
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 62, 2010

Klyuchnikov I.G.

Supercompiler HOSC 1.5:
homeomorphic embedding

and generalization in a higher-
order setting

Recommended form of bibliographic references: Klyuchnikov I.G. Supercompiler HOSC 1.5:
homeomorphic embedding and generalization in a higher-order setting. Keldysh Institute preprints,
2010, No. 62, 23 p. URL: http://library.keldysh.ru/preprint.asp?id=2010-62&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2010-62&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/preprint.asp?id=2010-62&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Ilya Klyuchnikov

Supercompiler HOSC 1.5:
homeomorphic embedding and generalization

in a higher-order setting

Moscow
2010

Ilya Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic embed-
ding and generalization in a higher-order setting

The paper describes the algorithm implemented in the supercompiler HOSC 1.5,
dealing with programs written in a higher-order functional language. The design
decisions behind the algorithm are illustrated through a series of examples. Of
particular interest are the decisions related to generalization and homeomorphic
embedding of expressions with bound variables.

Supported by Russian Foundation for Basic Research projects No. 08-07-00280-a
and No. 09-01-00834-a.

Илья Ключников. Суперкомпилятор HOSC 1.5: гомеоморфное вло-
жение и обобщение для выражений высшего порядка

В работе приводится алгоритм экспериментального суперкомпилятора HOSC
1.5, работающего с функциями высших порядков. Детали алгоритма обосно-
вываются на ряде примеров. Особое внимание уделяется обобщению и гомео-
морфному вложению выражений со связанными переменными.

Работа выполнена при поддержке проектов РФФИ № 08-07-00280-a и № 09-
01-00834-a.

Contents

1 Introduction 3

2 SLL: embedding and generalization 4

3 HLL: embedding and generalization 7

4 A generic supercompilation algorithm 13

5 Supercompiler HOSC 1.5 15

6 Comparing supercompilers 17

7 Discussion 20

References 22

3

1 Introduction

The supercompiler HOSC1 is meant to be used as a tool for program analysis.
For this reason HOSC propagates as mush positive information as possible when
constructing a partial process tree.

The ability of HOSC to check Haskell expressions for equivalence was demon-
strated in [11]. Another HOSC’s feature is its tendency to normalize expressions,
that is to transform equivalent expressions to the same syntactic form. Upon
a slight modification, HOSC is also able to check if a pair of equivalent expres-
sions forms an improvement lemma. This is achieved by annotating residual
expressions with extra information (taken from the partial process tree) about
the performance of the original program. Such lemmas can be used by a multi-
level supercompiler in order to avoid generalizations when building partial process
trees.

The supercompiler HOSC 1.0 was described in detail in [8].
In [10] the supercompiler HOSC is described in the form of a transformation

relation and the correctness of this relation is proved.
An attempt to construct a termination proof for HOSC 1.0 revealed that it

does not terminate for some input programs! Thus HOSC was revised to produce
its new version, HOSC 1.1 described in [9]. The proof that HOSC 1.1 does
terminate for any input program is given in [9].

It should be noted that the termination of HOSC 1.1 is ensured in a rather “ad
hoc” manner: the partition of nodes into trivial and non-trivial ones is based on
the sizes of expressions produced by reduction steps. Unfortunately, this change
in partition has produced a negative effect on the “normalization power” of HOSC
1.1 (as compared to HOSC 1.0).

Here we describe a new version of the HOSC supercompiler: HOSC 1.5, which
is superior to HOSC 1.0 at normalizing expressions, and yet terminates for any
input program. The termination of HOSC 1.5 is ensured in a more elegant and
general way than in the case of HOSC 1.1.

The explanations given in [8, 9, 10] about the rationale behind the design of
HOSC are incomplete. The problem is that, unlike HOSC, the other existing
supercompilers for higher-order languages are meant for program optimization.
Hence, it was difficult to justify particular decisions because of the lack of material
for comparison.

A peculiarity of HOSC 1.0 and HOSC 1.1 is that the definition of the refined
homeomorphic relation is tightly coupled with the algorithm for computing a gen-
eralization of two expressions, the algorithm being defined for coupled expressions
only. Thus in [8, 9] the problems of generalization of expressions with bound vari-
ables were just circumvented, rather than really solved, since the algorithm in [8],
by construction, doesn’t touch bound variables.

Here we present a revised version of the aforementioned algorithm, which is
applicable to any pair of expressions, even if the expressions are not coupled. In

1The source code of HOSC is available at http://hosc.googlecode.com

http://hosc.googlecode.com

4

Figure 1 SLL syntax

𝑃 ::= 𝑑1 . . . 𝑑𝑛 program

𝑑 ::= 𝑓(𝑣1, . . . , 𝑣𝑛) = 𝑒; f-function
| 𝑔(𝑝1, 𝑣1, . . . , 𝑣𝑛) = 𝑒1; g-function

. . .
𝑔(𝑝𝑚, 𝑣1, . . . , 𝑣𝑛) = 𝑒𝑚;

𝑒 ::= 𝑣 variable
| 𝐶(𝑒1, . . . , 𝑒𝑛) constructor
| 𝑓(𝑒1, . . . , 𝑒𝑛) call to f-function
| 𝑔(𝑒1, . . . , 𝑒𝑛) call to g-function

𝑝 ::= 𝐶(𝑣1, . . . , 𝑣𝑛) pattern

addition, if the expressions do not contain bound variables, the new algorithm
just degenerates into the “classical” one, which makes it easier to compare HOSC
with other supercompilers.

We consider several algorithms of supercompilation for the core Haskell lan-
guage. A series of examples explains the decisions taken in the design of HOSC
1.5 and demonstrates the advantages of its supercompilation algorithm in the
context of program analysis.

2 SLL: embedding and generalization

First of all, we consider generalization and homeomorphic embedding in a first-
order setting – for a first-order functional language SLL (i.e. without bound vari-
ables).

The SLL2 language is considered in [17, 18]. Its syntax is shown in Fig. 1. An
SLL expression is a variable, a constructor or a function call. All constructors
and functions have fixed arity. The number of constructors and function symbols
is finite.

The notions of a substitution, an instance and a most specific generalization
for SLL expressions are defined in [18]. The paper [5, 20] considers a slightly
extended version of SLL with if, a special construction for equality checking.

We will consider the homeomorphic embedding relation and the algorithm of
computing a most specific generalization defined in [17, 18, 20] as a reference point
for further refinements in a higher-order setting.

The notation ℎ(𝑒′1, . . . , 𝑒′𝑛) is used for denoting either a constructor or a
function call.

2SLL = Simple Lazy Language

5

Рис. 2 SLL: iterative algorithm of generalization of 𝑒′ and 𝑒′′

Initial trivial generalization
(𝑣, {𝑣 := 𝑒1}, {𝑣 := 𝑒2})

Common functor rule⎛⎝ 𝑒
{𝑣 := ℎ(𝑒′1, . . . , 𝑒

′
𝑛)} ∪ 𝜃′

{𝑣 := ℎ(𝑒′′1 , . . . , 𝑒
′′
𝑛)} ∪ 𝜃′′

⎞⎠ ⇒

⎛⎝ 𝑒{𝑣 := ℎ(𝑣1, . . . , 𝑣𝑛)}
{𝑣1 := 𝑒′1, . . . , 𝑣𝑛 := 𝑒′𝑛} ∪ 𝜃′

{𝑣1 := 𝑒′′1 , . . . , 𝑣𝑛 := 𝑒′′𝑛} ∪ 𝜃′′

⎞⎠
Common subexpression rule⎛⎝ 𝑒

{𝑣1 := 𝑒′, 𝑣2 := 𝑒′} ∪ 𝜃′

{𝑣1 := 𝑒′′, 𝑣2 := 𝑒′′} ∪ 𝜃′′

⎞⎠ ⇒

⎛⎝ 𝑒{𝑣1 := 𝑣2})
{𝑣2 := 𝑒′} ∪ 𝜃′

{𝑣2 := 𝑒′′} ∪ 𝜃′′

⎞⎠
Figure 3 SLL: recursive algorithm of generalization of 𝑒′ and 𝑒′′

Most specific generalization

∙ 𝑒′ ⊓ 𝑒′′ = 𝑠(𝑒′ ̃︀⊓ 𝑒′′)

Common functor rule

∙ 𝑣 ̃︀⊓ 𝑣 = (𝑣, {}, {})

∙ ℎ(𝑒′1, . . . , 𝑒
′′
𝑛) ̃︀⊓ ℎ(𝑒′′1 , . . . , 𝑒

′′
𝑛) = (ℎ(𝑒1, . . . , 𝑒𝑛),

⋃︀
𝜃′𝑖,

⋃︀
𝜃′′𝑖) where

– (𝑒𝑖, 𝜃
′
𝑖, 𝜃

′′
𝑖) = 𝑒′𝑖 ̃︀⊓ 𝑒′′𝑖

∙ 𝑒1 ̃︀⊓ 𝑒2 = (𝑣, {𝑣 := 𝑒1}, {𝑣 := 𝑒2})

Common subexpression rule

∙ 𝑠(𝑒, {}, {}) = 𝑠(𝑒, {}, {})

∙ 𝑠(𝑒, {𝑣1 := 𝑒′} ∪ 𝜃′, {𝑣1 := 𝑒′′} ∪ 𝜃′′) = 𝑠′(𝑠(𝑒, 𝜃′, 𝜃′′)) where

– 𝑠′(𝑒, 𝜃′1, 𝜃
′′
1) = (𝑒{𝑣1 := 𝑣2}, 𝜃′1, 𝜃′′1)

if ∃𝑣2 : {𝑣2 := 𝑒′} ∈ 𝜃′1, {𝑣2 := 𝑒′′} ∈ 𝜃′′1

– 𝑠′(𝑒, 𝜃′1, 𝜃
′′
1) = (𝑒, {𝑣1 := 𝑒′} ∪ 𝜃′1, {𝑣1 := 𝑒′′} ∪ 𝜃′′1)

otherwise

Definition 1 (Iterative generalization algorithm for SLL expressions). A most
specific generalization of two expressions 𝑒′ and 𝑒′′, 𝑒′ ⊓ 𝑒′′ is computed by ex-
haustively applying the rewrite rules in Fig. 2 to the initial trivial generalization
(𝑣, {𝑣 := 𝑒′}, {𝑣 := 𝑒′′}).

The algorithm 1 is presented in an iterative form in the same way as in [19,
20, 18].

6

Figure 4 SLL: homeomorphic embedding

Embedding
𝑒′ E 𝑒′′ if 𝑒′ E𝑑 𝑒′′ or 𝑒′ E𝑐 𝑒′′ or 𝑒′ E𝑣 𝑒′′

Variables
𝑣′ E𝑣 𝑣′′

Coupling
ℎ(𝑒′1, . . . , 𝑒

′
𝑛) E𝑐 ℎ(𝑒′′1 , . . . , 𝑒

′′
𝑛) if ∀𝑖 : 𝑒′𝑖 E 𝑒′′𝑖

Diving
𝑒 E𝑑 ℎ(𝑒′1, . . . , 𝑒

′
𝑛) if ∃𝑖 : 𝑒 E 𝑒′𝑖

However, the computation of a most specific generalization can also be defined
in terms of recursive functions (big step semantics), rather than rewrite rules
(small step semantics), the recursive definition being more convenient for our
purposes.

Definition 2 (Recursive generalization algorithm for SLL expressions). 𝑒′ ⊓ 𝑒′′ =
𝑠(𝑒′ ̃︀⊓ 𝑒′′), where operations ̃︀⊓ are 𝑠 defined in Fig. 3.

The computation of MSG is performed in two stages. The first stage corre-
sponds to the application of the common functor rule (the calculation of 𝑒1̃︀⊓𝑒2),
while the second stage (the operation 𝑠) corresponds to the application of the
common subexpression rule.

Fig. 4 presents homeomorphic embedding relation of SLL expressions as de-
fined in [17, 19]. We explicitly distinguish coupling, diving and variable embed-
ding.

An SLL expression 𝑒 is said to be derivable from a program 𝑃 if all constructor
and function names appearing in 𝑒 also appear in 𝑃 (and have the same arities).
A set of SLL expressions derivable from 𝑃 is also said to be derivable from 𝑃 .

Since an SLL program 𝑃 may only contain a finite number of constructor
and function names with fixed arities, the same is true of any set of expressions
derivable from 𝑃 , and E is a well-quasi-order on this set. This result is due to
Higman and Kruskal.

It can be shown that E𝑐 is also a well-quasi-order for a set of expressions
derivable from a program 𝑃 .

In addition, for any expressions 𝑒1 and 𝑒2, such that 𝑒1 E𝑐 𝑒2, their general-
ization 𝑒1 ⊓ 𝑒2 = (𝑒𝑔, 𝜃1, 𝜃2) is guaranteed to be non-trivial (in other words, 𝑒𝑔 is
not a variable). It means that, when constructing a partial process tree, we do
not have to split configurations, regardless of the computation history, because,
if we use E𝑐 as a whistle, then there always exists a non-trivial generalization of
embedded expressions.

7

Figure 5 HLL syntax

𝑡𝐷𝑒𝑓 ::= data 𝑡𝐶𝑜𝑛 = 𝑑𝐶𝑜𝑛𝑖; type definition
𝑡𝐶𝑜𝑛 ::= 𝑡𝑛 𝑡𝑣𝑖 type constructor
𝑑𝐶𝑜𝑛 ::= 𝑐 𝑡𝑦𝑝𝑒𝑖 data constructor
𝑡𝑦𝑝𝑒 ::= 𝑡𝑣 | 𝑡𝐶𝑜𝑛 | 𝑡𝑦𝑝𝑒 → 𝑡𝑦𝑝𝑒 | (𝑡𝑦𝑝𝑒) type expression

𝑝𝑟𝑜𝑔 ::= 𝑡𝐷𝑒𝑓𝑖 𝑒 where 𝑓𝑖 = 𝑒𝑖; program

𝑒 ::= 𝑣 variable
| 𝑐 𝑒𝑖 constructor
| 𝑓𝑔 global variable
| 𝜆 𝑣𝑖 → 𝑒 𝜆-abstraction
| 𝑒1 𝑒2 application
| case 𝑒0 of {𝑝𝑖 → 𝑒𝑖;} case-expression
| let 𝑣𝑖 = 𝑒𝑖; in 𝑒 let-expression
| (𝑒) parenthesized expression

𝑝 :: = 𝑐 𝑣𝑖 pattern

3 HLL: embedding and generalization

The input language of the supercompiler HOSC is HLL3 which is quite close to
the Haskell Kernel [22, 23]. HLL syntax is shown in Fig. 5. We require that
patterns in case expressions be non-overlapping and exhaustive. HLL is statically
typed according to the Hindley-Milner polymorphic typing system4

Remark 3 (Order of patterns in case-expressions). We require that patterns in
case-expressions be enumerated in the same order as constructors in the decla-
ration of a corresponding data type.

In order to denote that a variable 𝑓 is defined in a program (that is, there is
a definition 𝑓 = 𝑒;), we use an index 𝑔 (global) and write 𝑓𝑔.

Since HLL-expressions may contain bound variables, we need to formalize
some related concepts.

Definition 4 (Bound, global and free variables of an expression). Sets 𝑏𝑣[[𝑒]],
𝑔𝑣[[𝑒]], 𝑓𝑣[[𝑒]] of bound variables, global variables and global variables of an expres-
sion 𝑒 are computed according to the rules shown in Fig. 6, 7 and 8, respectively.

Definition 5 (Multi-set of bound variables of an expression). The rules, defining
a multi-set 𝑏𝑣′[[𝑒]] of bound variables of an expression 𝑒, are the same as in Fig. 6,
but take into account that the result of the operation is a multi-set.

3HLL = Higher-order Lazy Language
4Really all HLL supercompilers described in this paper are able to consume programs with

more general typings. We use Hindley-Milner type system for simplicity only.

8

Figure 6 HLL: a set of bound variables of an expression

𝑏𝑣[[𝑓𝑔]] = {}
𝑏𝑣[[𝑣]] = {}
𝑏𝑣[[𝑐 𝑒𝑖]] =

⋃︀
𝑏𝑣[[𝑒𝑖]]

𝑏𝑣[[𝜆𝑣 → 𝑒]] = 𝑏𝑣[[𝑒]] ∪ {𝑣}
𝑏𝑣[[𝑒1 𝑒2]] = 𝑏𝑣[[𝑒1]] ∪ 𝑏𝑣[[𝑒2]]
𝑏𝑣[[𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;}]] = 𝑏𝑣[[𝑒0]] ∪ (

⋃︀
𝑏𝑣[[𝑒𝑖]]) ∪ (

⋃︀
𝑣𝑖𝑘)

𝑏𝑣[[𝑙𝑒𝑡 𝑣𝑖 = 𝑒𝑖; 𝑖𝑛 𝑒]] = 𝑏𝑣[[𝑒]] ∪ (
⋃︀
𝑏𝑣[[𝑒𝑖]]) ∪ (

⋃︀
𝑣𝑖)

Figure 7 HLL: a set of global variables of an expression

𝑔𝑣[[𝑓𝑔]] = {𝑓𝑔}
𝑔𝑣[[𝑣]] = {}
𝑔𝑣[[𝑐 𝑒𝑖]] =

⋃︀
𝑔𝑣[[𝑒𝑖]]

𝑔𝑣[[𝜆𝑣 → 𝑒]] = 𝑔𝑣[[𝑒]]
𝑔𝑣[[𝑒1 𝑒2]] = 𝑔𝑣[[𝑒1]] ∪ 𝑔𝑣[[𝑒2]]
𝑔𝑣[[𝑐𝑎𝑠𝑒 𝑒 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;}]] = 𝑔𝑣[[𝑒]] ∪ (

⋃︀
𝑔𝑣[[𝑒𝑖]])

𝑔𝑣[[𝑙𝑒𝑡 𝑣𝑖 = 𝑒𝑖; 𝑖𝑛 𝑒]] = 𝑔𝑣[[𝑒]] ∪ (
⋃︀
𝑔𝑣[[𝑒𝑖]])

Figure 8 HLL: a set of free variables of an expression

𝑓𝑣[[𝑓𝑔]] = {}
𝑓𝑣[[𝑣]] = {𝑣}
𝑓𝑣[[𝑐 𝑒𝑖]] =

⋃︀
𝑓𝑣[[𝑒𝑖]]

𝑓𝑣[[𝜆𝑣 → 𝑒]] = 𝑓𝑣[[𝑒]] ∖ {𝑣}
𝑓𝑣[[𝑒1 𝑒2]] = 𝑓𝑣[[𝑒1]] ∪ 𝑓𝑣[[𝑒2]]
𝑓𝑣[[𝑐𝑎𝑠𝑒 𝑒 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;}]] = 𝑓𝑣[[𝑒]] ∪ (

⋃︀
𝑓𝑣[[𝑒𝑖]]∖{𝑣𝑖𝑘})

𝑓𝑣[[𝑙𝑒𝑡 𝑣𝑖 = 𝑒𝑖; 𝑖𝑛 𝑒]] = (𝑓𝑣[[𝑒]]∖(
⋃︀
𝑣𝑖)) ∪ (

⋃︀
𝑓𝑣[[𝑒𝑖]])

Remark 6 (Variable names). In order to avoid name clashes, we require that for
any expression 𝑒 the sets 𝑏𝑣[[𝑒]], 𝑔𝑣[[𝑒]], 𝑓𝑣[[𝑒]] be mutually disjoint, and there be
no repeated elements in the multi-set 𝑏𝑣′[[𝑒]].

Definition 7 (Refreshing of bound variables). The refreshing of bound variables
of an expression 𝑒 is a consistent replacement of every bound variable 𝑣 ∈ 𝑏𝑣′[[𝑒]]
in 𝑒 by a fresh variable. We denote this operation as 𝑓𝑟𝑒𝑠ℎ[[𝑒]].

Definition 8 (HLL-substitution). A substitution is a finite list of pairs 𝜃 =
{𝑣𝑖 := 𝑒𝑖}, where a variable 𝑣𝑖 is bound to its value 𝑒𝑖. The domain of 𝜃 is defined
as 𝑑𝑜𝑚𝑎𝑖𝑛(𝜃) = {𝑣𝑖}. The range of 𝜃 is computed as 𝑟𝑎𝑛𝑔𝑒(𝜃) = {𝑒𝑖}.

HLL language is based on 𝜆-calculus. A substitution is a fundamental opera-
tion in 𝜆-calculus. In order to ensure the correctness of a substitution, expressions
are considered up to renaming of bound variables, that is up to ≡𝛼 ([2], 2.1.11).
Thus an application of substitution should be correct for ≡𝛼-classes of expressions

9

([2], Appendix C). That is:

𝑒 ≡𝛼 𝑒′, 𝑒𝑖 ≡𝛼 𝑒′𝑖 ⇒ 𝑒{𝑣𝑖 := 𝑒𝑖} ≡𝛼 𝑒′{𝑣𝑖 := 𝑒′𝑖}

There exist different approaches to this problem:

1. One may consider “canonical” nameless expressions where bound variables
do not have names [4]. The whole class of 𝛼-congruent expressions cor-
responds to one expression in this approach. This approach is good for
mechanical processing but is inconvenient for a human.

2. It is possible to refresh bound variables of expressions before applying a
substitution in order to avoid name capture [3, 21]. This approach is in-
convenient for cases where a substitution is a result of some operation (e.g.
generalization).

3. Substitutions may be avoided by means of the mechanism of explicit sub-
stitutions [1, 14]. But, in the context of supercompilation, this approach
would considerably complicate configuration analysis.

4. It is possible to extend Remark 6 to the case of the application of a substi-
tution. That is, to define a notion of an allowed substitution with respect
to a given expression 𝑒 and then consider allowed substitutions only.

The last alternative is the most convenient one in the context of supercompi-
lation (more precisely – for a task of computing the most specific generalization).

Definition 9 (Allowed HLL-substitution). A HLL-substituion 𝜃 is allowed with
respect to an expression 𝑒 if

1. 𝑏𝑣[[𝑒]] ∩ 𝑑𝑜𝑚𝑎𝑖𝑛(𝜃) = ∅

2. ∀𝑒𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒(𝜃) : 𝑏𝑣[[𝑒]] ∩ 𝑓𝑣[[𝑒𝑖]] = ∅

Remark 10 (Usage of substitutions). In the following all substitutions we con-
sider are required to be allowed (with respect to corresponding expression).

Convention 10 is similar to the Barendregt’s convention ([2], 2.1.13). Con-
ventions 6 and 10 ensure the correctness of a simple (“naive”) application of
substitution:

Definition 11 (Application of HLL-substitution). The result of applying a sub-
stitution 𝜃 to an expression 𝑒, 𝑒𝜃, is computed according to the rules in Fig. 9.

Note that when a substitution is applied to a variable, the variable is replaced
with an expression whose bound variables get refreshed!

10

Figure 9 HLL: application of substitution

𝑣𝜃 = 𝑓𝑟𝑒𝑠ℎ[[𝑒]] if 𝑣 := 𝑒 ∈ 𝜃
= 𝑣 otherwise

𝑓𝑔𝜃 = 𝑓𝑔
(𝑐 𝑒𝑖)𝜃 = 𝑐 (𝑒𝑖𝜃)
(𝜆𝑣 → 𝑒)𝜃 = 𝜆𝑣 → (𝑒𝜃)
(𝑒1 𝑒2)𝜃 = (𝑒1𝜃) (𝑒2𝜃)

(𝑐𝑎𝑠𝑒 𝑒 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;})𝜃 = 𝑐𝑎𝑠𝑒 (𝑒𝜃) 𝑜𝑓 {𝑝𝑖 → (𝑒𝑖𝜃);}
(𝑙𝑒𝑡 𝑣𝑖 = 𝑒𝑖; 𝑖𝑛 𝑒)𝜃 = 𝑙𝑒𝑡 𝑣𝑖 = (𝑒𝑖𝜃); 𝑖𝑛 (𝑒𝜃)

Remark 12 (Elimination of let-expressions). As in [8], a program 𝑝 is 𝜆-lifted
[6] before supercompilation and replaced with a program 𝑝′ that does not contain
let-expressions. The reasons for the elimination of let-expressions are as follows:
(1) the notions of renaming, instance and generalizations are quite complicated
for expressions containing let-expressions, since permutations of let-bindings
are possible and should be taken into account, (2) a let-expression in a residual
program represents the result of a generalization, so we would need to distinguish
the original let-expressions from the results of generalizations, (3) since HOSC is
intended for program analysis, the elimination of let-expressions allows positive
information to be propagated in a more aggressive way, which results in a deeper
transformation of programs. So in the following we only consider HLL expressions
without let-expressions.

Definition 13 (Instance of an expression). An expression 𝑒2 is said to be an
instance of an expression 𝑒1, or 𝑒1 l 𝑒2, if there is a substitution 𝜃, such that
𝑒1𝜃 ≡ 𝑒2. As far as the language HLL is concerned, the substitution 𝜃 is unique
and is denoted by 𝑒1 4 𝑒2.

Definition 14 (Renaming). An expression 𝑒2 is a renaming of an expression 𝑒1,
𝑒1 ≃ 𝑒2, if 𝑒1 l 𝑒2 and 𝑒2 l 𝑒1. That is, 𝑒1 and 𝑒2 differ in names of free variables
only.

Definition 15 (Generalization). A generalization of expressions 𝑒1 and 𝑒2 is a
triple (𝑒𝑔, 𝜃1, 𝜃2), where 𝑒𝑔 is an expression and 𝜃1 and 𝜃2 are substitutions, such
that 𝑒𝑔𝜃1 ≡ 𝑒1 and 𝑒𝑔𝜃2 ≡ 𝑒2. The set of generalizations of expressions 𝑒1 and 𝑒2
is denoted by 𝑒1 a 𝑒2.

Definition 16 (Most specific generalization). A generalization (𝑒𝑔, 𝜃1, 𝜃2) ∈ 𝑒1 a
𝑒2 is a most specific one, if, for any generalization (𝑒′𝑔, 𝜃

′
1, 𝜃

′
2) ∈ 𝑒1 a 𝑒2, it holds

that 𝑒′𝑔 l 𝑒𝑔, that is 𝑒𝑔 is an instance of 𝑒′𝑔. We suppose that there is defined an
operation ⊓, such that 𝑒1 ⊓ 𝑒2 is a most specific generalization of 𝑒1 and 𝑒2.

Definition 17 (Incommensurable expressions). Expressions 𝑒1 and 𝑒2 are incom-
mensurable, 𝑒1 ↔ 𝑒2, if 𝑒1 ⊓ 𝑒2 = (𝑣, 𝜃1, 𝜃2), that is the most specific generaliza-
tion of given expressions is a variable.

11

Figure 10 HLL: calculation of the most specific generalization

Most specific generalization

∙ 𝑒′ ⊓ 𝑒′′ = 𝑠(𝑒′ ̃︀⊓ 𝑒′′)

Common functor rule

∙ 𝑣 ̃︀⊓ 𝑣 = (𝑣, {}, {})

∙ 𝑐 𝑒′𝑖 ̃︀⊓ 𝑐 𝑒′′𝑖 = (𝑐 𝑒𝑖,
⋃︀
𝜃′𝑖,

⋃︀
𝜃′′𝑖), where

– (𝑒𝑖, 𝜃
′
𝑖, 𝜃

′′
𝑖) = 𝑒′𝑖 ̃︀⊓ 𝑒′′𝑖

∙ 𝑒′1 𝑒′2 ̃︀⊓ 𝑒′′1 𝑒′′2 = (𝑒1 𝑒2, 𝜃
′
1
̃︀⊓ 𝜃′2, 𝜃

′′
1
̃︀⊓ 𝜃′′2), where

– (𝑒𝑖, 𝜃
′
𝑖, 𝜃

′′
𝑖) = 𝑒′𝑖 ̃︀⊓ 𝑒′′𝑖

∙ 𝜆𝑣′ → 𝑒′ ⊓ 𝜆𝑣′′ → 𝑒′′ = (𝑒𝑔, 𝜃
′, 𝜃′′), if 𝜃′ and 𝜃′′ correct wrt 𝑒𝑔, where

– 𝑒𝑔 = 𝜆𝑣 → 𝑒

– (𝑒, 𝜃′, 𝜃′′) = 𝑒′{𝑣′ := 𝑣} ̃︀⊓ 𝑒′′{𝑣′′ := 𝑣}

∙ 𝑐𝑎𝑠𝑒 𝑒′0 𝑜𝑓 {𝑐𝑖 𝑣′𝑖𝑘 → 𝑒′𝑖;} ̃︀⊓ 𝑐𝑎𝑠𝑒 𝑒′′0 𝑜𝑓 {𝑐𝑖 𝑣′′𝑖𝑘 → 𝑒′′𝑖 ;} = (𝑒𝑔,
⋃︀
𝜃′𝑖,

⋃︀
𝜃′′𝑖),

if all 𝜃′𝑖 and 𝜃′′𝑖 are correct wrt 𝑒𝑔, where

– 𝑒𝑔 = 𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;}
– (𝑒0, 𝜃

′
0, 𝜃

′′
0) = 𝑒′0 ̃︀⊓ 𝑒′′0

– (𝑒𝑖, 𝜃
′
𝑖, 𝜃

′′
𝑖) = 𝑒′𝑖{𝑣′𝑖𝑘 := 𝑣𝑖𝑘} ̃︀⊓ 𝑒′′𝑖 {𝑣′′𝑖𝑘 := 𝑣𝑖𝑘}

∙ 𝑒1 ̃︀⊓ 𝑒2 = (𝑣, {𝑣 := 𝑒1}, {𝑣 := 𝑒2})

Common subexpression rule

∙ 𝑠(𝑒, {}, {}) = 𝑠(𝑒, {}, {})

∙ 𝑠(𝑒, {𝑣1 := 𝑒′} ∪ 𝜃′, {𝑣1 := 𝑒′′} ∪ 𝜃′′) = 𝑠′(𝑠(𝑒, 𝜃′, 𝜃′′)) where

– 𝑠′(𝑒, 𝜃′1, 𝜃
′′
1) = (𝑒{𝑣1 := 𝑣2}, 𝜃′1, 𝜃′′1)

if ∃𝑣2 : {𝑣2 := 𝑒′} ∈ 𝜃′1, {𝑣2 := 𝑒′′} ∈ 𝜃′′1

– 𝑠′(𝑒, 𝜃′1, 𝜃
′′
1) = (𝑒, {𝑣1 := 𝑒′} ∪ 𝜃′1, {𝑣1 := 𝑒′′} ∪ 𝜃′′1)

otherwise

The substitutions 𝜃1 and 𝜃2 in a most specific generalization (𝑒𝑔, 𝜃1, 𝜃2) should
be allowed ones with respect to the expression 𝑒𝑔. In the context of conventions
we have chosen an algorithm of computation of the most specific generalization
should ensure the correctness of substitutions it produces.

12

Figure 11 HLL: pure homeomorphic embedding

Embedding
𝑒′ E 𝑒′′ if 𝑒′ E𝑑 𝑒′′, 𝑒′ E𝑐 𝑒′′ or 𝑒′ E𝑣 𝑒′′

Variables
𝑓𝑔 E𝑣 𝑓𝑔
𝑣 E𝑣 𝑣′

Coupling

𝑐 𝑒′𝑖 E𝑐 𝑐 𝑒
′′
𝑖 if ∀𝑖 : 𝑒′𝑖 E 𝑒′′𝑖

𝜆𝑣′ → 𝑒′ E𝑐 𝜆𝑣′′ → 𝑒′′ if 𝑒′ E 𝑒′′

𝑒′1 𝑒′2 E𝑐 𝑒
′′
1 𝑒′′2 if ∀𝑖 : 𝑒′𝑖 E 𝑒′′𝑖

𝑐𝑎𝑠𝑒 𝑒′ 𝑜𝑓 {𝑐𝑖 𝑣′𝑖𝑘 → 𝑒′𝑖;} E𝑐 𝑐𝑎𝑠𝑒 𝑒
′′ 𝑜𝑓 {𝑐𝑖 𝑣′′𝑖𝑘 → 𝑒′′𝑖 ;}

if 𝑒′ E 𝑒′′ and ∀𝑖 : 𝑒′𝑖 E 𝑒′′𝑖
Diving

𝑒 E𝑑 𝑐 𝑒𝑖 if ∃𝑖 : 𝑒 E 𝑒𝑖
𝑒 E𝑑 𝜆𝑣0 → 𝑒0 if 𝑒 E 𝑒0
𝑒 E𝑑 𝑒1 𝑒2 if ∃𝑖 : 𝑒 E 𝑒𝑖
𝑒 E𝑑 𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;} if ∃𝑖 : 𝑒 E 𝑒𝑖

Definition 18 (Recursive algorithm of computing the most specific generalization
of HLL expressions). 𝑒′ ⊓ 𝑒′′ = 𝑠(𝑒′ ̃︀⊓ 𝑒′′), where the operations ̃︀⊓ and 𝑠 are
defined in Fig. 10.

Algorithm 18 is applicable to any pair of HLL expressions and produces a
most specific generalization taking into account Conventions 6 and 10. The rules
are applied in order of their enumeration. Variables 𝑣 and 𝑣𝑖𝑘 in the 3rd, 4th and
5th common subexpression rules are fresh ones. The most interesting parts of the
algorithm, taking into account bound variables, are underlined.

Definition 19 (Pure homeomorphic embedding E). The pure homeomorphic
embedding of HLL-expressions is defined inductively according to the rules in
Fig. 11.

In the following definition of a refined version of homeomorphic embedding,
we use a table recording the correspondence of bound variables:

𝜌 = {(𝑣′1, 𝑣
′′
1), . . . , (𝑣′𝑛, 𝑣

′′
𝑛)}

Definition 20 (Refined homeomorphic embedding E*). The refined homeomor-
phic embedding of HLL-expressions is defined inductively according to the rules
in Fig. 12.

Recall, that incommensurable SLL expression can not be coupled: if 𝑒1 E𝑐 𝑒2,
then 𝑒1 ⊓ 𝑒2 = (𝑒𝑔, 𝜃1, 𝜃2) is a non-trivial generalization (𝑒𝑔 is not a variable). The
same is true for the refined embedding E*. However, this does not hold for the
pure embedding E. So, sometimes, when using E as a whistle, we have to split

13

Figure 12 HLL: refined homeomorphic embedding

Embedding

𝑒′ E* 𝑒′′
def
= 𝑒′ E* 𝑒′′ |{}

𝑒′ E*
𝑐 𝑒′′

def
= 𝑒′ E*

𝑐 𝑒′′ |{}
𝑒′ E*

𝑑 𝑒′′
def
= 𝑒′ E*

𝑑 𝑒′′ |{}
Embedding wrt table of bound variables
𝑒′ E* 𝑒′′ |𝜌 if 𝑒′ E*

𝑑 𝑒 |′′𝜌 , 𝑒′ E*
𝑐 𝑒′′ |𝜌 or 𝑒′ E*

𝑣 𝑒′′ |𝜌
Variables
𝑓𝑔 E*

𝑣 𝑓𝑔
𝑣′ E*

𝑣 𝑣′′ |𝜌 if (𝑣′, 𝑣′′) ∈ 𝜌
𝑣′ E*

𝑣 𝑣′′ |𝜌 if 𝑣′ /∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝜌) and 𝑣′′ /∈ 𝑟𝑎𝑛𝑔𝑒(𝜌)
Coupling

𝑐 𝑒′𝑖 E*
𝑐 𝑐 𝑒′′𝑖 |𝜌 if ∀𝑖 : 𝑒′𝑖 E

* 𝑒′′𝑖 |𝜌
𝜆𝑣′ → 𝑒′ E*

𝑐 𝜆𝑣′′ → 𝑒′′ |𝜌 if 𝑒′ E* 𝑒′′ |𝜌∪{(𝑣′,𝑣′′)}
𝑒′1 𝑒′2 E*

𝑐 𝑒′′1 𝑒′′2 |𝜌 if ∀𝑖 : 𝑒′𝑖 E
* 𝑒′′𝑖 |𝜌

𝑐𝑎𝑠𝑒 𝑒′ 𝑜𝑓 {𝑐𝑖 𝑣′𝑖𝑘 → 𝑒′𝑖;} E*
𝑐 𝑐𝑎𝑠𝑒 𝑒′′ 𝑜𝑓 {𝑐𝑖 𝑣′′𝑖𝑘 → 𝑒′′𝑖 ;} |𝜌

if 𝑒′ E* 𝑒′′ |𝜌 and ∀𝑖 : 𝑒′𝑖 E
* 𝑒′′𝑖 |

𝜌∪{(𝑣′
𝑖𝑘,𝑣

′′
𝑖𝑘)}

Diving only if 𝑓𝑣(𝑒) ∩ 𝑑𝑜𝑚𝑎𝑖𝑛(𝜌) = ∅
𝑒 E*

𝑑 𝑐 𝑒𝑖 |𝜌 if ∃𝑖 : 𝑒 E* 𝑒𝑖 |𝜌
𝑒 E*

𝑑 𝜆𝑣0 → 𝑒0 |𝜌 if 𝑒 E* 𝑒0 |𝜌∪{(∙,𝑣0)}
𝑒 E*

𝑑 𝑒1 𝑒2 |𝜌 if ∃𝑖 : 𝑒 E* 𝑒𝑖 |𝜌
𝑒 E*

𝑑 𝑐𝑎𝑠𝑒 𝑒′ 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;} |𝜌if 𝑒 E* 𝑒′ |𝜌 or ∃𝑖 : 𝑒 E* 𝑒𝑖 |𝜌∪{(∙,𝑣𝑖𝑘)}

down configurations (in order to ensure the termination of supercompilation),
regardless of the history of computation.

4 A generic supercompilation algorithm

The notions of driving, partial process tree and operations over partial process
tree used in this section are taken from [8]. Residual programs are constructed
according to the rules corresponding to the transformation relation HOSC ([10],
Fig. 15).

The generic supercompilation algorithm shown in Fig. 13 is a generalization
of the algorithm in [20].

Any implementation of the generic algorithm has to give answers to the fol-
lowing questions:

1. 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠 – how to compute relevant ancestors for a given leaf (in
order to search for repeated configurations, super configurations and em-
bedding configurations).

2. 𝑤ℎ𝑖𝑠𝑡𝑙𝑒 – how to check two configurations for embedding.

14

Figure 13 A scheme of supercompilation algorithm

𝑡 = (𝑒 →)
while 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑒𝑎𝑓(𝑡) ̸= ∙ do

𝛽 = 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑒𝑎𝑓(𝑡)
𝑟𝑒𝑙𝐴𝑛𝑐𝑠 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠(𝛽)
𝛼 = 𝑓𝑖𝑛𝑑(𝑟𝑒𝑙𝐴𝑛𝑐𝑠, 𝛽, 𝑤ℎ𝑖𝑠𝑡𝑙𝑒)
if 𝛼 ̸= ∙ and 𝛼.𝑒𝑥𝑝𝑟 ≃ 𝛽.𝑒𝑥𝑝𝑟 then

𝑡 = 𝑓𝑜𝑙𝑑(𝑡, 𝛼, 𝛽)
else if 𝛼 ̸= ∙ and 𝛼.𝑒𝑥𝑝𝑟 l 𝛽.𝑒𝑥𝑝𝑟 then

𝑡 = 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑡, 𝛽, 𝛼)
else if 𝛼 ̸= ∙ then

if 𝛼.𝑒𝑥𝑝𝑟 ↔ 𝛽.𝑒𝑥𝑝𝑟 then
𝑡 = 𝑠𝑝𝑙𝑖𝑡(𝑡, 𝛽, 𝛽.𝑒𝑥𝑝𝑟)

else
𝑡 = 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑡, 𝛼, 𝛽)

end

else
𝑡 = 𝑑𝑟𝑖𝑣𝑒(𝑡, 𝛽)

end

end

Figure 14 HLL: splitting of configuration

𝑠𝑝𝑙𝑖𝑡(𝑡, 𝛽, 𝑒1𝑒2) = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑡, 𝛽, 𝑒𝑠), where
𝑒𝑠 = 𝑙𝑒𝑡 𝑣1 = 𝑒1; 𝑣2 = 𝑒2; 𝑖𝑛 𝑣1𝑣2

𝑠𝑝𝑙𝑖𝑡(𝑡, 𝛽, 𝑐𝑎𝑠𝑒 𝑣 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}) = 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑡, 𝛽, [𝑣, 𝑒𝑖])
𝑠𝑝𝑙𝑖𝑡(𝑡, 𝛽, 𝑐𝑎𝑠𝑒 𝑒 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}) = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑡, 𝛽, 𝑒𝑠), where

𝑒𝑠 = 𝑙𝑒𝑡 𝑣 = 𝑒 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑣 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}
𝑠𝑝𝑙𝑖𝑡(𝑡, 𝛽, 𝑒) = 𝑑𝑟𝑖𝑣𝑒(𝑡, 𝛽)

Figure 15 Classes of HLL expressions

𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑙𝑒𝑡 𝑣𝑖 = 𝑒𝑖 𝑖𝑛 𝑒) = 0
𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑣 𝑒𝑖) = 0
𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑐 𝑒𝑖) = 0
𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝜆𝑣 → 𝑒) = 0
𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑐𝑜𝑛⟨(𝜆𝑣 → 𝑒0) 𝑒1⟩) = 1
𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑐𝑜𝑛⟨𝑓𝑔⟩) = 2

𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑐𝑜𝑛⟨𝑐𝑎𝑠𝑒 𝑐 𝑒′𝑗 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}⟩) = 3

𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑐𝑜𝑛⟨𝑐𝑎𝑠𝑒 𝑣 𝑒′𝑗 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}⟩) = 4

If the configurations 𝑒′ and 𝑒′′ are incommensurable, we split the lower con-
figuration. In a higher-order setting, this operation is a bit complicated, because

15

of bound variables in case-expressions. In order to ensure termination, it is de-
sirable for the splitting to produce expressions that are smaller in size, than the
original expression.

Definition 21 (Splitting of configuration). Splitting of HLL configurations is
performed according to the rules in Fig. 14.

A feature of the splitting thus defined is the processing of case-expressions.
If a selector of a case-expression is a variable, then we perform a step similar to
a driving step, but without positive information propagation, thus ensuring that
the size of all expressions decreases. If a selector is not a variable, we extract the
selector first.

An obvious disadvantage of the above approach is that the splitting of case-
expressions is performed without taking into account the structure of the upper
configuration (embedded in the lower one). Fortunately, the supercompiler HOSC
is designed in such a way that splitting is rarely required.

5 Supercompiler HOSC 1.5

The supercompiler HOSC 1.5 is a parameterized supercompiler SCijk, which,
given different parameters, is able to produce various residual programs. Gener-
ating several residual programs may be of interest in cases where supercompilation
is used for program analysis, for example for detecting improvement lemmas [12].

Before defining concrete functions 𝑤ℎ𝑖𝑠𝑡𝑙𝑒 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠, implemented
in SCijk, we have to introduce a few definitions.

Definition 22 (Classes of HLL expressions). All HLL expressions are divided
into 5 classes according to the rules in Fig. 15.

Definition 23 (Trivial node). A node 𝛽 is trivial if 𝛽.𝑒𝑥𝑝𝑟 is either an observable
or a let-expression. (𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝛽.𝑒𝑥𝑝𝑟) = 0)

Definition 24 (𝛽-transient node). A node 𝛽 is 𝛽-transient if 𝛽.𝑒𝑥𝑝𝑟 = 𝑐𝑜𝑛⟨(𝜆𝑣0 →
𝑒0) 𝑒1⟩. (𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝛽.𝑒𝑥𝑝𝑟) = 1)

Definition 25 (Global node). A node 𝛽 is global if
𝛽.𝑒𝑥𝑝𝑟 = 𝑐𝑜𝑛⟨𝑐𝑎𝑠𝑒 𝑣 𝑒′𝑗 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}⟩. (𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝛽.𝑒𝑥𝑝𝑟) = 4)

Definition 26 (Local node). All nodes except global ones are local.

Definition 27 (Candidate for folding). All nodes except for trivial and 𝛽-transient
ones are candidates for folding. (𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝛽.𝑒𝑥𝑝𝑟) > 1)

Remark 28 (Rationale for choosing candidates for folding). If we consider 𝛽-
transient nodes as candidates for folding, then all supercompilers (defined below)
produce poor residual programs. The elimination of 𝛽-transient nodes from can-
didates for folding is safe for termination, since it is impossible to get an infinite
path in a partial process tree without a candidate.

16

Definition 29 (Relevant ancestors). The relevant (with respect to control) an-
cestors of 𝛽 are defined as follows:

∙ All global ancestors 𝛼𝑖 of 𝛽, which are candidates, if 𝛽 is a global node.

∙ All local ancestors 𝛼𝑖 of 𝛽, such that there are no global nodes between 𝛼𝑖

and 𝛽, if 𝛽 is a local node.

Now let us consider a concrete algorithm 𝑆𝐶𝑖𝑗𝑘, which depends on three pa-
rameters:

1. 𝑖 – Which homeomorphic embedding should be used as a whistle: E*
𝑐 (+) or

E𝑐 (−)?

2. 𝑗 – Whether to partition the nodes into global and local ones (+) or not
(−)?

3. 𝑘 – Whether to require the candidates for folding to belong to the same
expression class (+) or not (−)?

More formally, the operations 𝑤ℎ𝑖𝑠𝑡𝑙𝑒 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠 for supercompiler
SCijk are defined as follows:

∙ 𝑤ℎ𝑖𝑠𝑡𝑙𝑒(𝑒1, 𝑒2) =

– 𝑒1 E𝑐 𝑒2, if 𝑗 = − and 𝑘 = −
– 𝑒1 E*

𝑐 𝑒2, if 𝑗 = + and 𝑘 = −
– 𝑒1 E𝑐 𝑒2 if 𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑒1) = 𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑒2), if 𝑗 = − and 𝑘 = +

– 𝑒1 E*
𝑐 𝑒2 if 𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑒1) = 𝑒𝑥𝑝𝐶𝑙𝑎𝑠𝑠(𝑒2), if 𝑗 = + and 𝑘 = +

∙ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠(𝛽) =

– all candidates that are ancestors of 𝛽, if 𝑗 = −
– all relevant ancestors of 𝛽, if 𝑗 = +

So the algorithm SCijk defines eight variations of the generic supercompilation
algorithm.

Theorem 30 (Correctness). All supercompilers SCijk produce residual programs
that are equivalent to the source ones.

Proof. Without the operation of splitting of case-expressions, all defined super-
compilers satisfy the transformation relation 𝐻𝑂𝑆𝐶 [10]. The operation of split-
ting of case-expressions is used in deforestation, and its correctness is shown in
[15].

Theorem 31 (Termination). All supercompilers SCijk terminate for any well-
typed input program.

Proof. Typing ensures that any sequence of consecutive 𝛽-transient nodes is finite,
so we can exclude 𝛽-transient nodes from our consideration. Relations E and E*

17

Figure 16 Tests

length (concat xs) ∼= sum (map length xs) (1)
map f (append xs ys) ∼= append (map f xs) (map f ys) (2)
filter p (map f xs) ∼= map f (filter (compose p f) xs) (3)
map f (concat xs) ∼= concat (map (map f) xs) (4)
iterate f (f x) ∼= map f (iterate f x) (5)
map (compose f g) ∼= compose (map f) (map g) (6)
map f xs ∼= join xs (compose return f) (7)

Figure 17 Comparing supercompilers

Sc−−− Sc−+− Sc−−+ Sc−++ Sc+−− Sc++− Sc+−+ Sc+++

(1) - - - - - + - +

(2) - + + + - + + +

(3) - + - + - + - +

(4) - - - - - + - +

(5) - - + + - - + +

(6) - + + + - + + +

(7) + + + + + + + +

are well-quasi-order on a set of expressions labeling a partial process tree. The ter-
mination of a supercompiler without global/local control follows from Lemma 38
in [9]. It is easy to show that the partition of nodes into global and local ones does
not affect the termination properties of the supercompiler. Indeed, local control
ensures that any infinite path in a partial process tree has only finite portions of
consecutive local nodes. So there should be an infinite number of global nodes in
this path, but global control does not allow this situation.

The termination of all supercompilers is ensured in a more elegant way than it
was done in the supercompiler HOSC 1.1 [9], where the candidates were defined
depending on the size of the expression produced by a reduction step.

The additional requirement that, to be compared, the configurations belong to
the same class of expressions is, to some extent, similar to Turchin’s “stack” whis-
tle [25]. If configurations are represented as stacks, then the equality of expression
classes corresponds to the equality of prefixes of stacks. And the requirement that
the configurations be coupled, ensures the equality of suffixes of stacks.

6 Comparing supercompilers

Some recent works on supercompilation have studied the influence of different
aspects of supercompilation algorithms on program speedup. However, little at-
tention has been paid to the aspects of supercompilation related to its fitness for
program analysis.

18

Figure 18 Definitions of functions for tests

data List a = Nil | Cons a (List a);

data Nat = Z | S Nat;

data Boolean = True | False;

data Pair a b = P a b;

compose = 𝜆f g x → f (g x);

outl = 𝜆p → case p of { P a b → a;};

outr = 𝜆p → case p of { P a b → b;};

uncurry = 𝜆f p → case p of {P x y → f x y;};

curry = 𝜆f b c → f (P b c);

cond = 𝜆p f g a → case (p a) of {True → f a; False → g a;};

foldn = 𝜆c h x → case x of {

Z → c;

S x1 → h (foldn c h x1);

};

plus = foldn (𝜆x → x) (𝜆f y → S (f y));

foldr = 𝜆c h xs → case xs of {

Nil → c;

Cons y ys → h y (foldr c h ys);

};

concat = foldr Nil append;

sum = foldr Z plus;

filter = 𝜆p → foldr Nil

(curry (cond (compose p outl) (uncurry (𝜆x xs → Cons x xs)) outr));

iterate = 𝜆f x → Cons x (iterate f (f x));

length = foldr Z (𝜆x y → S y);

join = 𝜆m k → foldr Nil (compose append k) m;

return = 𝜆x → Cons x Nil;

map = 𝜆f → foldr Nil (𝜆x xs → Cons (f x) xs);

append = 𝜆xs ys → case xs of {

Nil → ys;

Cons x1 xs1 → Cons x1 (append xs1 ys);

};

In order to compare the 8 instances of the supercompiler Scijk, we use the
following “benchmark” task: proving the equivalence of expressions [11]. All ex-
pressions used in the tests involve higher-order functions and (potentially) infinite
data structures. The functions over pairs, lists and numbers used in the tasks are
shown in Fig. 18. The results obtained are shown in Fig. 16. A supercompiler is
considered to have passed a test if it has been able to transform both sides of the
equality to the same syntactic form.

The results of the experiment, shown in Fig. 17, demonstrate that the best
combination of options is the refined homeomorphic embedding, the partition of

19

nodes into local and global ones and the partition of expressions according to their
redex. That is, additional tricks (the partition of nodes into local and global ones
and the partition of expressions according to their redex) are not as powerful as
the use of the refined homeomorphic embedding E*

𝑐 .
In order to get some insight into the peculiarities of the refined homeomorphic

embedding E*, let us compare the behavior of the supercompilers Sc−++ and
Sc+++ when they transform the expression map f (concat xs). The whistle
blows after a few steps of the supercompiler Sc−++:

case

case xs of {

Nil → Nil;

Cons v54 v55 → (append v54) (foldr Nil append v55);

}

of {

Nil → Nil;

Cons v56 v57 →
(𝜆v58 v59 → Cons (f v58) v59)

v56 (foldr Nil (𝜆v60 v61 → Cons (f v60) v61) v57);

}

E𝑐

case

case v54 of {

Nil → foldr Nil append v55;

Cons v87 v88 → Cons v87 (append v88 (foldr Nil append v55));

}

of {

Nil → Nil;

Cons v89 v90 →
(𝜆v91 v92→ Cons (f v91) v92)

v89 (foldr Nil (𝜆v93 v94→ Cons (f v93) v94) v90);

}

The embedded expression is generalized by the supercompiler Sc−++ in the
following way:

let

v100 = case xs of {

Nil → Nil;

Cons v54 v55 → (append v54) (foldr Nil append v55);

}

in

case v100 of {

Nil → Nil;

Cons v89 v90 →
(𝜆v91 v92→ Cons (f v91) v92)

v89 (foldr Nil (𝜆v93 v94→ Cons (f v93) v94) v90);

}

20

Figure 19 map f (concat xs): transformed by Sc−++

letrec f1 = 𝜆z →
case z of { Nil → Nil; Cons p q → Cons (f p) (f1 q); }

in

f1

(letrec

g = 𝜆x → case x of {

Nil → Nil;

Cons k l →
letrec h = 𝜆y → case y of

{ Nil → g l; Cons s t → Cons s (h t); } in h k;

}

in g xs)

Figure 20 concat (map (map f) xs): transformed Sc+++

letrec

g = 𝜆x →
case x of {

Nil → Nil;

Cons p q →
letrec h = 𝜆y → case y of

{ Nil → (g q); Cons s t → Cons (f s) (h t); }

in h p;

}

in g xs

However, when using the refined homeomorphic embedding the aforemen-
tioned configurations are not coupled and the transformation proceeds without
over-generalization.

The residual programs produced by supercompilers Sc−++ and Sc+++ are
shown in Fig. 19 and Fig. 20, respectively.

7 Discussion

As a general idea [24, 25], supercompilation is based on two sub-ideas: iden-
tifying (potentially) infinite branches in a partial process tree and generalizing
some configurations (in order to fold the process tree into a finite graph). The
main problem of the designer of a concrete supercompiler is the development of a
reasonable generalization strategy. An aggressive strategy may produce negative
effects on the depth of program analysis and transformation. On the other hand,
a passive generalization strategy may result in non-termination of the supercom-

21

piler.
The idea to use homeomorphic embedding relation for detecting infinite branches

[19] proved to be extremely fruitful and robust. The next idea is to generalize
one of the configurations (either the embedded5 one or the embedding one) by
replacing it with the most specific generalization of the two configurations.

However, a concrete implementation of supercompilation has to rely on a spe-
cific homeomorphic embedding relation6 and an algorithm of generalization.

Sørensen was the first to give a complete and self-contained description of
a supercompilation algorithm for a first-order, call-by-name functional language
[17]. The expressions in Sørensen’s language does not contain bound variables, so
that the homeomorphic embedding and the generalization algorithm do not have
to deal with bound variables. The same language extended with case-expressions
was considered in [19, 16]. Since case-expressions do introduce bound variables,
the homeomorphic embedding had to be adapted for expressions with bound
variables. However, bound and free variables are treated in the same way (as in the
relation E considered above). Besides, the paper [19] gives no explicit description
of an algorithm of generalization for expressions with bound variables. However,
the algorithm of generalization for first-orders expressions is not adaptable in a
straightforward way for higher-order expressions.

Recent papers on supercompilation [7, 13] also use the adapted relation E,
but do not go into details of generalization.

A difficulty in formalizing the generalization algorithm for higher-order ex-
pressions is that, in order to be correct, it must take into account a number of
strict syntactic conventions concerning bound and free variables. Unfortunately,
such conventions are often formulated in a rather informal and imprecise way.

The current paper presents a formal and complete algorithm for computing a
most specific generalization of two HLL expressions. This algorithm is based on
syntactic conventions about substitutions allowed with respect to expressions.

The current paper also demonstrates that the use of the pure embedding
relation E for higher-order expression in an “analyzing” supercompiler results in
poor residual programs, while the use of the refined homeomorphic embedding
relation E* results in an evident improvement in the depth of program analysis
and transformation [11, 12].

A number of recent works on supercompilation have studied the influence of
different aspects of supercompilation algorithms on program speedup. However,
little attention has been paid to the aspects of supercompilation related to its
fitness for program analysis. In this paper we have compared 8 variants of a
supercompiler for a higher-order call-by-name language and have shown that the
best combination of options is the use of the refined homeomorphic embedding,
the partition of nodes into local and global ones and the partition of expressions
according to their redex.

5The most popular variant.
6Since homeomorphic relation is a quite general notion

22

However, it would be interesting to study more possible variations of the su-
percompilation algorithm. In particular, in case of embedding, we have always
generalized the upper (embedded) configuration, but it would be interesting to
also consider the generalization of the lower (embedding) configuration.

Acknowledgements

The author expresses his gratitude to Sergei Romanenko, to all participants of
Refal seminar at Keldysh Institute for useful comments and fruitful discussions
of this work and to Natasha for her love and patience.

References

[1] M. Abadi, L. Cardelli, P. Curien, and J. Lévy. Explicit substitutions. Journal
of functional programming, 1(04):375–416, 1991.

[2] H. Barendregt. The lambda calculus: its syntax and semantics. North-
Holland, 1984.

[3] H. Curry, R. Feys, and W. Craig. Combinatory logic, volume 1. North-
Holland, 1958.

[4] N. De Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34:381–392, 1972.

[5] R. Glück and M. H. Sørensen. A roadmap to metacomputation by super-
compilation. In Selected Papers From the International Seminar on Partial
Evaluation, volume 1110 of LNCS, pages 137–160, 1996.

[6] T. Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Functional programming languages and computer architecture, volume 201
of LNCS, pages 190–203, 1985.

[7] P. Jonsson and J. Nordlander. Positive Supercompilation for a higher order
call-by-value language. In IFL 2007, pages 441–456, 2007.

[8] I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63,
Keldysh Institute of Applied Mathematics, Moscow, 2009.

[9] I. Klyuchnikov. Supercompiler HOSC 1.1: proof of termination. Preprint 21,
Keldysh Institute of Applied Mathematics, Moscow, 2010.

[10] I. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31,
Keldysh Institute of Applied Mathematics, Moscow, 2010.

[11] I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order
terms by means of supercompilation. In Perspectives of Systems Informatics,
volume 5947 of LNCS, pages 193–205, 2010.

23

[12] I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation.
In Second International Workshop on Metacomputation in Russia, 2010.

[13] N. Mitchell and C. Runciman. A supercompiler for core haskell. In Imple-
mentation and Application of Functional Languages, volume 5083 of Lecture
Notes In Computer Science, pages 147–164, 2008.

[14] K. H. Rose. Explicit substitution – tutorial & survey. Technical Report
LS-96-3, BRICS, 1996.

[15] D. Sands. Proving the correctness of recursion-based automatic program
transformations. Theoretical Computer Science, 167(1-2):193–233, 1996.

[16] M. Sørensen, R. Glück, and N. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

[17] M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of
positive information propagation. Master’s thesis, Københavns Universitet,
Datalogisk Institut, 1994.

[18] M. H. Sørensen. Convergence of program transformers in the metric space
of trees. In Mathematics of Program Construction, volume 1422 of LNCS,
pages 315–337, 1998.

[19] M. H. Sørensen and R. Glück. An algorithm of generalization in positive
supercompilation. In J. W. Lloyd, editor, Logic Programming: The 1995
International Symposium, pages 465–479, 1995.

[20] M. H. Sørensen and R. Glück. Introduction to supercompilation. In Partial
Evaluation. Practice and Theory, volume 1706 of LNCS, pages 246–270, 1998.

[21] A. Stoughton. Substitution revisited. Theor. Comput. Sci., 59(3):317–325,
1988.

[22] The GHC Team. Haskell 2010 language report. http://haskell.org/

definition/haskell2010.pdf, 2010.

[23] A. Tolmach, T. Chevalier, and The GHC Team. An external representation
for the GHC core language. http://www.haskell.org/ghc/docs/6.12.2/

core.pdf, 2010.

[24] V. Turchin. The concept of a supercompiler. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

[25] V. F. Turchin. The algorithm of generalization in the supercompiler. In
Partial Evaluation and Mixed Computation. Proceedings of the IFIP TC2
Workshop, 1988.

http://haskell.org/definition/haskell2010.pdf
http://haskell.org/definition/haskell2010.pdf
http://www.haskell.org/ghc/docs/6.12.2/core.pdf
http://www.haskell.org/ghc/docs/6.12.2/core.pdf

	Untitled.pdf
	prep2010_62
	Introduction
	SLL: embedding and generalization
	HLL: embedding and generalization
	A generic supercompilation algorithm
	Supercompiler HOSC 1.5
	Comparing supercompilers
	Discussion
	References

