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§ 1. Introduction

Since the publication of the seminal works by Feigenbaum [11, 12], hun-
dreds of studies were devoted to this very interesting and still expanding field
of research. The author of this study was familiar for many years with the

subject, but in the most general terms. One of the subjects that the author
specializes in is the development of efficient numerical and symbolic algo-

rithms for solving various mathematical problems. In the course of testing
one of such algorithms for solution of functional equations, the Feigenbaum

universality equation appeared to be a very convenient model problem. The
fundamental constants associated with this equation are computed to more
than a thousand decimal places, which gives a perfect opportunity for tuning

various settings of the algorithm.
So it was without any expectations to find anything new that the author

performed the tests, which gave very satisfactory results pertaining to the
algorithm. However, it was unsettling that some of the results were in dis-

agreement with the well known and long established facts such as the Feigen-
baum conjecture and the spectral properties of the doubling or universality

operator.
Thanks to the popularity of this field of mathematical and physical sciences

and to the Internet, most papers on the subject are readily available. The

present paper is a comparative study of the spectral properties of the doubling
operator and a review of several works dealing with the original problem. It

is also an attempt to reconcile apparent contradictions and to trace their
origin.

Let us recapitulate briefly the setting of the problem. It deals with the
mapping of an interval onto itself f : [a, b] → [a, b], where f is a generic uni-

modal function. Here unimodal means having only one extremum (maxi-
mum) on the interval [a, b] (one-hump map), and generic means that the
function is smooth and the extremum is quadratic. The function f depends

on one parameter. The iterations of such maps can display an infinite cas-
cade of period doubling bifurcations as parameter changes. The bifurcations

occur when a stable solution xn to the equation x = f (n)(x), n = 2k−1, k ∈ N,
loses stability, and two new stable cycles are born, i.e., two solution x±2n to

the equation x = f (2n)(x). It was shown in [11, 12] with the help of renor-
malization involving rescaling and stretching of the iterated maps that, as
the period of cycles tends to infinity, the sequence of bifurcations displays a

universal character independent of the initial function f(x). Asymptotically,
the cascade of bifurcations possesses self-similarity with the universal con-
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stants δ ≈ 4.6 in parameter space, and α ≈ −2.5 in the phase space (on the

interval). These universal constants can be found from the period-doubling
(or universality) equation:

g(x) = T (g)(x) = g(g(g(1)x))/g(1), x ∈ [−1, 1]. (1)

Here the function g(x) is the result of an infinite number of renormalizations
of iterations of the original mapping f(x), and so it totally forgets its prehis-

tory. The constant α = 1/g(1); and the constant δ is determined from the
spectrum of the operator dT (g), i.e., Fréchet derivative of the operator T on

the solution g(x) to the universality equation (1). This solution cannot be
found by iterations of the operator T , since this operator is hyperbolic. We
recall that the Feigenbaum conjecture (in its modern form) states that all

the eigenvalues of the operator dT (g) except one lie within the unit circle,
the unstable eigenvalue being δ. So the unstable manifold at the fixed point

g(x) is one-dimensional.
A few remarks on the preceding paragraph. First, the equation (1) is not a

unique form of universality equation. In various papers, there are used other
forms of universality operator (see Sect. 2, 3). They possess the common
solution g(x), which is an even analytical function in the neighborhood of

the interval [−1, 1]. But these universality operators do not have the same
spectrum, and have different eigenfunctions for the same eigenvalues. We will

stick to the equation (1) as canonical in this paper, and mark the differences
as they appear. Second, note the absence of the normalization condition

g(0) = 1 usually imposed on the solution in the definition (1). The reason
will be given in Sect. 4. Third, the renormalization used in [11, 12] preserves

the nature of the extremum of the original function f . So the limit function
must have the same type of extremum, and so the equation (1) must possess
different solutions. This fact, of course, is well known, and only mentioned

here to avoid misunderstanding. We will deal primarily with the function g(x)
having quadratic extremum, and discuss other solutions in Sect. 4. The most

important remark here is this: the spectrum of an operator dT (g) depends
strongly on the functional space where the operator is acting. For example,

in the space L2[−1, 1] of complex-valued functions integrable with square, the
spectrum of the operator dT (g) is continuous and complex (Sect. 2).

Feigenbaum never mentioned specifically the functional space for the op-

erator T . In the framework of papers [11, 12] it is hardly to be expected.
But then, the function g(x) had to be found, and the most natural space for

this is the space E of even bounded analytical functions, since the function
g(x) must be smooth and even by construction. Again, it was not made
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explicit, but the numerical algorithm described in [12, page 693] clearly uses

discretization in the space E (or rather in its subset, see Sect. 4). Since the
finite dimensional approximation to the operator dT (g) is obtained as a by-

product of the Newton iterations scheme used for numerical solution of (1),
the spectrum found (numerically) in [12] corresponds to even eigenfunctions.

Hence, the Feigenbaum conjecture (Sect. 4).
In Sections 2, 3, we compare the spectrum of the operator dT (g) and

its various representations in different functional spaces. We also discuss
the most common mistakes made in various papers and monographs in the
analysis of the spectral problem for the universality operator. Some mistakes

are obvious as such, and some are the result of misquoting or the wrong
assumptions and peer pressure.

In Section 4, we solve numerically the spectral problem for the universality
operator in the Banach space F of bounded analytical functions in an ellipse

with the focal points ±1, with the supremum norm, continuous on the closure
of the ellipse. Let us give a few reasons for this choice. First, computer

experiments revealed that the function g(x) belongs to this space. A rigorous
proof is still to be found, despite some computer assisted efforts [14, 15]. But,
as “mathematics is an experimental science” (V.I. Arnold), we will consider

this fact established. The second reason is the fact that the functional space
F admits extremely good discretization with Chebyshev polynomials as a

basis. The coefficients of expansions of the functions in F in Chebyshev
series decrease exponentially [18]. This is why we choose an ellipse and not

a disk (see [8, page 1264]). Finally, and this is a purely physical argument
open for discussion: there is no reason to restrict the space F to the space
E of even analytical functions. The function g(x) forgets its prehistory and

is even, but all the pre-limit functions subject to renormalizations used in
[11, 12] still keep some information about the original function f(x), which

is unimodal, and so the perturbations of the function g(x) need not be even.
It is a part of universality that we need not impose some symmetry on the

function f (as in the logistic map) in order to obtain the function g.

§ 2. Explicit spectrum

The notion of universality in dynamical systems can now be found in
almost every monograph remotely concerned with chaotic dynamics. An

excellent exposition of the Feigenbaum universality can be found in the book
[16, Chap. 7] aimed at physical scientists and engineers. The book also

illustrates how physical intuition fails when simple mathematics is neglected.
We will use this book as a typical example.
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The universality equation in [16] is given in the form of rescaling equation

(7.2.39) [16, page 491]:

g(x) = αg(g(x/α)) = T (g)(x), g(0) = 1. (2)

Since the normalizing condition g(0) = 1 is included in the definition, it

immediately follows that α = 1/g(1), and this equation is identical with (1).
From the previous exposition in [16], it also follows that the authors consider

general maps, i.e., unimodal and generic in the sense of Sect. 1, and so they
implicitly operate in the space F .

To investigate the stability of the fixed point g(x), the authors compute the
linearized period-doubling operator introducing a perturbation g(x) + εh(x)
and, linearizing, obtain the linear operator (Gâteaux derivative) in the form

L(g)h(x) = α (g′(g(x/α))h(x/α) + h(g(x/α))) . (3)

Then the authors refer to Feigenbaum [11, 12] and claim (Feigenbaum conjec-
ture) that the spectrum of the operator L(g) has a single unstable (i.e., lying

outside the unit circle) eigenvalue δ ≈ 4.669 [16, page 492]. Unfortunately,
both this claim and the linearized equation (3) itself are not true. So it is

not clear how much of the following physical argument in [16] will survive.
Let us compute the linearized period-doubling operator proceeding exactly

as described in [16, page 491], but keeping in mind that α = 1/g(1), i.e., that
α depends on the function g.
Proposition 1. The formal Gâteaux derivative of the operator T defined in

(1) is given by the formula

dT (g)h(x) = L(g)h(x) + α (g′(g(x/α))g′(x/α)x− αg(g(x/α)))h(1). (4)

It seems that this easily verified formula (4) for the operator dT (g) was

never computed. An (almost) correct formula for the derivative was found in
[22], but for another form of the universality operator (Sect. 3). The formula

(4) is applicable in any functional space where the Gâteaux derivative of the
operator T coincides with the Fréchet derivative. It is certainly the case in

the space F .
Proposition 2. The operator T is compact ([22, page 16]) in the space F ,
and the operator dT (g) has the following spectrum

S = [λ1, λ2, . . .] = [α2, δ, α,
1

α
,
1

α2
, λ6,

1

α3
, λ8,

1

α4
,
1

α5
, . . .], (5)

where |λi| > |λj|, i < j.
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We will compute numerically the eigenvalues and the corresponding eigen-

functions of the operator dT (g) in Section 4. They coincide with S in (5).
But now we note that all the eigenvalues in S where α is present are found

explicitly together with the corresponding eigenfunctions.
Proposition 3. Let k be any complex number except 1. Then λ = α1−k is an

eigenvalue of the formal spectral problem dT (g)h = λh with the eigenfunction

h(x) = g(x)− xg′(x)− gk(x) + xkg′(x). (6)

In addition, α2 is the eigenvalue with the eigenfunction

h(x) = g(x)− xg′(x). (7)

Proof. If we differentiate the equation (2) and put there x = 0, we obtain

the identity g′(1) = α. We use this, along with the equation (2) and its
derivative, for simplifying substitutions. We observe that if we put x = 0

into the formal spectral problem dT (g)h(x) = λh(x), then we derive the
identity (α2 − λ)h(0) = 0. Hence, for analytical functions h, either λ = α2,

or h(0) = 0. The rest of the proof is a simple, although very bulky, symbolic
calculation better made on a computer. �

The spectral problem is formal until we specify the functional space we

are working with. In the space F , obviously, k = 0, 2, 3, . . .. So we have
found explicitly 7 out of the first 10 eigenvalues of the operator dT (g), and

at least two of them lie outside of the unit circle. This result is easily verified
analytically (and numerically, Sect. 4) and is in direct contradiction with the

Feigenbaum conjecture. So let us trace the origin of this apparent paradox.
But before we turn to the original paper [12], where we hope to find an

answer, we need the spectrum of the operator L(g) for comparison.
Proposition 4. The spectrum of the operator L(g) in the space F is

S̃ = [δ, α, 1,
1

α
,
1

α2
, λ6,

1

α3
, λ8,

1

α4
, . . .], (8)

where λi, i = 6, 8, . . . are the same as in (5). The eigenvalues α1−k, k =
0, 1, . . . in S̃ have the eigenfunctions

h(x) = gk(x)− xkg′(x). (9)

Proof. Numerically, it is demonstrated in Sect. 4. The part of the spectrum
where α is involved is found explicitly. �
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We will return in Section 4 to all the spectral problems discussed in this

and the following Section.

§ 3. The problem with the spectrum

Now we turn to the paper [12], which is referenced in almost every pub-

lication dealing with the Feigenbaum universality. To avoid confusion, we
will keep our notation α = 1/g(1) < 0, which is common now (Feigenbaum

used α = −1/g(1) > 0, [12, page 675], [13, page 73]), and translate the
corresponding formulas when needed.

Feigenbaum used a different form of the universality equation from what

we use (1). It is given in the abstract of [12] as

g(x) = αg(g(−x/α)) = T2(g)(x). (10)

The normalizing condition g(0) = 1 is given later on in [12].

Strangely, in the abstract of [12], Feigenbaum gives the linear operator L,
which coincides with (3) on the function g(x), since g(x) is even. The correct

formula (assuming α = const) should be

L2(g)h(x) = α (g′(g(−x/α))h(−x/α) + h(g(−x/α))) , (11)

and the corresponding operator dT2(g) (correct Fréchet derivative) is

dT2(g)h(x) = L2(g)h(x)− α (g′(g(−x/α))g′(−x/α)x+ αg(g(−x/α)))h(1).
(12)

Note, that the formula (11) for the derivative of (10) was found in [11,
page 47, formula (42)]. The formulas (11) and (12) can be simplified using

the fact that g is even and g′ is odd. But this should be done after and not
before the computation of the derivative of the operator. In addition, the
function h in these formulas need not be even, so no simplifications there.

The spectral properties of the operators L(g) and L2(g), and, respectively,
of the operators dT (g) and dT2(g) are different in the space F . In the space

E , each pair of operators possesses identical spectrum (Sect. 4).
Later on in [12], Feigenbaum uses the operator L(g) as the derivative of

the operator T2 on g(x), but periodically switches to L2(g) (see [12, page 677,
formula (28); page 682, 685].

It is also not exactly clear, what Feigenbaum meant by his conjecture.

First, in the abstract of the paper [12]: “L possesses a unique eigenvalue in
excess of 1.” Then (we quote from [12, page 687] using our notation and

correcting a misprint): “The spectrum of the operator dT (g) is δ and α1−ρ,
ρ ≥ 1, and, moreover, the spectrum is complete.”
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We used here dT (g) rather than L(g), since here it was clearly meant the

derivative of the operator T .
The part about the spectrum being complete was refuted numerically in

many works, since other eigenvalues were found (Sect. 4). In Proposition 2,
they are λ6, λ8, etc.

After numerical investigation of the spectral problem in [12], Feigenbaum
states his conjecture in the form [12, page 694]: “δ is the solitary eigenvalue

of dT (g) greater than 1.”
Note that all these conjectures imply that 1 is an eigenvalue, and so they

contradict the conjecture in its modern interpretation. Although this diffi-

culty is fixed by the normalization g(0) = 1, which simply means that we
choose one solution from the family of solutions, still, this eigenvalue is the

product of a wrong assumption. If the derivative dT (g) was computed cor-
rectly, the eigenvalue 1 would not appear (Sect. 4).

To complicate matters even more, Feigenbaum actually found the eigen-
value α, since ρ = 0 perfectly fits the citation above, with the analytical

eigenfunction 1 − g′(x) [12, page 686]. This eigenvalue is not in excess of 1,
since α < 0, but α lies outside of the unit circle.

So let us draw a line here and try to explain these paradoxes.

First, Feigenbaum used the wrong linearizationL(g) instead of L2(g) of the
universality operator. In addition, both these linearizations are wrong, since

they assume α = const independent of the fixed point g(x). This assumption
is later rejected in [12, page 693, formula (80)], when the variation of α is

used together with the variation of g(x). The analysis of the spectrum is
performed in some unspecified functional space, which is clearly not a space
of even functions, since some of the eigenfunctions (9) are not even.

The second misunderstanding in [12] compounding the first is the use
of numerically obtained data in the same context as analytically obtained

eigenvalues and eigenfunctions. These are two different sets of objects, since
the numerical algorithm described in [12, page 693] operates in a subset of

the space E (see Sect. 4). To unite the numerical and analytical data, we
need the space F and correctly linearized operator dT (g).

In the afterword to the paper [12], Feigenbaum states that his spectral
conjecture was verified by Collet et al. We have no access to that paper
(then in draft), but in the subsequent publications of the same authors, the

space of even functions was postulated [6, page 211, 212], [14, page 427], [15,
page 521].

Now we consider how the spectral problem for the universality operator
was treated in several frequently cited papers and in some books.
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In the study [7, page 4], the authors use the same notation as in this

paper, but consider the problem in a broader space of functions mapping the
interval [−1, 1] onto itself, i.e., the functions are not necessarily even. The

four assumptions, M1-M4, all agree with our conclusions so far, but then
the authors wrongly compute the derivative of the operator (1) as L(g) (3)

and proceed with the analysis. In particular, Lemma 1 in [7] coincides with
Proposition 4 here, so the following assumptions M5, M6 [7, page 5] can be

considered as either true or wrong depending on what operator is taken for
the derivative of T . On the other hand, the authors found the eigenvalue 1,
so the solution g to the equation g = T (g) is either degenerate, or belongs to

a one parameter family of solutions (implicit function theorem). Both facts
are not true (Sect. 4).

In the paper [8], Eckmann gave some substantiation to the choice of the
space of even analytical functions, where g(x) “is supposed to lie”, [8, page

1264]. His space is similar to the space E , except it is defined on a disk,
not an ellipse. However, the properties P1-P3 (including the Feigenbaum

conjecture) hold there only with an additional stipulation (see Sect. 4).
Feigenbaum renormalizations preserve the property of the function f being

symmetric with respect to its hump, so the choice of the functional space of

even functions is justified for such maps (logistic map, for example). But
the Feigenbaum universality is now understood in a broader sense (see [16,

Chap. 7]), meaning the functions f need not be symmetric. This confusion of
notions leads to many erroneous statements on the dimension of the unstable

manifold at g(x). For example, in the paper [20, page 425], the author refers
to Lanford’s computer-assisted proof, but explains his results in a general
space of analytic functions; in the book [19], analytical unimodal maps are

considered, so Proposition 2 in [19, page 191] and its corollaries are not true;
in the book [1], the Feigenbaum universality is explained on a typical example

f(x) = Ax exp(−x) [1, page 338, 339], but the doubling operator J , identical
to T (1), is defined on even functions with some restrictions [1, page 340], and

the Feigenbaum conjecture is formulated in an unspecified functional space.
Although we are not concerned with proofs of the Feigenbaum conjecture

in this paper, some of the works on the subject deserve a special attention,
since they apparently disagree with our results stated above.

Lanford is reputed to have given the first of the computer-assisted proofs of

the Feigenbaum conjecture. His proof seemingly contradicts our conclusions,
but only if the results are taken out of the context. In the paper [14], he

introduces the space M of continuously differentiable even mappings ψ of
the interval [−1, 1] into itself such that ψ(0) = 1 (among other things) [14,
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page 427]. But the condition ψ(0) = 1 makes M a set, not a space, since

functions cannot be added or multiplied by a constant in M. Further [14,
page 428], he introduces a Banach space B of bounded even analytic functions

on a disk equipped with the supremum norm, and its subspace B0 of functions
vanishing to second order at 0. Theorem 3 on hyperbolicity of dT (g) [14, page

428] is formulated in the space B0, where it is not true, since the functions in
this space do not satisfy the universality equation. It is, probably, a misprint,

since Theorem 3 is true in the set (or an affine space) B1 = B0+1 (see Sect. 4).
Further [14, page 429], Lanford introduces the expansion ψ(x) = 1− x2h(x2)
corresponding to the set B1, which was used in many papers implicitly.

In the paper [9], where another computer assisted proof of the Feigenbaum
conjectures is given, the word “even” is not mentioned even once. However,

even functions are implied [9, Theorem 2.2]. It is also the case in [10, page
396] and many other papers.

To the best of the author’s knowledge, there is a unique paper [22] where
the correct formula for the derivative of the doubling operator was found

(but for the wrong operator). The authors consider generic unimodal maps
as defined in Sect. 1 [22, page 14] (we quote the Russian edition), and the
Feigenbaum conjecture is formulated in its modern form without reference to

even maps. The doubling operator is defined [22, page 13] as

T3(g)(x) = −ag(g(x/a)), a = − g(0)

g(g(0))
, g(0) = const, x ∈ [−1, 1]. (13)

Here we substitute a for α to avoid confusion. If g(0) = 1, then a = −α. The
authors compute the correct derivative [22, page 16], but for the operator

T4(g)(x) = −ag(g(−x/a)), (14)

which is not the same as (13) for analytic functions. The analysis of spectral

properties of the operator dT4(g) in [22] is very similar to that in the present
paper, although it is more difficult due to a more complicated form of the

doubling operator. The authors have found the eigenvalue 1, and −a = α ≈
−2.5, as well as other powers of α, except α2. These results contradict the

Feigenbaum conjecture stated earlier in [22]. So the authors have tried to
dismiss unwanted eigenvalues on the following grounds [22, page 17]. First,
they are not relevant to the universality, since they are linked to coordinate

transformations (i.e., not to the parameter space). Not many people would
subscribe to this point of view today, since α is considered now on a par

with δ as a universal constant. For example, in [16, page 488], it is explained
that both α and α2 play a part in the rescaling of periodic solutions. The
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second argument the authors use to conform to the Feigenbaum conjecture

is (a) – the eigenvalue 1 is eliminated by the condition g(0) = const; and (b)
– the eigenvalue α is eliminated by the condition g′(0) = 0. The condition

(a) means that we choose one solution from a family, so the eigenvalue 1
is simply ignored; and the condition (b) was not imposed in the statement

of the problem, and anyway, it follows from the universality equation, i.e.,
g′(0)(α − 1) = 0 follows from (1), and similarly for (14). The property

g′(0) = 0 of the solution g(x) to (1) or (14) is a result of an infinite number
of renormalizations. But perturbations of the solution need not conform to
this restriction. In addition, this projection does not explain what to do with

other powers of α present in the spectrum in both spaces F and E (Sect. 4).
Further, the authors give incorrect form of the doubling operator [22, page

19, formula 4.1] with α = g(1), but this is clearly a misprint.
In some papers, the derivative of the operator (1) is computed incorrectly,

but then never used; so the mistake is not revealed [5, page L713S]. And
the use of the space of even functions can only be deduced by a dedicated

reader. In [5, page L713S], it was only indicated as “Lanford’s expansion” of
the function g(x).

We conclude this survey with two works devoted to precise computation

of the Feigenbaum constants.
In the paper [3], Briggs uses the same notation and the same operator (1)

as we used in this paper [3, formula (5)]. Numerical algorithm is similar to
that used by Feigenbaum and the most authors [3, page 437], i.e., it operates

in the subset of the space of even functions. The Feigenbaum conjecture
is formulated for historical reference; then the wrong “local linearization of
T” [3, formula (8)] is obtained by “simple calculation”. In fact, this local

linearization coincides with that of Feigenbaum in [11, page 47, formula (42)],
where it is found for the positive α = −1/g(1). Fortunately, this “local

linearization” was never used in [3].
In his PhD thesis [4], Briggs uses the same notation as in [3] (see [4,

formula (1.5)]). But then, the derivative DTg of the operator T is upgraded
to include the dependence of α on the solution g(x) [4, page 5]. This new

formula for the derivativeDTg is remarkably similar to that found in [22, page
16] for the different operator (14). Then, [4, page 12], the “local linearization
of T” is found again by “simple calculation” as in [3], but this time with

the correct sign of α. Apparently, Briggs is familiar with eigenvalues which
do not comply with the Feigenbaum conjecture, but he explains them as

“extra eigenvalues” introduced by a finite-dimensional approximation [4, page
22]. Briggs recommends to select the good eigenvalues, which are readily
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identified, and discard the bad ones.

In the next Section, we will not follow this advice.

§ 4. Numerical analysis of the spectral problems

In this Section, we compute the spectrum for all spectral problems men-
tioned in previous Sections in different functional spaces. We will also use

different algorithms including that described by Feigenbaum in [12, page 693],
which was used (with various modifications) by Lanford [14], Briggs [3], and

many other researches.
First, we describe an algorithm based on the use of Chebyshev polynomials

as a basis in the space F .
The solution g(x) to the equation (1) is approximated by the polynomial

g(x) =
n∑

i=1

g(xi)pni(x), xi = cos
(2i− 1)π

2n
, i = 1, . . . , n, (15)

where xi are Chebyshev roots, and

pni(x) =
Tn(x)

(x− xi)T ′
n(xi)

, i = 1, . . . , n (16)

are Chebyshev fundamental polynomials of Lagrange interpolation. We will
use the notation g(x) both for the analytic solution to (1) and for its poly-

nomial approximation (15) (and others), but this will not lead to confusion.
The equation (1) is rewritten as Φ(g) = g − T (g) = 0, and the solution is

found by the Newton iterations

gk+1 = gk −A−1
k Φ(gk), k = 0, 1, . . . ,

where gk is the k-th approximation to the solution g; Ak = dΦ(gk) is the

Jacobian matrix at gk. The iterations are done until the polynomial gk+1−gk
(evaluated at the nodes xi) is zero in the sup norm within the round-off error.

After the final iteration, we have found the polynomial solution g repre-
sented by the values {g(xi), i = 1, . . . , n}, and the matrix A = A(g) on the

solution. The matrix I −A is an approximation to the derivative dT (g) (4),
where I is the unit matrix. Then we compute the spectrum of the matrix

I −A by standard linear algebra subroutines.
In the course of these computations, we need to evaluate the polynomial

g(x) at the points that are not Chebyshev roots. This can be done very

efficiently, if the function g(x) is expanded in Chebyshev series

g(x) = a0/2 +
n−1∑

k=1

akTk(x), Tk(x) = cos(k arccosx), (17)
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where Tk(x) are Chebyshev polynomials. The coefficients ak are found by the

discrete Fourier-Chebyshev transform. This operation is stable and does not
accumulate the round-off errors [18]. The evaluation of g is done with the

series (17) using the recurrence relations for Chebyshev polynomials. These
operations are also stable [18].

The Fourier-Chebyshev transform also provides a built in precision control,
since the coefficients {ak, k = 1, . . . , n}must decrease exponentially. This can

be seen on a plot of log(1/|ak|) versus k, k = 1, . . . , n.
The elements of Jacobian matrix A are approximated by finite differences.

It needs not be done with high precision for Newton iterations to converge

quadratically. Only after the final iteration this matrix needs to be evaluated
with maximal precision, since it is used for the approximation of the spectral

problem.
We have also used an alternative way to approximate the operator dT (g)

(4). If the doubling operator T (1) is applied to a polynomial p of an order
m, then T (p) is a polynomial of the order m2. Since T (p) can be restored

by its values at m2 + 1 points, the same is true for the derivative dT (p). So
if we take the dimension n of the projection such that n ≥ m2 + 1, then
we can compute the operator dT (p) exactly, i.e., in the same sense as Gauss

quadratures are exact on polynomials up to a certain order.
The finite difference approximations are proved to be faster, but slightly

less accurate.
This algorithm takes about as many lines in a computer language as it

took to describe it. For general analytic functions in F , it is also one of the
most efficient. It follows from the approximative properties of the Chebyshev
series (17) and asymptotically optimal distribution of Chebyshev nodes (see

[18]). However, for the same accuracy of the solution g, this algorithm takes
about 4 times more memory and 8 times more CPU time than the algorithms

that use the symmetry of the solution g(x). This is probably why it was never
used before. Recently, Chebyshev series representation of g(x) was used in

[17], but on the interval [0, 1], i.e., for even functions.
We are not about to break any records in the number of digits of the

universal constants. The original plan was to test the algorithm, so we fix
the number of nodes on the interval [−1, 1] as n = 32, and we fix the floating
point arithmetic at 64 digits. The software for such computations is available

as an open source (see [2]). The chosen precision is equivalent to working
with infinite number of digits, since the round-off errors can be neglected in

comparison with the errors of the approximation. We should mention that
all computations were verified with different settings (more/less digits/nodes,
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and different linear algebra routines for solution of the spectral problems),

but they gave similar results and not reported here.
The constant α = 1/g(1) is found with the accuracy 0.5 × 10−22, which

is a small number in comparison with the last coefficient (≈ 0.2454065396×
10−13) at x30 in the Taylor expansion of g(x). The reason for this is the

value of the last Chebyshev coefficient at T30(x) in the expansion (17), which
is 0.4571053006 × 10−22. The constant δ is found with 22 correct decimal

places. We stress that no normalization needs to be imposed on the solution
g(x). The Newton iterations converge quadratically, provided a good initial
approximation is taken, and the solution is found uniquely in the space F .

In Table 1, we cite the first 11 eigenvalues of the operator dT (g) computed
as described above. They correspond to the spectrum S in Proposition 2 to

the indicated accuracy, which was estimated by comparison with the values
of α and δ found in [3]. We cite here only 10 decimal places and can send

the computed values on demand.

Table 1. First 11 eigenvalues of the spectrum S.

λ1 = 6.264547831 α2 0.7× 10−21

λ2 = 4.669201609 δ 0.2× 10−21

λ3 = −2.502907875 α 0.2× 10−21

λ4 = −0.399535280 α−1 0.5× 10−21

λ5 = 0.159628440 α−2 0.4× 10−18

λ6 = −0.123652712

λ7 = −0.063777193 α−3 0.3× 10−18

λ8 = −0.057307021

λ9 = 0.025481238 α−4 0.1× 10−12

λ10 = −0.010180653 α−5 0.9× 10−17

λ11 = −0.010145805

The eigenvalues that correspond to the powers of α in Table 1 have the
eigenfunctions given in Proposition 3 (after the normalization). The eigen-
values λ2 = δ, λ6, λ8, λ11, etc., that are not related to the powers of α (at

least not in an obvious way), have even eigenfunctions.
The spectrum of the operator L(g) (3), that was frequently mistaken for

the derivative of the operator T , is given in Proposition 4. To verify it
numerically, we only need to fix the value of α in the program, after g(x) and

α are already found. The eigenvalue 1 indicates that there is a one-parameter
family of solutions. We will find the family below for another problem.
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The spectrum of the operator dT2(g) (12) in the space F is

S2 = [α2, δ,−α,− 1

α
,
1

α2
, λ6,− 1

α3
, λ8,

1

α4
,− 1

α5
, . . .],

i.e., α in S (5) is replaced with −α. The same is true for the operator L2(g)
(11), i.e., it is the spectrum S̃ of the operator L(g) (3) with the substitution

α → −α. However, only even eigenfunctions in Propositions 3, 4 are pre-
served, i.e., (7) for α2, and (6), (9) for odd k. For even k, we could not find

explicit formulas.
Now we compute the spectrum of the operators used in [22], i.e., T4(g) (14),

and T3(g) (13). We recall that in [22], the doubling operator was defined as

T3(g), but the derivative was computed for the operator T4(g). Since both
operators have 1 as an eigenvalue, the Newton iterations do not converge

(i.e., there is a family of solutions). So we used g(x) found earlier, which
satisfies all universality equations. The spectrum of the operator dT4(g) is

S̃ (8), i.e., it coincides with the spectrum of the operator L(g). However,
the explicit eigenfunctions corresponding to λ = α1−k, k = 0, 2, 3, . . . are the

same as for the operator dT (g) in Proposition 3; and the eigenvalue 1 has
the eigenfunction g(x)− xg′(x) (as was found in [22]). The eigenvalue α2 is
missing in these problems.

It turns out that the spectra of T4(g) and T3(g) stand in the same relation-
ship as the spectra of T (g) and T2(g), i.e., the spectrum of dT3(g) is obtained

from the spectrum of dT4(g) by the substitution α → −α, and half of the
explicit eigenfunctions (for even k) could not be recovered.

The one-parameter family of solutions to the equations (2) and (14) can be
found if we take g(0) as a parameter on the family and fix it in the procedure.
Numerical solutions that we found correspond to the family g̃(x) = μg(x/μ),

μ ∈ R. The value α and the spectrum are preserved on the family; however,
only one explicit eigenfunction g̃(x) − xg̃′(x) is left for the eigenvalue 1 in

each problem.
Thus, the equation y(x) = βy(y(x/β)) has a family of solutions only for a

discrete set of values β. One of them is β = α ≈ −2.5, another is β = 1 for
y(x) ≡ 1. For each family, there is a solution y0(x) on the family for which

β = 1/y0(1). For β = α, y0(x) = g(x) (the solution to the equation (1)); for
β = 1, y0(x) ≡ 1, and the family itself is y(x) = const with the spectrum
1, 0, 0, . . . Since the spectrum is preserved on each family of solutions, the

families cannot intersect.
Other families can be found for different types of extrema of the unimodal

solution to the equation (1), i.e., g(x) − 1 = O(x2k), k = 2, 3, . . . We found
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the solution for k = 2 (with n = 70)

g(x) = 1− 1.834107907 x4+ 0.012962226 x8+ 0.311901736 x12

− 0.062014622 x16− 0.037539249 x20+ 0.017665496 x24+ . . .
(18)

for which 1/g(1) = α2 ≈ −1.690302971 with the accuracy 0.1 × 10−19, as
compared to [3]. The constant δ2 ≈ 7.284686217 is found with 19 correct

decimal places. The spectrum of the operator dT on the solution (18) is

[γ1, γ2, . . .] = [α4
2, δ2, α

3
2, α

2
2, α2,

1

α2
,
1

α2
2

, γ8, γ9,
1

α3
2

, . . .],

where |γi| > |γj|, i < j, and γ8 ≈ 0.291838408, γ9 ≈ −0.255664558. Proposi-

tion 3 holds here formally except for the eigenfunction (7), which corresponds
now to the eigenvalue α4

2.

Now we turn to different functional spaces, and, to make it more demon-
strative, we will use a different quasi-numerical algorithm.

We will consider various Taylor expansions of the solution g(x) to the
equation (1). The coefficients of these series are found exactly (symbolically)
in rational arithmetic by the symbolic values of the polynomial g(x) at the

chosen rational nodes. Symbolic approach avoids the floating point arithmetic
at this very crucial stage, since the corresponding linear systems of equations

are very ill-conditioned. In this way, we obtain an analog of the Fourier-
Chebyshev transform for arbitrary distributed rational nodes. Thus, the

floating point arithmetic is only used for the evaluation of polynomials.
Let us verify the Feigenbaum conjecture for the equation (1) using this

algorithm and the Lanford’s expansion g(x) = 1 − x2y(x2). As it was men-
tioned, this substitution is frequently used for the numerical solution of the
equation (1) (including the paper [12, page 693]).

The polynomial g(x) is expanded in the Taylor series

g(x) = 1 + a1x
2 + a2x

4 + . . .+ amx
2m, (19)

where m is the dimension of the approximation and the number of nodes
taken on the interval [0, 1]. This set of functions is not a space, but a subset

in the space E of even analytical functions.
We take m = 15, and choose the nodes xi = i/m, i = 1, 2, . . . , m. Then

we solve symbolically the linear system {g(xi) = gi}, i = 1, 2, . . . , m with

respect to the coefficients ak, k = 1, 2, . . . , m of the Taylor expansion (19).
Then we evaluate this exact solution as needed in floating point arithmetic

on different sets of values g(xi), i = 1, 2, . . . , m. The Newton iterations are
done as described above for Chebyshev nodes, and the spectral problem is
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solved after the final iteration for the obtained matrix I − A. Thus we find

the spectrum

S3 = [δ,
1

α2
, λ6, λ8,

1

α4
, . . .],

i.e., we recovered the Feigenbaum conjecture. Only those eigenvalues of the
spectrum S (5) are left in S3 that correspond to even eigenfunctions (except

for α2). The constant δ is found with 19 correct decimal places, although the
power of the polynomial solutions is the same, i.e., 30. This is due to the
poor choice of the nodes, compensated only by the rational arithmetic.

In many papers, only the space of even analytical functions is defined,
and the Lanford’s expansion (19) is not stipulated (see, for example, [8, page

1264]). This makes the Feigenbaum conjecture not true. To demonstrate
this, we take the expansion

g(x) = a0 + a1x
2 + a2x

4 + . . .+ amx
2m, (20)

and proceed as described above, but for xi = i/m, i = 0, 1, 2, . . . , m. We

obtain the spectrum S3 plus the missing eigenvalue α2 ≈ 6.26.
In both cases (19) and (20), the same solution g(x) is obtained, and the

Newton iterations converge quadratically (as the spectrum indicates they
should).

Now we demonstrate that even functions are not necessary for the Feigen-
baum conjecture to be fulfilled.

First, we take the expansion

g(x) = a0 + a1x+ a2x
2 + . . .+ amx

m (21)

on the interval [−1, 1]. We take the Chebyshev nodes and approximate them
as rational numbers (with small denominators). Then we solve symbolically
the linear system {g(xi) = gi}, i = 0, 1, 2, . . . , m and proceed as described

above for the quasi-numerical algorithm. This is another projection of the
space F on a finite dimensional one. As expected, we duplicated the results

obtained with the Chebyshev approximation (15) and obtained the spectrum
S (5).

Now we fix a0 = 1 in the expansion (21), decrease the dimension by 1, and
repeat the process. This will kill the eigenvalue α2. If we keep a0 arbitrary
and fix the coefficient a1 = 0, then we kill the eigenvalue α, but α2 is still

present. Finally, if we fix both a0 = 1 and a1 = 0 and repeat the process, then
we kill both eigenvalues α2 and α and recover the Feigenbaum conjecture.
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§ 5. Conclusion

In the paper [6], the condition P3), i.e., the functions being even, is im-

posed “mostly for convenience; it simplifies matters and is satisfied by the
ψ’s we are able to analyze in detail” [6, page 211, 212]. A rhetorical question
is: how much our convenience and ability to analyze something in detail are

related to the physical relevance of such an analysis? We do not pretend to
know the answer to this question with respect to the Feigenbaum universality.

However, in other problems, for example, bifurcations of periodic solutions in
a dynamical system, there is no reason to restrict the analysis to symmetric

functions if the solutions in question possess the symmetry. On the contrary,
the loss of the symmetry is one of the possible bifurcations (see [21]).

These considerations lead us to believe that the Feigenbaum conjecture,
as it is usually understood, is a numerical artifact. Although at this stage, it
is just a personal opinion.
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