
Keldysh Institute  •  Publication search

Keldysh Institute preprints  •  Preprint No. 81, 2010

Klyuchnikov I.G.

Towards Effective Two-Level
Supercompilation

Recommended form of bibliographic references:   Klyuchnikov I.G. Towards Effective Two-Level
Supercompilation. Keldysh Institute preprints, 2010, No.  81, 28 p.   URL:
http://library.keldysh.ru/preprint.asp?id=2010-81&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2010-81&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/preprint.asp?id=2010-81&lg=e


KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Ilya Klyuchnikov

Towards effective two-level supercompilation

Moscow
2010



Ilya Klyuchnikov. Towards effective two-level supercompilation The
paper presents a number of improvements to the method of two-level supercom-
pilation: a fast technique of lemma discovering by analyzing the expressions in the
partial process tree, an enhancement to the algorithm of checking improvement
lemmas based on the normalization of tick annotations, and a few techniques of
finding simplified versions of lemmas discovered in the process of two-level super-
compilation.

Supported by Russian Foundation for Basic Research projects No. 08-07-
00280-a and No. 09-01-00834-a.
Илья Ключников. На пути к быстрой двухуровневой суперкомпи-
ляции Представлены некоторые усовершенствования к методу двухуровне-
вой суперкомпиляции: быстрый метод поиска лемм основанный на анализе
выражений в узлах частичного дерева процесса, улучшенный алгоритм рас-
познавания улучшающих лемм, основанный на нормализации аннотаций (“ти-
ков”), а также некоторые методы упрощения лемм, обнаруженных в процессе
двухуровневой суперкомпиляции.

Работа выполнена при поддержке проектов РФФИ № 08-07-00280-a и № 09-
01-00834-a.

Contents

1 Introduction 3

2 Transformation relation 𝐻𝑂𝑆𝐶2 4

3 Search for lemmas 7

4 Normalization of ticks 10

5 Multi-result supercompilation 14

6 Extraction of more general lemmas 17
6.1 Removing the common context . . . . . . . . . . . . . . . . . . . . 17
6.2 Generalization by abstracting common subexpressions . . . . . . . 19
6.3 On the power of homeomorphic embedding for lemma extraction . 20

7 Simplification of lemma syntax 20

8 Parameterized two-level supercompiler 21

9 Conclusion 23
9.1 Goals and methods of two-level supercompilation . . . . . . . . . . 23
9.2 Related work and further development . . . . . . . . . . . . . . . . 24

References 26



3

1 Introduction

A new method of multi-level supercompilation was suggested in [15]. It has been
shown that (1) multi-level supercompilation is superior to the classical (single-
level) supercompilation and (2) a practical implementation of multi-level super-
compiler is possible in principle.

However, little attention was paid to the efficiency of two-level supercompi-
lation. In the experimental “proof-of-concept” two-level supercompiler, an im-
provement lemma (𝑒, 𝑒′) for a given expression 𝑒 was generated by “blind search”:
just by enumerating all 𝑒′ not exceeding 𝑒 in size, followed by checking (𝑒, 𝑒′) for
being an improvement lemma.

The purpose of this work is, first, to present some techniques of speeding up
the search for improvement lemmas by narrowing the search space and, second, to
increase the number of improvement lemmas provable by supercompilation. We
consider the following ideas:

1. The detection of lemmas should be based on the analysis of the structure
of expressions appearing in the nodes of a partial process tree, rather than
on a brute force search.

2. The number of lemmas recognizable by supercompilation can be increased
by normalizing annotations (“ticks”) in residual expressions.

3. The “upper” and “lower” supercompilers may differ not only in how they
behave when the whistle blows, but also in other details of their behavior,
which enables more lemmas to be recognized.

4. The lemmas discovered by a two-level supercompiler often happen to be
rather “specific”: cumbersome and only applicable in rare cases. However,
we suggest some techniques of extracting more abstract, more reusable and
more “human-friendly” lemmas from the “specific” ones. We consider two
approaches:

(a) Removing the common context.

(b) Generalization by abstracting common subexpressions.

In this work we consider only the case of two-level supercompilation. Thus,
for the sake of brevity, we use the terms “lower” and “upper” supercompilers,
when referring to the “first-level” and “second-level” supercompilers.

We use the same examples as in [15] and show that the lemmas that had
been automatically discovered in [15] by blind search now can be found out more
efficiently by analyzing expressions appearing in the partial process tree.

We give an additional example demonstrating that two-level supercompilation
is capable of achieving asymptotic runtime improvements (namely, super linear
speed-ups). Thus, despite the fact that the supercompiler HOSC was designed as
a program analysis tool, it may also be useful for program optimization.



4

The rest of the paper is organized as follows. We give a number of examples
showing that lemmas can be detected in a fast and effective way by analyzing
paths in the partial process tree. Section 2 presents two-level supercompilation as
a transformation relation and extends the algorithm of constructing the residual
program from a partial process tree so that it now inserts tick annotations into
residual programs. Section 3 suggests a simple technique capable of discovering
useful improvement lemmas by analyzing the partial process tree, rather than
by blind search. Section 4 presents a technique, based on reducing tick annota-
tions to a normal form, which increases the number of lemmas recognizable by
supercompilation. Section 5 shows that the results produced by two-level super-
compilation may be improved by using different options for the upper and lower
supercompilers, which may (and should) differ in their behavior. Moreover, a
two-level supercompiler may automatically try various combinations of options
for the upper and lower supercompilers, to produce several (equivalent, yet differ-
ent) residual programs, thereby implementing a more general idea of multi-result
supercompilation. Some lemmas automatically discovered by a two-level super-
compiler happen to be too “specific” and cumbersome. Section 6 describes two
techniques of extracting more general and abstract lemmas from “specific” ones.
Section 7 shows that, in some cases, lemmas discovered by a two-level super-
compiler can be simplified by term rewriting guided by an analysis of the partial
process tree. Section 8 gives a “recipe” for remaking an ordinary supercompiler
into a two-level one, presenting a parameterized two-level supercompilation algo-
rithm.

Finally, in Section 9, we explain the rationale behind two-level supercompi-
lation, its goals and purposes, and consider related works and possible lines of
further research.

The residual programs and lemmas presented in the paper have been produced
by a two-level supercompiler HLSC constructed by modifying the supercompiler
HOSC 1.5 described in [10, 12], whose behavior may be controlled by a num-
ber of options. For the purposes of presentation, we have manually chosen the
combinations of options that result in producing interesting residual programs of
reasonable size. However, in the case of multi-result supercompilation, in order to
achieve best results, a two-level supercompiler should automatically try various
combinations of options.

2 Transformation relation 𝐻𝑂𝑆𝐶2

Multi-level supercompilation was described in [15] a bit informally – as an ex-
tension of some existing supercompiler. In this section we will consider two-level
supercompilation in more abstract terms – as a transformation relation (Fig. 1).
The base (single-level) supercompiler is a supercompiler implementing the trans-
formation relation 𝐻𝑂𝑆𝐶 [13]. In order to distinguish supercompilers belonging
to different levels, we will designate the level of a supercompiler by a superscript:



5

Figure 1 Transformation relations

(a) 𝐻𝑂𝑆𝐶1

1 𝑡 =
�� ��𝑒0

2 while 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑡) do
3 𝛽 = 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑒𝑎𝑓(𝑡)
4 𝑡 = 𝑐ℎ𝑜𝑖𝑐𝑒{𝑑𝑟𝑖𝑣𝑒*(𝑡, 𝛽), 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒(𝑡, 𝛽), 𝑓𝑜𝑙𝑑(𝑡, 𝛽)}
5 end

(b) 𝐻𝑂𝑆𝐶2

1 𝑡 =
�� ��𝑒0

2 while 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑡) do
3 𝛽 = 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑒𝑎𝑓(𝑡)
4 𝑡 = 𝑐ℎ𝑜𝑖𝑐𝑒{𝑑𝑟𝑖𝑣𝑒*(𝑡, 𝛽), 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒(𝑡, 𝛽), 𝑓𝑜𝑙𝑑(𝑡, 𝛽), 𝑎𝑝𝑝𝑙𝑦𝐿𝑒𝑚𝑚𝑎(𝑡, 𝛽)}
5 end

(c) auxiliary operations

𝑎𝑝𝑝𝑙𝑦𝐿𝑒𝑚𝑚𝑎(𝑡, 𝛽) 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑡, 𝛽, 𝑒′), where (𝛽.𝑒𝑥𝑝𝑟, 𝑒) – an improvement
lemma, detected by means of some transformation 𝐻𝑂𝑆𝐶1.

𝐻𝑂𝑆𝐶1, 𝐻𝑂𝑆𝐶2. The transformation relation 𝐻𝑂𝑆𝐶1 specifies a nondetermin-
istic algorithm of constructing a partial process tree (Fig. 1a, the details and the
proof of correctness of the transformation relation 𝐻𝑂𝑆𝐶1 can be found in [13]).

The correctness of the transformation relation means that a residual program
is equivalent to an original one. The equivalence is understood as follows:

Definition 1 (Equivalence). Two HLL-expressions 𝑒1 and 𝑒2 are operationally
equivalent, 𝑒1 ∼= 𝑒2, if for all contexts 𝐶, such that 𝐶[𝑒1] and 𝐶[𝑒2] are closed,
either 𝐶[𝑒1] and 𝐶[𝑒2] both converge or both diverge.

The parameterized supercompiler 𝑆𝐶1
𝑖𝑗𝑘, which is guaranteed to terminate and

satisfies the transformation relation 𝐻𝑂𝑆𝐶1, was described in [12].
The paper [14] suggested a way of proving the equivalence of expressions via

normalization by supercompilation.
The goal of multi-level supercompilation is to construct a perfect partial pro-

cess tree (a tree built without a generalization of configurations). The main idea
is “to silence the whistle” by using lemmas: a “bad” configuration (activating
the whistle) is replaced by a “good” one (silencing the whistle). In some cases
it results in building a perfect partial process tree or, at least, to increasing the
depth of transformation.

In order to guarantee the correctness of two-level supercompilation, we require
all the lemmas to be improvement lemmas [17].



6

Figure 2 Generation of a residual program annotated with ticks

𝒞 [[𝛼]]𝑡,Σ
⇒ 𝑙𝑒𝑡𝑟𝑒𝑐 𝑓 ′ = X[[𝛼.𝑒𝑥𝑝𝑟]](𝜆𝑣𝑖 → (𝒞′[[𝛼.𝑒𝑥𝑝𝑟]]𝑡,𝛼,Σ′)𝜃

′) if ⌈𝛼 ' 𝑡⌉ ≠ ∙ (𝐶1)

𝑖𝑛 𝑓 ′𝑣′𝑖
where

[𝛽𝑖] = ⌈𝛼 ' 𝑡⌉, 𝜃𝑖 = 𝛼.𝑒𝑥𝑝𝑟 4 𝛽𝑖.𝑒𝑥𝑝𝑟,

𝑣′𝑖 = 𝑑𝑜𝑚𝑎𝑖𝑛(
⋃︀

𝜃𝑖), 𝜃
′ = {𝑣′𝑖 := 𝑣𝑖},

Σ′ = Σ ∪ (𝛼, 𝑓 ′ 𝑣𝑖), 𝑓
′ and 𝑣𝑖 are fresh

⇒ 𝑓 ′
𝑠𝑖𝑔𝜃 if ⌈𝛼 � 𝑡⌉ ̸= ∙ (𝐶2)
where

𝑓 ′
𝑠𝑖𝑔 = Σ(⌈𝛼 � 𝑡⌉), 𝜃 = ⌈𝛼 � 𝑡⌉.𝑒𝑥𝑝𝑟 4 𝛼.𝑒𝑥𝑝𝑟

⇒ X[[𝛼.𝑒𝑥𝑝𝑟]](𝒞′[[𝛼.𝑒𝑥𝑝𝑟]]𝑡,𝛼,Σ) otherwise (𝐶3)

𝒞′[[𝑙𝑒𝑡 𝑣𝑖 = 𝑒𝑖; 𝑖𝑛 𝑒]]𝑡,𝛼,Σ ⇒ 𝒞[[𝛾′]]𝑡,Σ{𝑣𝑖 = 𝒞[[𝛾′
𝑖]]𝑡,Σ} (𝐶′

1)

𝒞′[[𝑣 𝑒𝑖]]𝑡,𝛼,Σ ⇒ 𝑣 𝒞[[𝛾𝑖]]𝑡,Σ (𝐶′
2)

𝒞′[[𝑐 𝑒𝑖]]𝑡,𝛼,Σ ⇒ 𝑐 𝒞[[𝛾𝑖]]𝑡,Σ (𝐶′
3)

𝒞′[[𝜆𝑣0 → 𝑒0]]𝑡,𝛼,Σ ⇒ 𝜆𝑣0 → 𝒞[[𝛾′]]𝑡,Σ (𝐶′
4)

𝒞′[[𝑐𝑜𝑛⟨𝑐𝑎𝑠𝑒 𝑣 𝑒′𝑗 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}⟩]]𝑡,𝛼,Σ

⇒ 𝑐𝑎𝑠𝑒 𝒞[[𝛾′]]𝑡,Σ′𝑜𝑓{𝑝𝑖 → 𝒞[[𝛾′
𝑖]]𝑡,Σ′ ;} (𝐶′

5)

𝒞′[[𝑐𝑜𝑛⟨(𝜆𝑣0 → 𝑒0) 𝑒1⟩]] ⇒ 𝒞[[𝛾′]]𝑡,Σ (𝐶′
6)

𝒞′[[𝑐𝑜𝑛⟨𝑐𝑎𝑠𝑒 𝑐 𝑒′𝑗 𝑜𝑓 {𝑝𝑖 → 𝑒𝑖;}⟩]]𝑡,𝛼,Σ ⇒ 𝒞[[𝛾′]]𝑡,Σ (𝐶′
7)

𝒞′[[𝑐𝑜𝑛⟨𝑓⟩]]𝑡,𝛼,Σ ⇒ 𝒞[[𝛾′]]𝑡,Σ (𝐶′
8)

X[[𝑐𝑜𝑛⟨𝑓⟩]](𝑒) = X𝑒 (𝑇1)
X[[𝑒′]](𝑒) = 𝑒 (𝑇2)

Definition 2 (Improvement lemma). An ordered pair of operationally equivalent
expressions (𝑒1, 𝑒2) is an improvement lemma, 𝑒1 ◁̃︀𝑠 𝑒2, if for all contexts 𝐶, such
that 𝐶[𝑒1] and 𝐶[𝑒2] are closed, if the computation of 𝐶[𝑒1] terminates using 𝑛
function calls, then the computation of 𝐶[𝑒2] also terminates, but uses no more
than 𝑛 function calls.

It should be noted that in [17] Sands only gives a definition of an improvement
lemma, but provides no clue how to mechanically check a pair of expressions for
being an improvement lemma. In [15] we suggested a method based on supercom-
pilation which, in many cases, succeeds in automatically detecting improvement
lemmas of practical interest.

The method is based on a small modification of the algorithm generating the
residual program 𝑝𝑟𝑜𝑔′ from a partial process tree 𝑡. The residual program is
built according to the rules in Fig. 2:

𝑝𝑟𝑜𝑔′ = 𝒞 [[𝑡.𝑟𝑜𝑜𝑡]]𝑡,{}

When processing a configuration in the form 𝑐𝑜𝑛⟨𝑓⟩, ticks (annotations X) are



7

Figure 3 Algorithm of improvement lemma detection

𝑚 ≥ 𝑛 ∀𝑖 : 𝑒𝑖 ◁
X̃︁ 𝑒′𝑖

𝑚𝜑(𝑒1, . . . , 𝑒𝑘) ◁X̃︁ 𝑛𝜑(𝑒′1, . . . , 𝑒
′
𝑘)

𝒮𝒞[[𝑒1]] ≡ 𝒮𝒞[[𝑒2]] 𝒮𝒞[[𝑒1]] ◁X̃︁ 𝒮𝒞[[𝑒2]]

𝑒1 ◁̃︀𝑠 𝑒2
Figure 4 or (even x) (odd x): input program

data Bool = True | False;

data Nat = Z | S Nat;

or (even m) (odd m) where

even = 𝜆x → case x of { Z → True; S x1 → odd x1; };

odd = 𝜆x → case x of { Z → False; S x1 → even x1; };

or = 𝜆x y → case x of { True → True; False → y; };

inserted in the residual program 𝑝𝑟𝑜𝑔′, showing that in this particular place in
the original program there was a function call.

The supercompiler thus modified is used as follows. Suppose, (𝑒1, 𝑒2) has to
be checked for being an improvement lemma. Then 𝑒1 and 𝑒2 are supercompiled
and corresponding residual programs 𝑒′1 and 𝑒′2 are compared. If 𝑒′1 are 𝑒′2 the
same (modulo tick annotations and alpha renaming), we conclude that 𝑒1 and 𝑒2
are operationally equivalent and then perform an additional test. The meaning of
the second test is to check that each subexpression of 𝑒′1 is annotated by no less
number of ticks than the corresponding subexpression of 𝑒′2. If this is the case,
we conclude that 𝑒2 is an improvement of 𝑒1.

This method of detecting improvement lemmas is the basis of the nondeter-
ministic two-level supercompilation algorithm 𝐻𝑂𝑆𝐶2 shown in Fig. 1b. This
algorithm, in some cases, choses an arbitrary expression 𝑒 and checks, whether
(𝛽.𝑒𝑥𝑝𝑟, 𝑒) is an improvement lemma. If this check succeeds, then the lemma thus
obtained is applied.

However, from a practical standpoint, we need a deterministic algorithm, dis-
covering improvement lemmas in a systematic way, rather than by “inspiration”
or blind search.

3 Search for lemmas

Let us consider the transformation of the program in Fig. 4 by the supercompiler
𝑆𝐶2

+−−. After a few steps an embedding of configurations is detected:

𝑒1 E
*
𝑐 𝑒2,



8

Figure 5 𝑒1 E*
𝑐 𝑒2

(a) 𝑒1

case (even m) of { True → True; False → odd m; }

(b) 𝑒2

case (even n) of { True → True; False → odd (S (S n)); }

where expressions 𝑒1 and 𝑒2 are shown in Fig. 5a and Fig. 5b, correspondingly.
Let 𝑡 be a partial process tree. We will write 𝑒 ∈ 𝑡 if there is a node in 𝑡

labelled by the expression 𝑒.
We may try to find an improvement lemma by blind search, but this approach

is not effective. Besides, a lemma thus found may turn out to be “alien” to
the original program, which may result in constructing a partial process tree
that looks “unnatural” and “obscure” from the human viewpoint. However, the
expressions labelling nodes of partial process tree may be used as the source of
syntactic material for the search for lemmas!

Let us try to find an expression 𝑒′ ∈ 𝑡, such that:

𝑆𝐶1
+−−[[𝑒2]] ≡ 𝑆𝐶1

+−−[[𝑒′]] 𝑆𝐶1
+−−[[𝑒2]] ◁X̃︁ 𝑆𝐶1

+−−[[𝑒′]]

If we succeed, the correctness of the replacement of 𝑒2 with 𝑒′ is guaranteed. Also
it seems reasonable to try first those expressions 𝑒′ ∈ 𝑡, that have something in
common with the expression 𝑒2. But, if the expression 𝑒1 is embedded into 𝑒2, it
certainly means that 𝑒1 are 𝑒2 syntactically similar, and 𝑒1 is smaller in size than
𝑒2. So, why not to check whether the pair (𝑒2, 𝑒1) is an improvement lemma?

This trick seems to be quite natural, but, unfortunately, in this simple form,
it is only applicable in rare cases. However, there may be used the following small
improvement.

Let us find an expression 𝑒′ ∈ 𝑡, such that 𝑆𝐶1
+−−[[𝑒2]] and 𝑆𝐶1

+−−[[𝑒′]] are the
same, modulo a variable renaming1:

𝑆𝐶1
+−−[[𝑒2]] ≡ 𝑆𝐶1

+−−[[𝑒′]]{𝑣𝑖 := 𝑣′𝑖}

It follows that
𝑆𝐶1

+−−[[𝑒2]] ≡ 𝑆𝐶1
+−−[[𝑒′{𝑣𝑖 := 𝑣′𝑖}]]

So, if

𝑆𝐶1
+−−[[𝑒2]] ≡ 𝑆𝐶1

+−−[[𝑒′]]{𝑣𝑖 := 𝑣′𝑖} 𝑆𝐶1
+−−[[𝑒2]] ◁X̃︁ 𝑆𝐶1

+−−[[𝑒′{𝑣𝑖 := 𝑣′𝑖}]],

then an upper supercompiler can correctly replace 𝑒2 by 𝑒′{𝑣𝑖 := 𝑣′𝑖} when con-
structing a partial process tree. The leading candidate for a lemma will be an
expression embedded into the current configuration.

1All 𝑣′𝑖 are different



9

Figure 6 Supercompiled expressions

(a) 𝑆𝐶1
+−−[[𝑒1]]

letrec f = X𝜆x →
case (x) of {

S v32 → Xcase v32 of {

S v35 → f v35;

Z → letrec g = X𝜆y →
case y of {

S v38 → Xcase v38 of { S v41 → g v41; Z → True; };

Z → False;

}

in g m;

};

Z → True;

}

in f m

(b) 𝑆𝐶1
+−−[[𝑒2]]

letrec f = X𝜆x →
case (x) of {

S v64 → Xcase v64 of {

S v67 → f v67;

Z → XXletrec g = X𝜆y →
case y of {

S v76 → Xcase v76 of { S v79 → g v79; Z → True; };

Z → False;

}

in g n;

};

Z → True;

}

in f n

Let us come back to the example discussed for far (and to the concrete 𝑒1
and 𝑒2). The corresponding residual expressions 𝑒′1 = 𝑆𝐶1

+−−[[𝑒1]] and 𝑒′2 =
𝑆𝐶1

+−−[[𝑒2]] are shown in Fig. 6a and 6b. In this case the supercompiled expres-
sions are renaming of each other:

𝑆𝐶1
+−−[[𝑒2]] ≡ 𝑆𝐶1

+−−[[𝑒1]]{𝑚 := 𝑛}

Hence, it is shown that (𝑒2, 𝑒1{𝑚 := 𝑛}) is an improvement lemma. So, it means
that 𝑒2 can be replaced by 𝑒1{𝑚 := 𝑛}. Then there is an immediate possibility
for folding.

The result of two-level supercompilation is shown in Fig. 7.



10

Figure 7 or (even m) (odd m): the result of two-level supercompilation

letrec f = 𝜆w →
case w of {

Z → True;

S x → case x of { Z → True; S z → f z; };

}

in f m

Figure 8 even (dAcc m Z): input program

data Bool = True | False;

data Nat = Z | S Nat;

even (dAcc m Z) where

even = 𝜆x → case x of { Z → True; S x1 → odd x1; };

odd = 𝜆x → case x of { Z → False; S x1 → even x1; };

dAcc = 𝜆x y → case x of { Z → y; S x1 → dAcc x1 (S (S y)); };

Figure 9 𝑒3 E*
𝑐 𝑒4

(a) 𝑒3

case dAcc m Z of { S z → odd z; Z → True; }

(b) 𝑒4

case dAcc n (S (S Z)) of { S z → odd z; Z → True; }

Despite its simplicity, the technique described in this section enables us to
construct a two-level supercompiler, which, on the one hand, is quite efficient (in
terms of performance), and, on the other hand, is capable of performing deeper
transformations, than a one-level supercompiler.

4 Normalization of ticks

Let us consider another example from [15]. The source program is shown in Fig. 8.
Again, we use the supercompiler 𝑆𝐶2

+−−.
After a few steps, an embedding of configurations is detected:

𝑒3 E
*
𝑐 𝑒4,

where expressions 𝑒3 and 𝑒4 are represented in Fig. 9a and Fig. 9b, correspond-
ingly.



11

Figure 10 Supercompiled expressions

(a) 𝑆𝐶1
+−−[[𝑒3]]

letrec f = X𝜆x y →
case x of {

S v33 → f v33 (S (S y));

Z → letrec g = 𝜆z →
case z of {

S v36 → Xcase v36 of { S v39 → X(g v39); Z → False; };

Z → True;

}

in g y;

}

in f m Z

(b) 𝑆𝐶1
+−−[[𝑒4]]

letrec f = X𝜆x y →
case x of {

S v70 → f v70 (S (S y));

Z → Xletrec g = X𝜆z →
case z of {

S v79 → Xcase v79 of { S v82 → (g v82); Z → False; };

Z → True;

}

in g y;

}

in f n Z

Let us try to apply the technique from the previous section in this situation.
The corresponding residual expressions 𝑆𝐶1

+−−[[𝑒3]] and 𝑆𝐶1
+−−[[𝑒4]] are shown in

Fig. 10a and 10b. Again, the supercompiled expressions are renamings of each
other:

𝑆𝐶1
+−−[[𝑒4]] ≡ 𝑆𝐶1

+−−[[𝑒3]]{𝑚 := 𝑛}

So, we conclude that 𝑒3{𝑚 := 𝑛} ∼= 𝑒4. Unfortunately, checking tick annotations
of residual programs does not enable us to conclude that (𝑒4, 𝑒3{𝑚 := 𝑛}) is an
improvement lemma, since the following does not hold:

𝑆𝐶1
+−−[[𝑒4]] ◁X̃︁ 𝑆𝐶1

+−−[[𝑒3{𝑚 := 𝑛}]]

However, as can be proven by hand, (𝑒4, 𝑒3{𝑚 := 𝑛}) is an improvement lemma.
The problem is that tick annotations are, in a sense, “too exact”. What really

matters for the detection of improvement lemmas is the number of function calls
performed during evaluation, rather than the moments in which they take place.
The positions of tick annotations, however, do contain some information irrelevant



12

Figure 11 Normalization of ticks

X𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;} ⇒ 𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → X𝑒𝑖;} (𝑁1)

𝑐𝑎𝑠𝑒 X𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;} ⇒ 𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → X𝑒𝑖;} (𝑁2)
(X𝜆𝑥1 . . . 𝑥𝑛 → 𝑒) 𝑒1 . . . 𝑒𝑛 ⇒ (𝜆𝑥1 . . . 𝑥𝑛 → X𝑒) 𝑒1 . . . 𝑒𝑛 (𝑁3)
𝑙𝑒𝑡𝑟𝑒𝑐 𝑓 = X𝜆𝑥1 . . . 𝑥𝑛 → 𝑒0 𝑖𝑛 𝑒1⇒ 𝑙𝑒𝑡𝑟𝑒𝑐 𝑓 = 𝜆𝑥1 . . . 𝑥𝑛 → X𝑒0 𝑖𝑛 𝑒1 (𝑁4)

The rule 𝑁4 is applicable only if all occurrences of 𝑓 in expressions 𝑒0 and 𝑒1 are appli-
cations with at least 𝑛 arguments

to the estimation of the evaluation cost, so that two cost-equivalent expressions
can be annotated in different ways.

Fortunately, tick annotations can often be moved around the expression with-
out violating the correctness of tick counting. Hence, in some cases, two annotated
expressions may be transformed to the form in which they become comparable
(in terms of improvement).

The key idea is that the exact number of ticks matters only in cases where the
evaluation terminates. If the evaluation of an expression does not terminate, the
number of ticks is assumed to be “infinite”, so that adding to it a finite number
of ticks does not change the grand total.

Consider an arbitrary case-expressions annotated with a tick:

X𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → 𝑒𝑖;}

It turns out that this tick can be pushed inside the expression by placing a tick
at the start of each branch:

𝑐𝑎𝑠𝑒 𝑒0 𝑜𝑓 {𝑐𝑖 𝑣𝑖𝑘 → X𝑒𝑖;}

The correctness of this transformation is justified as follows. Suppose the evalu-
ation of the selector 𝑒0 terminates and costs 𝑛 ticks. Then, before evaluating a
branch, we have to take into account 1 + 𝑛 ticks for the original case-expression,
and 𝑛 + 1 ticks for the transformed one. Since 1 + 𝑛 = 𝑛 + 1, the grand total of
ticks in the both cases is the same. Now suppose that the evaluation of 𝑒0 does
not terminate. In this case no branch is evaluated, so that we have 1+∞ ticks for
the original expression and ∞ ticks for the transformed expression. But again,
the grand total of ticks is the same, because 1 +∞ =∞.

In [17] David Sands gives a number of “tick laws”. But, in order to construct
a tick normalization algorithm, we need a set of rewriting rules, rather than an
equivalence relation. A set of such rewrite rules is presented in Fig. 11. The first
three rules correspond to laws described by Sands in [17]. The last rule (the most
interesting one) corresponds to a new law.

It can be shown that the tick normalization procedure based on these rules
always terminates, the result not depending on the order in which the rules are
applied.



13

Figure 12 Result of ticks normalization

(a) 𝒩X(𝑆𝐶1
+−−[[𝑒3]])

letrec f = 𝜆x y →
case x of {

S v33 → X(f v33 (S (S y)));

Z → Xletrec g = 𝜆z →
case z of {

S v36 → case v36 of { S v39 → XX(g v39); Z → XFalse; };

Z → (True);

}

in g y;

}

in f m Z

(b) 𝒩X(𝑆𝐶1
+−−[[𝑒4]])

letrec f = 𝜆x y →
case x of {

S v70 → Xf v70 (S (S y));

Z → XXletrec g = 𝜆z →
case z of {

S v79 → case v79 of { S v82 → XX(g v82); Z → XXFalse; };

Z → XTrue;
}

in g y;

}

in f n Z

Figure 13 even (double m Z): the result of two-level supercompilation

letrec f = 𝜆x → case x of { S y → f y; Z → True; } in f m

Normalizing ticks in the expressions in Fig. 10a and 10b, we obtain the ex-
pressions shown in Fig. 12a and 12b, correspondingly. Now we can conclude that
𝑒3{𝑚 := 𝑛} is an improvement of 𝑒4.

The result of two-level supercompilation is shown in Fig. 13.
The tick normalization technique has something in common with the idea of

normalizing some intermediate results of supercompilation, for example, with the
syntactic normalization of expressions performed by Neil Mitchell [16].



14

Figure 14 match doubleA word: a source program

data Symbol = A;

data List a = Nil | Cons a (List a);

data Maybe a = Just a | Nothing;

match doubleA word where

doubleA = alt nil (seq a (seq doubleA a));

match = 𝜆p i → p (eof return) i;

return = 𝜆x → Just x;

nil = 𝜆next w → next w;

seq = 𝜆p1 p2 next w → p1 (p2 next) w;

alt = 𝜆p1 p2 next w → case p1 next w of {

Just w1 → Just w1;

Nothing → p2 next w;

};

eof = 𝜆next w → case w of {

Cons s w1 → Nothing;

Nil → next Nil;

};

a = 𝜆next w → case w of {

Cons s w1 → case s of { A → next w1; };

Nil → Nothing;

};

5 Multi-result supercompilation

Consider the program shown in Fig. 14, containing definitions for a set of basic
combinators meant for constructing parsers. The implementation of the combi-
nators is based on backtracking. The basic parsers are used in the program to
define an additional parser, doubleA, corresponding to the following context-free
grammar:

doubleA = 𝜖 | A doubleA A

The target expression in the program is an application of the parser doubleA to
an arbitrary string word.

It is clear that the parser coded in this way, when applied to a string 𝑠, has a
complexity 𝑂(|𝑠|2).

Let us try to transform this parser by the two-level supercompiler 𝑆𝐶2
+−−

using the techniques described in the previous sections.
After a few (about 30) steps an embedding is detected:

doubleA (eof return) word E*
𝑐 doubleA (a (eof return)) v33



15

Figure 15 𝑒5 E*
𝑐 𝑒6

(a) 𝑒5

case

case word of {

Cons v32 v33 → Nothing;

Nil → return Nil;

} of {

Nothing → seq a (seq doubleA a) (eof return) word;

Just v34 → Just v34;

}

(b) 𝑒6

case

case v97 of {

Cons v149 v150 → Nothing;

Nil → return Nil;

} of {

Nothing → seq a (seq doubleA a) (a (eof return)) (Cons A v97);

Just v151 → (Just v151);

}

However, an attempt to silence the whistle fails: the supercompiled expression
are not a renaming of each other.

So, we can try to use another version of the supercompiler: the supercompiler
𝑆𝐶2

++−, which divides all nodes into global and local ones. After a few steps, an
embedding is detected:

𝑒5 E
*
𝑐 𝑒6,

where the expressions 𝑒5 and 𝑒6 are shown in Fig. 15a and Fig. 15b.
Unfortunately, an attempt to silence the whistle using the supercompiler

𝑆𝐶1
++− also fails, as the supercompiled expressions are not a renaming of each

other:
𝑆𝐶1

++−[[𝑒5]]𝜃 ̸≡ 𝑆𝐶1
++−[[𝑒6]]

(Note that the upper and lower supercompilers are assumed to differ in one
detail: in how they handle the embedding of configurations, but we might have
tried other options.)

However, nothing prevents us from using a different lower supercompiler. Let
us try the supercompiler 𝑆𝐶1

+−− (without the division of nodes into global and
local ones). The result is that:

𝑆𝐶1
+−−[[𝑒5]]{𝑤𝑜𝑟𝑑 := 𝑣97} ≡ 𝑆𝐶1

+−−[[𝑒6]]

Moreover, by examining the tick annotations, the upper supercompiler is able
to prove that (𝑒6, 𝑒5{𝑤𝑜𝑟𝑑 := 𝑣97}) is an improvement lemma. Thus, it replaces



16

Figure 16 match doubleA word: the result of two-level supercompilation

letrec f = 𝜆x →
case x of {

Cons v32 v33 →
case v32 of {

A → case v33 of {

Cons v96 v97 → case v96 of { A → (f v97); };

Nil → Nothing;

};

};

Nil → Just Nil;

}

in f word

the configuration 𝑒6 with 𝑒5{𝑤𝑜𝑟𝑑 := 𝑣97}, and performs a fold.
The result of two-level supercompilation is shown in Fig. 16.
As was noted above, the source program corresponds to the following context-

free grammar:

doubleA = 𝜖 | A doubleA A

and the application of this parser to a string 𝑠 has complexity 𝑂(|𝑠|2).
The result of two-level supercompilation corresponds to the following context-

free grammar:

doubleA = 𝜖 | A A doubleA

Note that now the application of the second parser to a string 𝑠 has complexity
𝑂(|𝑠|).

This example demonstrates that two-level supercompilation is capable of achiev-
ing asymptotic runtime improvements of programs (written in a lazy functional
language), while single-level supercompilation can only achieve linear speedups
[18].

Another conclusion to be drawn from the above example is that the results of
two-level supercompilation can be improved by selecting different combinations
of options for the upper and lower supercompilers. This may be regarded as a
particular example of multi-result supercompilation, which amounts to producing
a set of residual programs, rather than a single program.

An interesting observation is that the best results are often produced by the
combination of an upper supercompiler, dividing nodes into global and local ones,
and a lower supercompiler, not doing so. For example, this combination is able
to produce the results described in sections 3 and 4.



17

Figure 17 Improvement lemma (𝑒8, 𝑒7)

(a) 𝑒7

case (even n) of { True → True; False → odd n ; }

(b) 𝑒8

case (even n) of { True → True; False → odd (S (S n)) ; }

6 Extraction of more general lemmas

Sometimes, the lemmas discovered by the techniques presented in the previous
sections turn out to be cumbersome and difficult to understand (from the human
viewpoint). However, as will be shown below, the improvement lemmas discovered
by a two-level supercompiler may be used as the source material for extracting
more general lemmas that are more abstract and good-looking.

Definition 3 (Consequence of a lemma). Let (𝑒1, 𝑒2) and (𝑒′1, 𝑒
′
2) be two im-

provement lemmas, such that:

𝑒1 ◁̃︀𝑠 𝑒2 ⇒ 𝑒′1 ◁̃︀𝑠 𝑒′2 𝑒′1 ◁̃︀𝑠 𝑒′2 ̸⇒ 𝑒1 ◁̃︀𝑠 𝑒2
Then the lemma (𝑒′1, 𝑒

′
2) is said to be a consequence of the lemma (𝑒1, 𝑒2), and

the lemma (𝑒1, 𝑒2) is said to be more general than the lemma (𝑒′1, 𝑒
′
2).

A lemma discovered by a two-level supercompiler often happens to be a con-
sequence of a more general lemma.

6.1 Removing the common context

Let us consider an improvement lemma (𝑒8, 𝑒7) (consisting of expressions shown
in Fig. 17), which is discovered by a two-level supercompilation of the program
in Fig. 4.

The meaning of this lemma is not obvious, since the expressions 𝑒7 and 𝑒8 are
rather cumbersome. However, 𝑒7 and 𝑒8 are almost identical, differing only in the
subexpressions highlighted in Fig. 17. Hence, there comes the following idea: let
us try to prove the equivalence of the subexpressions! We are lucky: the pair

(odd (S (S n)), odd n)

really turns out to be an improvement lemma. So the “big” lemma in Fig. 17 is
just a consequence of this lemma.

The above example is an instance of an implication of the following form:

𝑒′ ◁̃︀𝑠 𝑒′′ ⇒ 𝑒{𝑣 := 𝑒′} ◁̃︀𝑠 𝑒{𝑣 := 𝑒′′}



18

Figure 18 Improvement lemma (𝑒9, 𝑒10)

(a) 𝑒9

case

case v97 of {

Cons v32 v33 → Nothing;

Nil → return Nil;

} of {

Nothing → seq a (seq doubleA a) (eof return) v97 ;

Just v34 → Just v34;

}

(b) 𝑒10

case

case v97 of {

Cons v149 v150 → Nothing;

Nil → return Nil;

} of {

Nothing → seq a (seq doubleA a) (a (eof return)) (Cons A v97) ;

Just v151 → (Just v151);

}

How should the expressions 𝑒′ and 𝑒′′ be selected? Since we are interested in
finding a lemma (𝑒′, 𝑒′′) of a small size, it seems reasonable to try expressions 𝑒′

and 𝑒′′ of minimal (possible) size. However, the smallest 𝑒′ and 𝑒′′ usually do not
form an improvement lemma! For example, the following pair

(S (S n), n)

consists of minimal differing subexpressions of 𝑒7 and 𝑒8, nevertheless, it is not
an improvement lemma (just because the expressions n and S (S n) are not even
equivalent). So, when searching for a lemma, we have to also try subexpressions
𝑒′ and 𝑒′′ that are small, but not the smallest ones.

In order to formalize the idea in general terms, we have to define what is a
generalization of two expressions.

Definition 4 (Generalization). A generalization of two expressions 𝑒1 and 𝑒2 is a
triple (𝑒𝑔, 𝜃1, 𝜃2), where 𝑒𝑔 is an expression and 𝜃1 and 𝜃2 are substitutions, such
that 𝑒𝑔𝜃1 ≡ 𝑒1 and 𝑒𝑔𝜃2 ≡ 𝑒2. A set of all generalizations of expressions 𝑒1 and
𝑒2 is denoted as 𝑒1 a 𝑒2.

Let (𝑒′, 𝑒′′) be an improvement lemma discovered by a two-level supercompiler.
Then we may consider generalizations of the form (𝑒𝑔, {𝑣𝑖 := 𝑒′𝑖}, {𝑣𝑖 := 𝑒′′𝑖 }) be-
longing the set 𝑒′ a 𝑒′′ and check the pairs (𝑒′𝑖, 𝑒

′′
𝑖 ) for being improvement lemmas.



19

Figure 19 Improvement lemma (𝑒12, 𝑒11)

(a) 𝑒11

case dAcc m Z of { S z → odd z; Z → True; }

(b) 𝑒12

case dAcc n (S (S Z )) of { S z → odd z; Z → True; }

For example, when transforming the program shown in Fig. 14, a two-level
supercompiler discovers an improvement lemma shown in Fig. 18. The lemma
seems to be quite cumbersome, but there is a smaller improvement lemma formed
by the highlighted subexpressions:

(seq a (seq doubleA a) (a (eof return)) (Cons A v97),
seq a (seq doubleA a) (eof return) v97)

6.2 Generalization by abstracting common subexpressions

The form of implication considered in this section is:

𝑒1 ◁̃︀𝑠 𝑒2 ⇒ 𝑒1{𝑣 := 𝑒} ◁̃︀𝑠 𝑒2{𝑣 := 𝑒}

When transforming the program in Fig. 8, a two-level supercompiler discovers
the lemma shown in Fig. 19. An attempt to extract a more general lemma by
removing the common context is unsuccessful. However, abstracting the identical
highlighted subexpressions leads to the following lemma:

(case dAcc m (S (S x)) of { S z → odd z; Z → True; },
case dAcc m x of { S z → odd z; Z → True; })

Note that this lemma is not smaller in size than the original one (since the common
subexpression is just a nullary constant Z). But it still may be useful, because it
is applicable in more cases than the original one.

To formalize this idea we use the notion of “inverse generalization”.

Definition 5 (Inverse generalization). An inverse generalization of expressions
𝑒′ and 𝑒′′ is a triple (𝑒′𝑔, 𝑒

′′
𝑔 , 𝜃), where 𝑒′𝑔 and 𝑒′′𝑔 are expressions, and 𝜃 a substi-

tution, such that 𝑒′𝑔𝜃 ≡ 𝑒′ and 𝑒′′𝑔𝜃 ≡ 𝑒′′. The set of all inverse generalizations of
expressions 𝑒′ and 𝑒′′ is denoted as 𝑒′ ` 𝑒′′.

Let (𝑒′, 𝑒′′) be an improvement lemma discovered by a two-level supercompiler.
Then we may consider the inverse generalizations (𝑒′𝑔, 𝑒

′′
𝑔 , 𝜃) belonging to the set

𝑒′ a 𝑒′′ and try to find a more general improvement lemma among the pairs
(𝑒′𝑔, 𝑒

′′
𝑔 ).

As regards the improvement lemma in Fig. 19, the inverse generalization corre-
sponding to the highlighted expressions leads to a more general lemma considered
above.



20

Figure 20 even (double x Z): partial process tree

even (dAcc x Z)

case (dAcc x Z) of {Z → True; S y → odd y;}

case case x of {Z→Z; S z→dAcc z (S (S Z));} of {Z → True; S y → odd y;}

True

x = Z

case (dAcc n (S (S Z))) of {Z → True; S m → odd m;}

x = S n

6.3 On the power of homeomorphic embedding for lemma
extraction

Why the whistle based on the refined homeomorphic embedding [12], when used
in a two-level supercompiler, produces reasonable results? It seems to be due to
the fact that the refined embedding captures the notion of generalization, as well
as the notion of inverse generalization.

On the other hand, the whistle based on the adaptation of the pure homeo-
morphic embedding [12] seems to be rather inadequate for the use in a two-level
supercompiler. It blows too often, and does not ensure the existence of a mean-
ingful generalization for embedded expressions. In particular, it produces unsat-
isfactory results for the examples considered in this paper. At the same time, the
use of the refined homeomorphic embedding drastically improves the behavior of
a two-level supercompiler.

7 Simplification of lemma syntax

A supercompiler may be used as a part of another tool (for example, a theorem
prover), in which case it should produce proofs readable for humans.

Let us consider the reduction rules, together with the function definitions
appearing in a program, as a term rewrite system. Let

*←→ denote equality by
rewriting (closed under context and substitution) [1].

Definition 6 (Lite version of lemma). A lemma (𝑒′1, 𝑒
′
2) is a lite version of a

lemma (𝑒1, 𝑒2), if corresponding expressions are equal by rewriting and are of a

smaller size: 𝑒1
*←→ 𝑒′1, 𝑒2

*←→ 𝑒′2, |𝑒′1| ≤ |𝑒1|, |𝑒′2| ≤ |𝑒2|.

It is obvious that a lite lemma (due to its smaller size) in many cases will be
more readable that the corresponding “technical” lemma.

Consider, for example, the improvement lemma shown in Fig. 19 and the cor-
responding partial process tree (Fig. 20). This lemma is automatically discovered



21

when transforming the expression even (double x Z) by a two-level supercom-
piler.

A lite version of this improvement lemma is not difficult to find. Indeed:

even (dAcc m Z) →
case dAcc m Z of { S z → odd z; Z → True; }

even (dAcc m (S (S Z))) →
case dAcc m (S (S Z)) of { S z → odd z; Z → True; }

So the following lemma is extracted:

(even (dAcc x (S (S Z))), even (dAcc x Z))

This lemma can be rewritten:

even (dAcc (S (S m)) Z) →
even (dAcc m (S (S Z)))

so that one more lemma is extracted:

(even (dAcc (S (S x)) Z), even (dAcc x Z))

This technique of searching for lite lemmas is rather heuristic, hence the pairs
of expressions thus found has to be checked for being improvement lemmas by
means of supercompilation.

8 Parameterized two-level supercompiler

In this section we give a “recipe” for remaking an ordinary supercompiler into a
two-level one, presenting a parameterized two-level supercompilation algorithm2

shown in Fig. 24. This algorithm is an extension of the single-level supercompiler
from [12].

The parameterized parts of algorithm are highlighted. There is one new pa-
rameterization (in comparison with a single-level supercompiler): the lower su-
percompiler 𝑆𝐶1 (used in lines 11, 12 and 14). All example residual programs
presented in the paper were produced by the supercompiler 𝑆𝐶2 with a corre-
sponding parameterization.

Theorem 7. The supercompiler 𝑆𝐶2 terminates.

Proof. Follows from the termination of the corresponding supercompiler 𝑆𝐶𝑖𝑗𝑘

[11, 12] and from the fact that after the application of an improvement lemma a
folding step can be performed immediately.

2This recipe is the first (but, hopefully, not the last one) in the emerging cookbook of multi-
level supercompilation.



22

Figure 21 Parameterized supercompiler 𝑆𝐶2

1 𝑡 = (𝑒→)
2 while 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑒𝑎𝑓(𝑡) ̸= ∙ do
3 𝛽 = 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐿𝑒𝑎𝑓(𝑡)

4 𝑟𝑒𝑙𝐴𝑛𝑐𝑠 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠(𝛽)

5 𝛼 = 𝑓𝑖𝑛𝑑(𝑟𝑒𝑙𝐴𝑛𝑐𝑠, 𝛽, 𝑤ℎ𝑖𝑠𝑡𝑙𝑒 )
6 if 𝛼 ̸= ∙ and 𝛼.𝑒𝑥𝑝𝑟 ≃ 𝛽.𝑒𝑥𝑝𝑟 then
7 𝑡 = 𝑓𝑜𝑙𝑑(𝑡, 𝛼, 𝛽)
8 else if 𝛼 ̸= ∙ and 𝛼.𝑒𝑥𝑝𝑟 l 𝛽.𝑒𝑥𝑝𝑟 then
9 𝑡 = 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑡, 𝛽, 𝛼)

10 else if 𝛼 ̸= ∙ then
11 𝑒1 = 𝑆𝐶1 [[𝛼.𝑒𝑥𝑝𝑟]]

12 𝑒2 = 𝑆𝐶1 [[𝛽.𝑒𝑥𝑝𝑟]]

13 𝜃 = 𝑒2 4 𝑒1

14 if 𝑒1 ≃ 𝑒2 and 𝒩X( 𝑆𝐶1 [[𝛽.𝑒𝑥𝑝𝑟]]) ◁X̃︁ 𝒩X( 𝑆𝐶1 [[𝛼.𝑒𝑥𝑝𝑟 𝜃]]) then

15 𝑡 = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑡, 𝛽, 𝛼.𝑒𝑥𝑝𝑟 𝜃)
16 else if 𝛼.𝑒𝑥𝑝𝑟 ↔ 𝛽.𝑒𝑥𝑝𝑟 then
17 𝑡 = 𝑠𝑝𝑙𝑖𝑡(𝑡, 𝛽, 𝛽.𝑒𝑥𝑝𝑟)
18 else
19 𝑡 = 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑡, 𝛼, 𝛽)
20 end

21 else
22 𝑡 = 𝑑𝑟𝑖𝑣𝑒(𝑡, 𝛽)
23 end

24 end

The following details are parameterizable 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑙𝐴𝑛𝑐𝑠 , 𝑤ℎ𝑖𝑠𝑡𝑙𝑒 , 𝑆𝐶1 .

Almost any supercompiler (constructed in a classical style) can be remade
into a two-level one on the bases of the techniques described here. Consider
an arbitrary supercompiler 𝑆𝐶 ′1 (guaranteed to terminate). Suppose that the
generalization of a configuration is performed in the following way:

1 𝑡 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒(𝑡, 𝛼, 𝛽)

This code can be refined in the following way:



23

1 𝑒1 = 𝑆𝐶1 [[𝛼.𝑒𝑥𝑝𝑟]]

2 𝑒2 = 𝑆𝐶1 [[𝛽.𝑒𝑥𝑝𝑟]]

3 𝜃 = 𝑒2 4 𝑒1

4 if 𝑒1 ≃ 𝑒2 and 𝒩X( 𝑆𝐶1 [[𝛽.𝑒𝑥𝑝𝑟]]) ◁X̃︁ 𝒩X( 𝑆𝐶1 [[𝛼.𝑒𝑥𝑝𝑟 𝜃]]) then

5 𝑡 = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑡, 𝛽, 𝛼.𝑒𝑥𝑝𝑟 𝜃)
6 else
7 𝑡 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒(𝑡, 𝛼, 𝛽)
8 end

where 𝑆𝐶1 is another arbitrary supercompiler (which is also guaranteed to ter-
minate). Let 𝑆𝐶 ′1

𝑆𝐶1
denote this extension. It is easy to show that this extension

terminates.
Whether such an extension will be able to produce useful and/or non-trivial

results, depends on implementation details of the supercompilers 𝑆𝐶1 and 𝑆𝐶 ′1.
However, this scheme of extending a single-level supercompiler to a two-level one
is formally applicable to a variety of supercompilers.

9 Conclusion

Constructing a multi-level supercompiler on the bases of a single-level one can be
regarded a classic case of metasystem transition (using V.F. Turchin’s terminology
[22, 20]).

In this section we give a brief overview of the goals and methods of two-level
supercompilation, and compare our approach with related techniques in other
fields, as well as with other works on supercompilation.

9.1 Goals and methods of two-level supercompilation

The supercompiler HOSC was designed as a tool for program analysis by trans-
formation, whose essence can be briefly explained as follows:

Let 𝑝 be a program we have to analyze in order to infer or prove
its properties. Instead of directly analyzing the program 𝑝, we may
transform it to a program 𝑝′, which is equivalent to 𝑝, but is easier to
analyze.

But, what does it mean that a transformed program 𝑝′ is easier to analyze than
the original program 𝑝? The answer to this question depends on what properties
are to be dealt with and what analysis tools are available. For example in the
paper [23] a program is transformed to a more modular and structured form for
the purpose of extracting a specification from the transformed program.

Usually, a program is easier to analyze if it does not contain “dead” (i.e.
unreachable) code. Such code may be clearly localized in a program (for example
in the form of function definitions that are never called), or it may also be scattered



24

throughout the “live” code in small pieces. In the latter case the tool wastes its
time analyzing dead or redundant code. A program without “superfluous” code is
likely to be more suitable for mechanical analysis.

How to determine whether a program contains some “dead” code? In general
the problem is undecidable. However, if a program 𝑝′ is constructed from a per-
fect process tree produced by supercompilation, the program 𝑝′ is certain not to
contain any dead code [6, 21]. A partial process tree is a perfect one if its con-
struction involves no generalizations. So the task of two-level supercompilation,
when constructing a partial process tree, is to avoid generalizations as much as
possible, in order for the residual program to contain as little redundant code as
possible.

In the algorithm presented in this paper a generalization step involves two
nodes: the upper node 𝛼 and the lower node 𝛽, two different cases being considered
[12].

1. If 𝛼.𝑒𝑥𝑝𝑟 E*
𝑐 𝛽.𝑒𝑥𝑝𝑟, 𝛼.𝑒𝑥𝑝𝑟 ̸≃ 𝛽.𝑒𝑥𝑝𝑟 and 𝛼.𝑒𝑥𝑝𝑟 l 𝛽.𝑒𝑥𝑝𝑟, then the lower

configuration 𝛽.𝑒𝑥𝑝𝑟 is generalized.

2. If 𝛼.𝑒𝑥𝑝𝑟 E*
𝑐 𝛽.𝑒𝑥𝑝𝑟 and 𝛼.𝑒𝑥𝑝𝑟 ̸ l𝛽.𝑒𝑥𝑝𝑟, then the upper configuration

𝛼.𝑒𝑥𝑝𝑟 is generalized.

All techniques of silencing the whistle considered in the paper are only related
to the second case (i.e. to avoiding generalizations of the upper configurations).
It would be interesting, however, to investigate the problems related to avoiding
generalizations of the lower configurations.

9.2 Related work and further development

To some extent, this work is on the junction of program transformation and
program analysis. The literature on each of the topics is abundant and diversified.
It would be virtually impossible even to list all related works. Thus we confine
ourselves to considering a number of classic works and to recent activities in
related areas.

For a long time the developments of supercompilation occurred in isolation,
with little cross-fertilization with other research areas. Perhaps this was due to
the fact that supercompilation was primarily regarded as a means of program
optimization. Many optimization techniques are rather language-specific, and
supercompilation was initially developed for the language Refal, which was quite
different from other programming languages.

However, since we are interested in supercompilation as a means of program
analysis by transformation, we believe the ideas and method from other areas to
be potentially useful also in the field of supercompilation, such cross-fertilization
being able to produce a synergetic effect.

Let us enumerate some ideas and techniques related, or potentially applicable,
to supercompilation.



25

The transformation system by Burstall and Darlington [4] uses a set of pre-
defined lemmas (such as associativity, commutativity of operations) and relies on
the use of “eurekas”, additional function definition provided by the user. In many
cases only the use of a eureka enables a non-trivial result of a transformation to
be achieved. Usually a eureka formalizes an assumption about how an expression
should be represented (syntactically) to be transformed by the system. It would
be useful to enable the user of the supercompiler HOSC to provide “eurekas”
helping the supercompiler in avoiding generalizations.

It would be also useful to enable the user to provide lemmas to be used by the
supercompiler. The correctness of the lemmas could be automatically checked by
supercompilation. These lemmas, again, could be used for avoiding generaliza-
tions.

The respect in which our system is similar to the theorem prover by Boyer-
Moore [2] is that both systems can benefit from lemmas which are not discoverable
(in reasonable time), but are provable by the system.

It should be noted that the Boyer-Moore system proves only partial correct-
ness: all functions are assumed to be total recursive ones. Our system, however,
guarantees total correctness.

A program transformation system based on generalized partial computation
[5] uses an external theorem prover. Our system is able to discover and prove
auxiliary lemmas on its own. However, it should be possible to integrate our
system with some third-party theorem provers.

It seems reasonable to try to make use of some techniques of rippling [3].
Rippling is able to permit both orientations of a rewrite rule without the threat
of non-termination (bi-directionality). On the other hand, it is possible to reduce
corresponding parts of user-defined lemmas (checking that the improvement is
preserved) and try to apply reduced variants of lemmas. Rippling [3], in a sense,
is the opposite to what we did in Sections 6 and 7: we need to infer an improvement
lemma applicable in the current context from a set of user-defined lemmas.

Distillation [7, 8], as well as two-level supercompilation, is a metasystem with
respect to classic supercompilation. Instead of comparing configurations, distilla-
tion always compares supercompiled configurations. The differences between our
system and distillation are: (1) in distillation configurations are always supercom-
piled which results in possible performance issues (2) distillation is a monolithic
algorithm which is difficult to extend or customize. In our system the upper su-
percompiler tries to use the lower supercompiler only in cases where the whistle
blows, thereby reducing possible performance issues. Also our system is modular
by design: it allows both layers to be modified or refined: the upper supercom-
piler and the lower one. Moreover, copying with variations and duplication of
lower-level subsystems is a typical scheme of metasystem transition [20, 22].

The performance issues of supercompilation are addressed by Jonsson and
Nordlander in [9]: they use zippers (stacks) for representing configuration and
use the corresponding (stacked) variation of homeomorphic embedding. We hope
to investigate whether this stack representation can be used in two-level super-



26

compilation.
It was shown in Section 5 that two-level supercompilation is capable of achiev-

ing asymptotic runtime improvements of programs. Improvement lemmas discov-
ered by two-level supercompiler can be used for program optimization. A method
of generating optimizations from proofs of equivalence is describes in [19]. Im-
provement lemmas may be used as such proofs of equivalence.

Acknowledgements

The author expresses his gratitude to Sergei Romanenko, to all participants of
Refal seminar at Keldysh Institute for useful comments and fruitful discussions
of this work. Extra special thanks are to Sergei Abramov for his attention and
support of this work.

References

[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1999.

[2] R. S. Boyer and J. S. Moore. Proving theorems about lisp functions. Journal
of the ACM (JACM), 22(1):129–144, 1975.

[3] A. Bundy, D. Basin, and D. Hutter. Rippling: meta-level guidance for math-
ematical reasoning. Cambridge University Press, 2005.

[4] R. M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM (JACM), 24(1):44–67, 1977.

[5] Y. Futamura, Z. Konishi, and R. Glück. Program transformation system
based on generalized partial computation. New Gen. Comput., 20:75–99,
January 2002.

[6] R. Glück and A. Klimov. Occam’s razor in metacompuation: the notion of
a perfect process tree. In WSA ’93: Proceedings of the Third International
Workshop on Static Analysis, pages 112–123, London, UK, 1993. Springer-
Verlag.

[7] G. W. Hamilton. Distillation: extracting the essence of programs. In Pro-
ceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 61–70. ACM Press New York,
NY, USA, 2007.

[8] G. W. Hamilton. A graph-based definition of distillation. In Second Inter-
national Workshop on Metacomputation in Russia, 2010.



27

[9] P. Jonsson and J. Nordlander. Taming code explosion in supercompilation.
In Proceedings of the 2011 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation. ACM Press New York, NY, USA,
2011.

[10] I. Klyuchnikov. Higher-order supercompilation. Program systems: theory
and applications, 4(4):37–71, 2010. http://psta.psiras.ru/2010/03(003)
/r3/r3-3.html (in Russian).

[11] I. Klyuchnikov. Supercompiler HOSC 1.1: proof of termination. Preprint 21,
Keldysh Institute of Applied Mathematics, Moscow, 2010.

[12] I. Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic embedding and
generalization in a higher-order setting. Preprint 62, Keldysh Institute of
Applied Mathematics, 2010.

[13] I. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31,
Keldysh Institute of Applied Mathematics, Moscow, 2010.

[14] I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order
terms by means of supercompilation. In Perspectives of Systems Informatics,
volume 5947 of LNCS, pages 193–205, 2010.

[15] I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation.
In Second International Workshop on Metacomputation in Russia, 2010.

[16] N. Mitchell. Rethinking supercompilation. In Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP ’10,
pages 309–320. ACM, 2010.

[17] D. Sands. Total correctness by local improvement in the transformation
of functional programs. ACM Trans. Program. Lang. Syst., 18(2):175–234,
1996.

[18] M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory of
positive information propagation. Master’s thesis, Københavns Universitet,
Datalogisk Institut, 1994.

[19] R. Tate, M. Stepp, and S. Lerner. Generating compiler optimizations from
proofs. SIGPLAN Not., 45:389–402, January 2010.

[20] V. F. Turchin. The phenomen of science. A cybernetic approach to human
evolution. Columbia University Press, New York, 1977.

[21] V. F. Turchin. The Language Refal: The Theory of Compilation and Meta-
system Analysis. Department of Computer Science, Courant Institute of
Mathematical Sciences, New York University, 1980.

http://psta.psiras.ru/2010/03(003)/r3/r3-3.html
http://psta.psiras.ru/2010/03(003)/r3/r3-3.html


28

[22] V. F. Turchin. Metacomputation: Metasystem transitions plus supercom-
pilation. In Partial Evaluation, volume 1110 of Lecture Notes in Computer
Science, pages 481–509. Springer, 1996.

[23] M. Ward. Program analysis by formal transformation. The Computer Jour-
nal, 39(7):598, 1996.


	Untitled.pdf
	prep2010_81_en
	Introduction
	Transformation relation HOSC2
	Search for lemmas
	Normalization of ticks
	Multi-result supercompilation
	Extraction of more general lemmas
	Removing the common context
	Generalization by abstracting common subexpressions
	On the power of homeomorphic embedding for lemma extraction

	Simplification of lemma syntax
	Parameterized two-level supercompiler
	Conclusion
	Goals and methods of two-level supercompilation
	Related work and further development

	References


