvement [22, 24], which is based on the concept of evaluation
cost and the unfolding of a function call is used as a cost unit. Informally
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speaking, an expression e1 is an improvement of an expression e0 if the com-
putation of the expression e1 is not more expensive than the computation of
the expression e0. An expression e1 is a strong improvement of an expression
e0, if e1 is an improvement of e0 and e1 and e0 are equivalent.

Higher-order deforestation [14] is a program transformation technique which
is a special case of higher-order supercompilation. The correctness of higher-
order deforestation was proved in [23] using the theory of improvement. Among
other things, the result of deforestation was shown to be a strong improvement
over the original program.

The correctness proof for deforestation is based on the fact that, given
two configurations c1 and c2, folding is performed only if c1 = con〈f〉 (so that
the next reduction step is going to be an unfolding of f). The transformation
relation HOSC does not impose such a restriction, folding being allowed for
any pair of configurations.

Thus we begin by considering the relation HOSC0, which only allows fold-
ing for configurations of the form con〈f〉, so that HOSC0 and higher-order
deforestation differ only in the generalization step. The proof of the fact
that, given a program, HOSC0 produces a strong improvement of the origi-
nal program is rather straightforward, which implies that a residual program
produced by HOSC0 is equivalent to the original one.

Then we prove a number of more general statements about the correctness
of the transformation relations HOSC1/2 and HOSC.

Finally, we consider the correctness of supercompilation in the presence of
typing.

2 Input language

The supercompiler HOSC transforms programs written in the language HLL.
The syntax and semantics of HLL are described in detail in [9]. Here we
reproduce only definitions and notation essential for the proof.

The syntax of the untyped version of HLL is shown in Fig. 1. Until Sec-
tion 6, we will consider the untyped version of HLL, ignoring type declarations
and typing issues.

Before the supercompilation is started, the input program is λ-lifted, so
that letrec-expressions, if any, are transformed into global definitions. In
addition, the bindings of let-expressions are inlined. Thus, during supercom-
pilation, the transformed program contains neither letrec- nor let-expressions.

Any HLL expression may be represented as either an observable or a re-
duction context with a redex placed into the hole of the context. The grammar
of such decompositions is shown in Fig. 2.
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prog ::= e where fi = ei; program

e ::= v variable
| c ei constructor
| f function
| λ vi → e λ-abstraction
| e1 e2 application
| case e0 of {pi → ei;} case-expression
| letrec f = e0 in e1 local definition
| let vi = ei; in e let-expression
| (e) parenthesized expression

p :: = c vi pattern

Figure 1: Untyped variant of the HLL language

obs ::= v ei | c ei | (λv → e)
con ::= 〈〉 | con e | case con of {pi → ei;}
red ::= f | (λv → e0) e1 | case v e′j of {pi → ei;}

| case c e′j of {pi → ei;}

Figure 2: Decomposition of expressions

E [[c ei]] ⇒ c ei (E1)
E [[λv0 → e0]] ⇒ λv0 → e0 (E2)
E [[con〈f0〉]] ⇒ E [[con〈unfold(f0)〉]] (E3)
E [[con〈(λv → e0) e1〉]] ⇒ E [[con〈e0{v := e1}〉]] (E4)

E [[con〈case cj e′k of {ci vik → ei;}〉]] ⇒ E [[con〈ej{vjk := e′k}〉]] (E5)
E [[let vi = ei; in eg]] ⇒ E [[eg{vi := ei}]] (E6)

Figure 3: Operational semantics of HLL

A substitution is a finite list of pairs in the form

θ = {v1 := e1, v2 := e2, . . . , vn := en},

each pair binding a variable to an expression. The domain of a substitution θ
is denoted as domain(θ). The application of a substitution θ to free variables
of an expression e is written as e θ.

In order to represent generalization in partial process trees, let-expressions
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D[[v ei]] ⇒ [v, ei] (D1)

D[[c ei]] ⇒ [ei] (D2)

D[[λv0 → e0]] ⇒ [e0] (D3)

D[[con〈f0〉]] ⇒ [con〈unfold(f0)〉] (D4)

D[[con〈(λv0 → e0) e1〉]] ⇒ [con〈e0{v0 := e1}〉] (D5)

D[[con〈case cj e′k of {ci vik → ei;}〉]] ⇒
[
con〈ej{vjk := e′k}〉

]
(D6)

D[[con〈case v e′j of {pi → ei;}〉]] ⇒
[
v e′j , con〈ei{v e′j := pi}〉

]
(D7)

D[[let vi = ei; in e]] ⇒ [e, ei] (D8)

Figure 4: Driving

are used. The syntax of let-expressions is as follows:

let vi = ei; in eg,

where vi = ei are bindings of the corresponding substitution. Given a result
of generalization represented by a let-expression let vi = ei; in eg, one may
reconstruct the original expression by applying the substitution: eg{vi := ei}.

The operational (call-by-name) semantics of the language HLL is shown
in Fig. 3. Since let-expressions may appear in partial process trees, we also
define the operational semantics for them (Rule E6

1). The semantics of letrec-
expression is defined in Section 4. If no rule in Fig. 3 can be applied during
evaluation of an expression, a runtime error happens.

An expression e2 is an instance of an expression e1, e1le2, if there exists a
substitution θ such that e1θ ≡ e2. An operation of finding such a substitution
is denoted as θ = e1 4 e2.

A set of all expressions of the language HLL is denoted by H.

3 Transformation relation HOSC

The supercompilation of a program is a two stage process. At the first stage,
a partial process tree is constructed. At the second stage, a residual program
is extracted from this tree.

A partial process tree is a directed tree (whose edges are denoted by →)
supplemented with “return” edges (denoted by ⇒) turning it into a directed
graph.

1This rule is sufficient, since during supercompilation only top level let-expressions may
appear.
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t = (e→)
while unprocessedLeaf(t) 6= • do

β = unprocessedLeaf(t)
t = choice{drive(t, β), generalize(t, β), fold(t, β)}

end

Figure 5: HOSC1/2, HOSC: partial process tree construction

children(t, α) Returns an ordered list of child nodes for the node α
of the tree t.

addChildren(t, β, es) Adds child nodes to the node β of the tree t and puts
expressions es into them.

replace(t, β, expr) Replaces a subtree with the root β by a single node
γ such that γ.expr = expr.

fold(t, β) If a node β has an ancestor node α, such that
α.expr ' β.expr, then adds a “return” edge β ⇒ α
to form a cycle.

fold0(t, β) If β.expr = con〈f0〉 and the node β has an ances-
tor node α, such that α.expr ' β.expr, then adds a
“return” edge β ⇒ α to form a cycle.

generalize(t, β) replace(t, β, e1), where e1 = let vi = ei; in eg, egθ =
eg{vi := ei} = β.expr, θ – any correct substitution

dα ' te Returns all repeat nodes of the node α, dα ' te =
[βi] : βi ⇒ α, or • if α is not a function node.

dα � te Returns a function node for the node α, dα � te =
β : α⇒ β, or • if α is not a repeat node.

drive(t, α) = addChildren(t, α, D[[α.expr]]) - executes a driving
step.

unprocessedLeaf(t) Returns any unprocessed leaf α of the tree t, or •, if
all leaves of t are processed. A leaf is processed if it
is labeled with a variable, or there is a “return” edge
⇒ originating from this leaf.

Figure 6: Operations on partial process tree

A process tree is produced by applying the driving rules shown in Fig. 4,
which, in a sense, generalize the reduction semantics for the case of expressions
with free variables. Some operations on partial process trees are presented
and explained in Fig. 6.

Now we consider the transformation relation HOSC1/2, which will be used
as the basis for defining more sophisticated relations, HOSC0 and HOSC,
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C [[α]]t,Σ
⇒ letrec f ′ = λvi → (C′[[α.expr]]t,α,Σ′) in f

′vi if dα ' te 6= • (C1)

where
vi = fv(α.expr)
Σ′ = Σ ∪ (α, {f ′ := λvi → α.expr}), f ′ is fresh

⇒ f ′vi if dα � te 6= • (C2)
where

f ′ = domain(Σ(dα � te)), vi = fv(α.expr)
⇒ C′[[α.expr]]t,α,Σ otherwise (C3)

C′[[let vi = ei; in e]]t,α,Σ ⇒ C[[γ
′]]t,Σ{vi = C[[γ′i]]t,Σ} (C′1)

C′[[v ei]]t,α,Σ ⇒ v C[[γi]]t,Σ (C′2)

C′[[c ei]]t,α,Σ ⇒ c C[[γi]]t,Σ (C′3)

C′[[λv0 → e0]]t,α,Σ ⇒ λv0 → C[[γ′]]t,Σ (C′4)

C′[[con〈case v e′j of {pi → ei;}〉]]t,α,Σ
⇒ case C[[γ′]]t,Σ′of{pi → C[[γ′i]]t,Σ′ ;} (C′5)

C′[[con〈(λv0 → e0) e1〉]]⇒ C[[γ′]]t,Σ (C′6)

C′[[con〈case c e′j of {pi → ei;}〉]]t,α,Σ ⇒ C[[γ
′]]t,Σ (C′7)

C′[[con〈f〉]]t,α,Σ ⇒ C[[γ
′]]t,Σ (C′8)

In order to make the rules less cumbersome, the following abbreviations are used.

If γi appears in the right-hand side, we assume that [γi] = children(t, α), and all

child nodes are processed in the same way. If γ′ and γ′i appear in the right-hand

side, we assume that [γ′, γ′i] = children(t, α), and either there is exactly one child

node or the first child node requires special treatment.

Figure 7: HOSC0, HOSC1/2: extraction of a residual program from a tree

matching certain “design decisions” taken in the development of the super-
compiler HOSC. The general idea of presenting supercompilation in terms of
a program specialisation relation is due to [8].

A nondeterministic algorithm constructing partial process trees for an ex-
pression e is presented in Fig. 5. The operator choice nondeterministically
selects and evaluates one of its arguments.

A partial process tree t is transformed into a residual program prog′ ac-
cording to the rules given in Fig. 7.

prog′ = C [[t.root]]t,{}

Definition 1 (Transformation relation HOSC1/2). An input program p and
a residual program p′ are related by the transformation relation HOSC1/2

(p HOSC1/2 p
′), if there is a partial process tree t for p that may be produced

by some execution of the algorithm from Fig. 5, such that p′ = C [[t.root]]t,{}.
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The transformation relations HOSC0 and HOSC are defined later in
a similar way. Sometimes, instead of prog HOSC1/2 prog′, we will write
prog′ = SC1/2[[prog]] (and, analogously, for SC0[[prog]] and SC[[prog]]).

Sometimes we will write SC1/2[[e]] instead of SC1/2[[prog]], where e is the
target expression of a program prog.

4 The theory of improvement

Definition 2 (Context). A context C is an expression with a hole [ ] in the
place of a subexpression. C[e] is the expression produced by replacing the hole
with the expression e.

Definition 3 (Weak head normal form). An HLL expression e is in weak head
normal form if it is a constructor (e = c ei) or a λ-abstraction (e = λv → e1).

Definition 4 (One-step reduction). One-step reduction 7→ is the least relation
on closed expressions satisfying the rules given in the Figure 3.

The transitive reflexive closure of 7→ is denoted as 7→∗.

Definition 5 (Convergence). A closed expression e converges to weak head
normal form w, e ⇓ w, if and only if e 7→∗ w.

e ⇓ means that there exists w such that e ⇓ w.

Definition 6 (Approximation). An expression e1 operationally approximates
e2, e1 v e2, if for all contexts C, such that C[e1] and C[e2] are closed, if
C[e1] ⇓ then C[e2] ⇓.

Definition 7 (Equivalence). An expression e1 is operationally equivalent to
e2, e1

∼= e2, if e1 v e2 and e2 v e1.

Definition 8 (Improvement). An expression e2 is an improvement of e1, e1 .˜e2, if for all contexts C, such that C[e1] and C[e2] are closed, if computation of
C[e1] terminates using n function calls, then computation of C[e2] terminates
using no more than n function calls.

Definition 9 (Strong improvement). An expression e2 is a strong improve-
ment of an expression e1, e1 .˜s e2, if e1 .˜ e2 and e1

∼= e2.

Definition 10 (Cost-equivalence). Expressions e1 and e2 are cost-equivalent
e1 /.˜ e2, if e1 .˜ e2 and e2 .˜ e1.

Definition 11 (Fix point operator). The operator fix is defined as:

fix = λf → f(fix f)
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Definition 12 (Letrec). Letrec-expressions are translated using fix:

letrec f = e in e′
def
= (λf → e′)(fix (λf → e))

Definition 13 (Transformation of definitions). Let {fi = ei; } be a set of
functions and {gi = e′i{fi = gi;}; } be a set of new functions, such that e′i do
not depend on gi, and gi do not depend on fi. Then {gi = e′i{fi = gi;}; } is a
transformation of {fi = ei; }.

Theorem 14 (Improvement theorem [23]). If {gi = e′i{fi = gi;}; } is a trans-
formation of {fi = ei; }, such that ei .˜ e′i, then fi .˜ gi.
Theorem 15 (Strong improvement theorem). If {gi = e′i{fi = gi;}; } is a
transformation of {fi = ei; }, such that ei .˜s e′i, then fi .˜s gi.
Theorem 16 (Local improvement theorem [23]). If variables h and xi include
all free variables of both e0 and e1, then if

letrec h = λxi → e0 in e0 .˜s letrec h = λxi → e0 in e1

then for all expressions e

letrec h = λxi → e0 in e .˜s letrec h = λxi → e1 in e

Proposition 17 (Improvements [23]). The following improvements hold:

1. If e .˜s e′, then C[e] .˜s C[e′]

2. con〈case e of {pi → ei;}〉 /.˜ case e of {pi → con〈ei〉;}

3. con〈case e of {pi → ei{z := e};}〉 .˜s con〈case e of {pi → ei{z := pi};}〉

4. If e 7→ e′, then C[e] .˜s C[e′]

5. For all expressions e and substitutions θ, such that h 6∈ domain(θ), if
e0 7→ t, then

letrec h = λyi → t in e{z := e0θ} /.˜ letrec h = λyi → t in e{z := (h yi)θ}

5 Proof of correctness

Let e and e′ be target expressions of programs prog and prog′. We will write
prog .˜s prog′ if e .˜s e′, and prog ∼= prog′ if e ∼= e′.

We consider a transformation relation T to be correct if

prog T prog′ ⇒ prog ∼= prog′
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t = (e→)
while unprocessedLeaf(t) 6= • do

β = unprocessedLeaf(t)
t = choice{drive(t, β), generalize(t, β), fold0(t, β)}

end

Figure 8: HOSC0: the construction of partial process trees

5.1 Transformation relation HOSC0

We start by proving the correctness of the transformation relation HOSC0

that only allows folding for nodes of the form con〈f〉. This transformation
relation is shown in Fig. 8 and Fig. 7. In order to extract a residual program,
a partial process tree is traversed and a correspondence of function nodes and
signatures of new functions is registered in the table Σ.

We assume that Σ(•) = {} (i.e. the signature Σ(•) is empty). We also
assume that ρΣ is defined and

ρΣ = range(Σ)

Theorem 18. For a partial process tree built according to the rules in Fig. 8,
in the process of constructing a residual program according to the rules in
Fig. 7, at any step the following holds:

α.expr .˜s (C[[α.expr]]t,α,Σ)ρΣ

Proof. By induction on the structure of the expression α.expr. First, consider
Rule (C3). We need to prove that

α.expr .˜s (C′[[α.expr]]t,α,Σ)ρΣ

We proceed by case analysis of the operation C′.

• (C ′1) We have to show that

e{vi = ei;} .˜s (C′[[let vi = ei; in e]]t,α,Σ)ρΣ

By Rule (C ′1):

(C′[[let vi = ei; in e]]t,α,Σ)ρΣ = (C[[γ′]]t,Σ{vi = C[[γ′i]]t,Σ})ρΣ

By construction of ρΣ:

(C[[γ′]]t,Σ{vi = C[[γ′i]]t,Σ})ρΣ = (C[[γ′]]t,ΣρΣ)({vi = (C[[γ′i]]t,ΣρΣ)})
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Thus we need to show:

e{vi = ei;} .˜s (C[[γ′]]t,ΣρΣ)({vi = (C[[γ′i]]t,ΣρΣ)})

By construction of the partial process tree (Rule D8 in Fig. 4): e =
γ′.expr, ei = γ′i.expr. By the induction hypothesis:

e .˜s C[[γ′]]t,ΣρΣ, ei .˜s C[[γ′i]]t,ΣρΣ

Thus from Proposition 17(1) it follows:

e{vi = ei;} .˜s (C′[[let vi = ei; in e]]t,α,Σ)ρΣ

• (C ′2) We have to show that

v ei .˜s (v C[[γi]]t,Σ)ρΣ = (v C[[γi]]t,ΣρΣ)

By the induction hypothesis:

ei .˜s C[[γi]]t,ΣρΣ

Thus the statement to be proved follows from Proposition 17(1).

• (C ′3) We have to show that

c ei .˜s (v C[[γi]]t,Σ)ρΣ = (c C[[γi]]t,ΣρΣ)

By the induction hypothesis:

ei .˜s C[[γi]]t,ΣρΣ

Thus the statement to be proved follows from Proposition 17(1).

• (C ′4) We have to show that

λv0 → e0 .˜s (λv0 → C[[γ′]]t,Σ)ρΣ = λv0 → (C[[γ′]]t,ΣρΣ)

By the induction hypothesis:

e0 .˜s C[[γ′]]t,ΣρΣ

Thus the statement to be proved follows from Proposition 17(1).

• (C ′5) We have to show that

con〈case v e′j of {pi → ei;}〉 .˜s (case C[[γ′]]t,Σof{pi → C[[γ′i]]t,Σ;})ρΣ =

= case (C[[γ′]]t,ΣρΣ)of{pi → (C[[γ′i]]t,ΣρΣ);}
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By construction of partial process tree (Rule D7 in Fig. 4):

γ′.expr = v e′j , γ′i.expr = con〈ei{v e′j := pi}〉

By the induction hypothesis:

v e′j .˜s C[[γ′]]t,ΣρΣ, con〈ei{v e′j := pi}〉 .˜s C[[γ′i]]t,ΣρΣ

Thus the statement to be proved follows from Lemmas 17(1, 2, 3).

• (C ′6), (C ′7), (C ′8). In these cases α.expr 7→ γ′.expr. Thus the statement
to be proved follows from the induction hypothesis and Lemma 17(4).

Now consider Rule (C2). We heed to show that

α.expr .˜s (C[[α.expr]]t,Σ)ρΣ = (f ′vi)ρΣ

By construction (the operation fold0 in Fig. 6):

(f ′vi)ρΣ = (λvi → α.expr)vi

The statement to be proved follows from the fact:

(λvi → α.expr)vi /.˜ α.expr

It remains to consider Rule (C1). We need to show that

α.expr .˜s (letrec f ′ = λvi → (C[[γ′.expr]]t,Σ′) in f
′vi)ρΣ

This is equivalent to

α.expr .˜s letrec f ′ = λvi → (C[[γ′.expr]]t,Σ′)ρΣ in f ′vi

From the fact that α.expr 7→ γ′.expr and from Lemma 17(5) it follows:

letrec f ′ = λvi → γ′.expr in α.expr /.˜ letrec f ′ = λvi → γ′.expr in f ′vi

Since f ′ 6∈ fv(α.expr):

α.expr /.˜ letrec f ′ = λvi → γ′.expr in f ′vi

Thus it suffices to show that

letrec f ′ = λvi → γ′.expr in f ′vi .˜s
.˜s letrec f ′ = λvi → (C[[γ′.expr]]t,Σ′)ρΣ in f ′vi
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Lemma 19.

(C[[γ′.expr]]t,Σ′)ρΣ′ /.˜ letrec f ′ = λvi → γ′.expr in (C[[γ′.expr]]t,Σ′)ρΣ

Proof. Consider the expression

(C[[γ′.expr]]t,Σ′)ρΣ′

According to Rule (C2) all free occurrences f ′ are in subexpressions f ′v′i,

Suppose there are n such occurrences – (f ′vi)θk, where θk is a renaming of
variables vi. Then

(C[[γ′.expr]]t,Σ′) = e′{zk := (f ′vi)θk}

where f ′ 6∈ fv(e′). Thus,

(C[[γ′.expr]]t,Σ′)ρΣ′ ≡ (C[[γ′.expr]]t,Σ′)ρΣ{f ′ := λvi → α.expr}

/.˜ e′{zk := f ′viθk}ρΣ{f ′ := λvi → α.expr} /.˜ e′{zk := (α.expr)θk}ρΣ

Since α.expr 7→ γ′.expr, then from Lemma 17(5) it follows:

e′{zk := (α.expr)θk}ρΣ

/.˜ letrec f ′ = λvi → γ′.expr in e′{zk := f ′viθk}ρΣ

≡ letrec f ′ = λvi → γ′.expr in (C[[γ′.expr]]t,Σ′)ρΣ

Figure 9: Auxiliary lemma

By Theorem 16 it is sufficient to show that

letrec f ′ = λvi → γ′.expr in γ′.expr .˜s
.˜s letrec f ′ = λvi → γ′.expr in (C[[γ′.expr]]t,Σ′)ρΣ

Since letrec f ′ = λvi → γ′.expr in γ′.expr = γ′.expr, it follows from Auxil-
iary Lemma 19 that it suffices to show

γ′.expr .˜s (C[[γ′.expr]]t,Σ′)ρΣ′

but this is the induction hypothesis.

Corollary 20 (Correctness of the transformation relation HOSC0).

e .˜s SC0[[e]]

Proof. It follows from Theorem 18, since SC0[[e]] = (C[[t.root]]t,{}){} where t
is a partial process tree constructed according to the rules in Fig. 8.
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5.2 Transformation relation HOSC1/2

The relation HOSC0 only allows folding for configurations of the form con〈f〉.
In this section we show the correctness of the transformation relationHOSC1/2.
HOSC1/2 allows folding for all configurations.

Theorem 21 (Correctness of the transformation relation HOSC1/2). Let t be
a partial process tree of an expression e built according to the rules in Fig. 5.
Let SC1/2[[e]] be a residual program extracted from the tree t according to the
rules in Fig. 7. Then

e ∼= SC1/2[[e]]

Proof. In order to prove correctness of the transformation relation HOSC1/2,
we use the following trick. Let us consider folded configurations c1, c2, . . . in
the tree t, such that c1, c2, . . . do not have the form con〈f〉. For any ci we
insert a new node labeled with c′i directly above ci. A configuration c′i has the
form con〈g〉, where g is a new function such that c′i → ci. Then we replace the
folding of the configurations ci with the folding of the configurations c′i. We
look into the traces of the configurations c1, c2, . . . and find subexpressions
e1, e2, . . . in the input program which resulted into c1, c2, . . .. We replace
expressions e1, e2, . . . with expressions g e′i. This may result in some parts
of the input program being rewritten as supercombinators with maximal free
expressions abstracted [20] (see an example in Section 5.2.1).

We repeat these steps while there are “folded” configurations not in the
form con〈f〉. Finally we get a “new” partial process tree t′ and a “new” input
program prog′.

By construction, residual programs extracted from the trees t and t′ will be
the same. Let us denote those programs as prog′′. Note that, by construction,
the tree complies with the transformation relation HOSC0. By definition ei
is a strong improvement over g e′i (since g e′i → ei), that is prog is a strong
improvement over prog′ (by Theorem 15). Thus:

prog′ .˜s prog, prog′′ = SC0[[prog′]]

Since HOSC0 is an improving transformation relation, it follows:

prog′ .˜s prog′′
By the definition of strong improvement:

prog ∼= prog′′

On the other hand:
prog′′ = SC1/2[[prog]]

Thus
prog ∼= SC1/2[[prog]]
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data Stream = S Stream;

case x of {S y1 → (S (id1 y1));} where

id1 = λx → case (id x) of { S y → S (id1 y);};

id = λx → x;

Figure 10: Program prog

data Stream = S Stream;

g x where

id1 = λx → g (id x);

g = λx → case x of {S y → S (id1 y);};

id = λx → x;

Figure 11: Program prog′

5.2.1 Example

Consider the simple program prog in Fig. 10. A partial process tree for prog
satisfying HOSC1/2 is shown in Fig. 13. Note that HOSC1/2 allows folding
for case-expressions. The residual program prog′′ is shown in Fig. 12.

We build the program prog′ (Fig. 11) using the trick described earlier.
prog is a strong improvement over prog′. When constructing prog′ we had to
abstract subexpression id x from the body of the function id1.

The combination of t and a partial process tree t′ built by HOSC0 for
prog′ is shown in Fig. 13. Repeat edges in t are dashed, return edges in t′ are
solid. Obviously, the residuals programs extracted from these trees are the
same. So prog′′ ∼= prog.

5.3 Transformation relation HOSC

The rules in Fig. 7 may result in constructing recursive functions with too
many arguments (“arity over-raising”, see [21]). An example will be presented
in the next section.

According to the rules in Fig. 7, the arity of a residual function is deter-
mined by the number of free variables in the base configuration (labeling the
base node).

However, the arity of a residual function may be reduced by not taking
into account the free variables in its base configuration e whose values do not
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data Stream = S Stream;

letrec f = λp → case p of {S y → S (f y);} in f x

Figure 12: Program prog′′

case x of {S y1 -> S (id1 y1);}

S (id1 y1)

id1 y1

case (id y1) of {S z -> S (id1 z);}

case y1 of {S v -> S (id1 v);}

Figure 13: HOSC1/2 partial process tree for prog

g x

case x of {S w -> S (id1 w);}

S (id1 w)

id1 w

let v = (id w) in g v

id w

w

g v

case v of {S w -> S (id1 w);}

Figure 14: Transforming HOSC1/2 tree into HOSC0 tree

change in the repeat configurations. This is done in the rules in Fig 15.
The transformation relation HOSC is defined by the rules in Fig. 5 de-

scribing the construction of a partial process tree and by the rules in Fig. 15
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C [[α]]t,Σ
⇒ letrec f ′ = λvi → (C′[[α.expr]]t,α,Σ′)θ

′ in f ′v′i if dα ' te 6= • (C∗1 )

where

[βi] = dα ' te, θi = α.expr 4 βi.expr,

v′i = domain(
⋃
θi), θ

′ = {v′i := vi},
Σ′ = Σ ∪ (α, f ′ vi), f

′ and vi are fresh
⇒ f ′sigθ if dα � te 6= • (C∗2 )

where
f ′sig = Σ(dα � te), θ = dα � te.expr 4 α.expr

⇒ C′[[α.expr]]t,α,Σ otherwise (C∗3 )

The operator C′ is the same as the operator C′ in the Fig. 7.

Figure 15: HOSC: extraction of a residual program from a tree

data List a = Nil | Cons a (List a);

app x (Cons y z)

where

app = λxs ys → case xs of {

Nil → ys;

Cons z zs → Cons z (app zs ys);

};

Figure 16: app x (Cons y z): input program

describing the extraction of the residual program from the process tree.
So SC1/2[[prog]] and SC[[prog]] are related by λ-dropping [2]:

SC1/2[[prog]]
λ−dropping
=======⇒ SC[[prog]]

The correctness of λ-dropping is shown in [1, 25]. That is

prog ∼= SC1/2[[prog]] and SC[[prog]] ∼= SC1/2[[prog]]

This implies the correctness of the transformation relation HOSC:

prog ∼= SC[[prog]]

5.3.1 Example

Consider the concatenation of a list x and a non-empty list Cons y z (Fig. 16).
A partial process tree built by HOSC1/2 (as well as by HOSC) is shown
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app x (Cons y z)

case x of {Nil -> Cons y z; Cons v w -> Cons v (app w (Cons y z));}

Cons y z

x = Nil

Cons v (app w (Cons y z))

app w (Cons y z)

x = Cons v w

Figure 17: app x (Cons y z): partial process tree

data List a = Nil | Cons a (List a);

letrec f = λxs v zs → case xs of {

Nil → Cons v zs;

Cons x1 xs1 → Cons x1 (f xs1 v zs);

}

in f x y z

Figure 18: app x (Cons y z): residual program extracted by HOSC1/2

in Fig. 17. The configurations app x (Cons y z) and app w (Cons y z)

are folded. The extraction of the residual program from this tree (satis-
fying HOSC1/2) produces a new recursive function of tree arguments, two
arguments being passed without changes in the recursive calls (Fig. 18). Su-
percompiling the expression app x (Cons y (Cons v w)) by HOSC1/2 may
produce a new function of four arguments, etc. By extracting the residual
program from the tree in Fig. 17 according to HOSC, we get a function of
one argument (Fig. 19).

6 Typing and correctness

Until now, we have treated HLL as an untyped language and ignored issues
related to typing. All errors have been supposed to be dealt with at run-time.

But, actually, HLL is a statically typed language using the Hindley-Milner
polymorphic typing system (see Fig. 20). Note that HLL expressions may
contain explicit type constraints.

The semantics of the typed HLL differs from that of the untyped HLL (see
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data List a = Nil | Cons a (List a);

letrec f = λxs → case xs of {

Nil → Cons y z;

Cons x1 xs1 → Cons x1 (f xs1);

}

in f x

Figure 19: app x (Cons y z): residual program extracted by HOSC

tDef ::= data tCon = dConi; type definition
tCon ::= tn tvi type constructor
dCon ::= c typei data constructor
type ::= tv | tCon | type → type | (type) type expression

prog ::= tDefi e where fi = ei; program

e ::= e′ implicitly typed
| e′ :: type explicitly typed

e′ ::= v variable
| c ei constructor
| f function
| λ vi → e λ-abstraction
| e1 e2 application
| case e0 of {pi → ei;} case-expression
| letrec f = e0 in e1 local definition
| let vi = ei; in e let-expression
| (e) parenthesized expression

p :: = c vi pattern

Figure 20: Typed variant of the language HLL

Fig. 3) only in one point: a program to be executed is required to be typable.
Before executing a program, the interpreter type-checks it. If the program
contains typing errors, the interpreter returns an error at once.

The subtle point is that, if we consider only implicitly typed programs (i.e.
without explicit type constraints), the transformation relation HOSC is not
correct.

Some types inferred for a residual program may be more general than the
corresponding types inferred for the input program. Thus, supercompilation
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data Bool = True | False;

data U = MkU (U → Bool);

russel (MkU russel) where

russel = λu → case u of {MkU p → p u;};

Figure 21: russel (MkU russel): input program

data Bool = True | False;

data U = MkU (U → Bool);

(letrec f=f in f)

Figure 22: russel (MkU russel): implicitly typed residual program

may happen to extend the domain of a program being transformed, because
a residual program may accept inputs rejected by the original program as
ill-typed.

Consider the program in Fig. 21. The inferred type of the target expression
is

(russel (MkU russel)) :: Bool

This program may be supercompiled into the program shown in Fig. 22.
The inferred type for the residual expression is

(letrec f=f in f) :: a

Obviously, the inferred type of the residual expression is more general than
that of the original expression. It also means that there are contexts in which
the original expression is ill-typed, while the residual expression is well-typed.

The fact that the Hindley-Milner type system with implicit typing does
not preserve types in the case of β-reduction has been taken notice of in the
literature [18].

Since supercompilation involves β-reduction, special care should be taken
to prevent it from changing the typing properties of programs under trans-
formation. Fortunately, the problem can be solved by inserting explicit type
constraints into residual programs.

Consider a residual expression e′ and its original expression e. Suppose
x1, . . . , xn are the free variables in e. Let t be the type inferred for e, and ti
be the type inferred for xi.

Now, let us replace each free occurrence of xi in e′ with xi :: t to produce
e′′, and add the explicit type constraint to the whole expression: e′′ :: t. The



22

data Bool = True | False;

data U = MkU (U → Bool);

(letrec f=f in f) :: Bool

Figure 23: russel (MkU russel): explicitly typed residual program

data Stream = S Stream;

case (id x) of {S y1 → (S (id1 y1));} where

id1 = λx → case (id x) of { S y → S (id1 y);};

id = λx → x;

Figure 24: Program prog1

result is that e and e′′ :: t are interchangeable in any context. Namely, in any
context C, C[e] and C[e′′ : t] are both either well-typed or ill-typed.

More exactly, there remains a subtle case in which some free variables
appearing in the original expression e may disappear from the residual ex-
pression e′. However, to ensure correctness, we may reintroduce the missing
free variables into e′ by artificially inserting into e′ some λ-abstractions and
applications, just to pass typing information about these variables.

For example, Fig. 23 presents an explicitly typed residual program, which
is strictly equivalent to the original program shown in Fig. 21.

7 Discussion

For the sake of brevity, let H denote the supercompiler described in [9, 10], let
H1/2 denote the supercompiler that is the same as H, except for it does not
perform λ-dropping, and let H0 denote the supercompiler that is the same as
H1/2, except for it only folds configurations of the form con〈f〉.

As compared to H0, the supercompiler H1/2 is more powerful at “normaliz-
ing” expressions, which is essential if supercompilation is used for proving the
equivalence of expressions [11]. Consider the program prog1 in Fig. 24. The
target expression of the program prog1 is reduced in two steps into the target
expression of the program prog. The supercompiler HOSC1/2 will transform
both prog and prog1 into the same program prog′′ (Fig. 12). In contrast, the
supercompiler HOSC0 produces different programs: prog′′ (Fig. 12) for prog1

and prog′1 (Fig. 25) for prog.
Note that H1/2[[e]] and H[[e]] are not guaranteed to be improvements over
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data Stream = S Stream;

case x of {

S z → S (letrec f = λp → case p of {S y → S (f y);} in f z);

}

Figure 25: Program prog′1

data List a = Nil | Cons a (List a);

letrec f = λxs vs → case xs of {

Nil → vs;

Cons x1 xs1 → Cons x1 (f xs1 vs);

}

in f x ys

Figure 26: H1/2[[app x ys]]

e. This is not good for program optimization, but may be useful for program
analysis ([11]).

As compared to H1/2, the supercompiler H has a greater tendency for
preserving “isomorphism” between two programs.

Consider the expressions app x ys and app x (Cons y z) (the function
app is defined in Fig. 16). These expressions are related via a substitution:

app x (Cons y z) = (app x ys){ys := (Cons y z)}

The corresponding residual expressions produced by the supercompiler H
(Fig. 19 and Fig. 27) are related via the same substitution:

H[[app x (Cons y z)]] = H[[app x ys]]{ys := (Cons y z)}

However, the supercompiler H1/2 does not preserve this relation between the
two expressions (the results of supercompilation by H1/2 are in Fig. 18 and
Fig. 26):

H1/2[[app x (Cons y z)]] 6= H1/2[[app x ys]]{ys := (Cons y z)}

The two aforementioned properties (the tendency towards normalization
and the tendency for preserving “isomorphisms”) are of importance when the
supercompiler HOSC is used for proving improvement lemmas in a higher-
level supercompiler [12].
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data List a = Nil | Cons a (List a);

letrec f = λxs → case xs of {

Nil → ys;

Cons x1 xs1 → Cons x1 (f xs1);

}

in f x

Figure 27: H[[app x ys]]

8 Related work

A fundamental part of supercompilation (driving) was originally described
as a system of equivalent transformations for REFAL [27], a first-order call-
by-value functional language. Other components of supercompilation were
formulated later [28, 29]. At present, the most advanced REFAL supercom-
piler is SCP4 [19].

SCP4 may extend the domain of programs it transforms, which may be
useful for the purposes of program optimization. More specifically, in some
cases a residual program produced by SCP4 terminates and returns a result,
while the original program does not terminate (or terminates abnormally with-
out returning a result). This is due to the fact that REFAL is an applicative
(call-by-value) language, while driving in SCP4 interprets programs in a lazy
manner. A proof of partial correctness of SCP4 has not been published yet.

Sørensen considers a supercompiler for a simpler first-order call-by-name
language in his Master’s work [26] and proves correctness of the described
supercompiler.

Mitchell described a supercompiler Supero for a subset of Haskell [17, 16].
A proof of correctness of Supero has not been published yet.

A supercompiler for a higher-order call-by-value language is described by
Jonsson and Nordlander [4]. The correctness of this supercompiler has been
proved [6].

Recently a supercompilation for a variant of system F was presented by
Mendel-Gleason and Hamilton [15] and proved to be correct using bisimulation
[3].

Krustev verified a simple supercompiler mechanically [13].
The contribution of this work is as follows:

• The supercompiler HOSC is described at an abstract level: as a trans-
formation relation, and the correctness proof of this transformation rela-
tion is given. Usually, supercompilation is considered at a more concrete
and deterministic level [17, 4, 15].
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• Unlike supercompilers [17, 4], HOSC is allowed to perform folding of
configurations of any kind. The correctness of such folding is proved.
The ability to fold any configurations increases the “normalization poser”
of supercompilation. And this is of importance, when supercompilation
is used for program analysis.

• As was pointed out in [7], the static argument transformation (gener-
ating letrec-expressions with free variables) may be useful for program
optimization, but correctness of such transformation was not proved.
We have shown that generation of letrec-expressions with free variables
is also useful when supercompilation is used for program analysis, and
proved that, in the case of HOSC, such generation is correct.

• Some supercompilers assume the source programs to obey the Hindley-
Milner typing discipline [17, 5]. We have shown that a supercompiler
may extend the domain of programs, as the inferred types in a residual
program may be more general than those in the source program. How-
ever, typing properties can be preserved by introducing explicit type
constraints in residual programs.

• The correctness of the transformation relations HOSC0, HOSC1/2 and
HOSC was shown by using the theory of improvements. So we were
able to show that a residual program defined by the relation HOSC0 is
always more efficient (in terms of the number of function calls) than the
original one. In contrast, in [15] supercompilation is considered from
the perspective of the bisimulation theory, so it is difficult to compare
the efficiency of the original and residual programs. Also, while we
have dealt with a sound type system (Hindley-Milner), [15] considers a
potentially unsound variant of system F .
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