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Spin-stabilized satellite with Sun-pointing active magnetic attitude control
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bibliography, 22 figures

The angular motion of an axisymmetrical satellite equipped with the active
magnetic attitude control system is considered. Dynamics of the satellite is
analytically studied on the whole control loop. Two coarse sun-pointing algorithms
and nutation damping are studied. Fine sun-pointing algorithm is implemented last.
Two different algorithms are proposed. Active magnetic attitude control system time-
response with respect to its parameters is analyzed, orbit inclination is of particular
interest. Numerical simulation is carried out.
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CnyTHMK ¢ aKTUBHOW MATHUTHOM CHCTEMOM OPHMEHTAIMU, Peau3yIolieH
ero passopot Ha Couanne. M.YO. Opunnnukos, [.C. Ponayrun, I1. Tectanu. UTIM
uM. M.B.Kennpimma PAH, Mocksa, 2012 r., 31c¢., Oubnuorpadus: 12 HauMeHOBaHUH,
22 pUCYHKOB

PaccmaTpuBaercsi OCECMMMETPUYHBIM  CIIyTHMK, OCHAIIEHHBIM aKTUBHOU
MarHUTHOM CUCTEMOU opueHTanuu. B paMkax ocpeHEHHON MO/IeId reOMarHuTHOTO
MOJISl AHATMTUYECKU MCCIEIYIOTCS JBa alropuTMa rpy0oit opuentanun Ha CojHIIe,
UCIIOJIb3yeMbIe COBMECTHO C aJITOPUTMOM TallleHUs HyTallMOHHBIX Konebanumid. [Tocie
HUX HCTIONB3YETCS OJIMH U3 JABYX Pa3jIUYHbIX aJTOPUTMOB TOYHOM OpHEHTAIMH Ha
Coname. PaccmaTpuBaeTcsi 3aBUCHMOCTH OBICTPOJCUCTBUS AKTHBHOW MarHUTHOU
CUCTEMBI OT MapaMeTpPOB 3aJauyM, B TMEPBYIO Ouepelb — OT HAKJIOHEHHUS OpPOUTHI.
Pe3ynbTaThl MOATBEPIKIAFOTCS YUCISHHBIM MOJICTUPOBAHUEM.

KiaoueBble  cjoBa:  MarHWTHas  CHCTeMa  OpPUCHTAIlMH,  CIyTHUK,
CTaOMJIM3UPYEMBIII COOCTBEHHBIM BpalleHUEM, OCPEHEHHas MOJeNb MarHUTHOIO

1oJist 3eMJI, OBICTPOICCTBUE CUCTEMBI OpPUEHTAINH, OpUeHTaIus Ha CoJIHIIe



Introduction

Spin stabilization is a common way to maintain a satellite attitude. Satellite
acquires the properties of a gyroscope while it is spinned around the axis of
symmetry with a high angular velocity. In our recent work [1] attitude control system
(ACS) functioning was divided into three stages: nutation damping, spinning around
the axis of symmetry, reorientation of the axis in the inertial space. These stages may
be combined. To conduct the whole control circle, satellite must be equipped with an
active ACS to control its angular velocity and attitude. Here new algorithms are
introduced that allows us to start reorientation right after the separation from the
launch vehicle.

In this paper we consider the most common way of attitude control of a spinning
satellite. The method is based on the interaction between the geomagnetic field and
satellite magnetized elements. Magnetic attitude control systems (MACS) are
especially attractive when it is critical to get low-cost and low-mass ACS capable of
implementing conventional algorithms for onboard computer. Principal methods of
magnetic attitude control of a spinning satellite are considered in [2] and [3]. Paper
[4] is a comprehensive survey of works on satellite orientation and stabilization,
steady-state motion stability and external torques effect including these problems for

a spinning satellite.

1. Problem description

Angular motion of a spinning satellite equipped with MACS is considered in the
paper. MACS consists of three mutually orthogonal magnetic coils. Assume that
MACS is capable of producing magnetic dipole moment in arbitrary direction in the
satellite reference frame but of bounded value. Only torque produced by the
interaction of MACS with the geomagnetic field is taken into account. Averaged

geomagnetic field model 1s used to represent the geomagnetic field [5]. Angular



motion of a satellite is described by the Beletsky-Chernousko variables [6] and the
Euler equations. Satellite’s orbit is considered as a Keplerian circular one. MACS
implements following algorithms:

1. Nutation damping. Single coil implementing “-Bdot” [7] algorithm is
used. In some cases general “-Bdot” itself may be used.

2. Coarse axis of symmetry reorientation. Two different algorithms are
used.

3. Spinning of the satellite around its axis of symmetry. We assume that
initial equatorial component of the satellite angular velocity is small due to nutation
damping or “-Bdot” implementation.

4. Fine axis reorientation in the inertial space. The satellite is assumed to be
spinned fast around the axis of symmetry. Two different algorithms are used.

The terminal attitude is the axis of symmetry sun pointing.

2. Geomagnetic field model

The choice of geomagnetic field model is one of the most crucial points for the
success of whole work. The most common inclined dipole model or right dipole
model both do not allow us to get the solution of the equations of motions in terms of
explicit formulas or quadratures. So, we introduce one more simplification
considering the geomagnetic induction vector as moving uniformly on the circular
cone side and its magnitude is constant. To do this we need to introduce a reference
frame O,Y;Y,Y; where O, is the Earth center, O,Y; axis is directed along the Earth
spin axis, O,Y; lies in the Earth equatorial plane and is directed to the ascending
node, O,Y; axis is directed so the system to be a right-handed. If the magnetic
induction vector source point is translated to the O, then the cone is tangent to the
0,Y; axis, its axis lies in the O,Y,Y; plane (figure 1). The cone half-opening angle is

given [5] by
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where i is the orbit inclination. The geomagnetic induction vector moves uniformly

tg®= 2.1)

on the cone side with the double orbital angular speed, y =2u+7%, where u is the
argument of latitude, ®, 1s the orbital angular velocity. Without loss of generality we

can assume y, =0.

Y
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Fig.1. Averaged geomagnetic field model

This model, sometimes called averaged, is used in our work. It does not allow
us to take into account non-uniformity of geomagnetic induction vector motion (as
right dipole model does) and its diurnal change (as inclined dipole model does) but it
is considered as a good trade-off between the accuracy of modeling geomagnetic
field and the possibility to get closed-form result.

Angle ® is of great importance for our work. Expression (2.1) introduces the
relationship between ® and the orbit inclination. In fact, these angles are close, so we
may consider ® =i for a qualitative analysis of the system time-response with
respect to the orbit inclination since the maximum value of ®—i is about 10°.

Comprehensive comparison of models can be found in [8].

3. Problem statement

Let us introduce all necessary reference frames.



0,Z,Z,Z; is the inertial frame, got from O,Y;Y,Y; turning by angle ® about O,Y;
axis.

OL,L,L; is the frame associated with the angular momentum of a satellite. O is the
satellite’s center of mass, OL; axis is directed along the angular momentum, OL, axis
is perpendicular to OL; and lies in a plane parallel to the O,Z,Z, plane and containing
O, OL,; is directed such that the reference frame is right-handed.

Ox x,x3 1s the bound frame, its axes are directed along the principal axes of inertia of
the satellite.

Reference frames mutual orientation is described through the direct cosine

matrices Q,A expressed in the following tables

L L, L X Xy X
Z 4y Gy Y L a, a, a;
Z, 4y 9n 4 , L, ay, a, ay
Z; 4y 43 43 Ly ay a, a;

We introduce low indices Z,L,x to denote the vector components in frames
0,2,2,7Z;, OL,L,L; and Ox;x;x; respectively. For example, for the first component of
a torque 1n these frames we write M, M, , M, ..

We use the Beletsky-Chernousko variables and Euler angles to represent the
motion of the satellite. Beletsky-Chernousko variables are L,p,c,®,y,0 [6] where L
is the angular momentum magnitude, angles p,oc represent its orientation with
respect to O,Z;Z,7; frame (figure 2). Orientation of the frame Ox;x,x; with respect to

OL,L,L; 1s described using Euler angles ¢,y,0. Direct cosine matrix Q takes form

COSPCOSG —SING  SINPCOSC
Q=| cospsincg cosc sinpsinoc |. (3.1)
—sinp 0 cosp
Direct cosine matrix A is as following
CoS(QCOs\y —cosOsin@siny  —sin@cos\y —cosOcosesiny  sinOsiny

A =| cospsin\y +cosOsinpcosy —sin@siny +cosOcospcosy —sinBcosy |. (3.2)
sinOsin@ sinBcos @ cosO
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Fig. 2. Angular momentum orientation in the inertial space

Inertia tensor of the satellite is J =diag(4,4,C). Angular motion of the

satellite in a circular Keplerian orbit is described [6] by the equations

dL dp 1 do 1

—=M,,, —=-M,, —=—-—M,,,

dt dt L dt Lsinp

do 1 :

Ezz(Mchosw—MlLsm\y), (3.3)
do 1 1 1 :

—=LcosO| ——— |+ M., cosy+ M, siny),

dt (C j Lsine( 1z S5 2 W)

dy L 1 1 :

—=———M,, cosyctgh——M,, (ctgp +sinyctgO
=~ Mucoswetgb——M, (ctgp+sinyctgh)

where M,,,M,,,M,, are the torque components in OL,L,L; frame.

In case of the Euler equations we use variables ,,m,,m, to describe the
dynamics of the satellite. In this set ®, are the components of the absolute angular

velocity of the satellite in Ox;x,x; frame (i =1,2,3). Satellite dynamics is described

by equations

do
A dtl —(A-C)o,0, =M, _,
4992 L 4—Cyow, =M, ., (3.4)
dt
Ca’o)3 M,

dt



kinematic relations are not used.
4. Initial attitude acquisition

Since small satellites are of particular interest in this work, initial conditions
after the separation from the launch vehicle cannot be restricted during mission
design period. So, coarse pointing and detumbling are necessary prior to fine pointing

algorithm implementation.
4.1. Nutation damping

Algorithm “-Bdot” [7] 1s the most common way for detumbling the satellite at
the initial stage of mission. However, in the considered case its implementation may
be illogical since the satellite should be spinned about its axis of symmetry, so
damping the angular velocity component along the axis of symmetry is undesirable.
Instead, nutation damping algorithm is used. It is discussed in another work [1], so

we bring only brief analysis here. We will use the “-Bdotr” algorithm implemented by
a single coil only. Magnetic dipole moment of the satellite m = (O,O,m)T in this case

is determined by the expression
dB
m_=—-k|—=e, |e., 4.1
X 1( dt 3) 3 ( )

where k; is a positive coefficient, e, is a unit vector of the axis of symmetry of the
satellite.

Consider fast rotations of a satellite (L/ A >>w,, L/C >>®,). Such a regime
is typical for the initial rotation of a satellite after the separation from launcher. Our

assumption is further justified when one notes that the nutation damping algorithm is

the first in sequence and it is implemented right after the separation.



After some mathematics the magnetic dipole moment of the single coil in
OL,L,L; frame is

L
m= Zkl |:BIL (a31a12 —dypdy )+BZL (a31a22 —dyndy )]

and the dipole moment of the satellite is
T
m, = Am, :m(a13, ayss a33) )
which leads to the torque
a23BSL - a33B2L

M, =m| a;;B,, —a,;B;;

a13B2L - a23BlL
Let us transform equations of motion to the dimensionless form. These
equations will be used for other algorithms analysis with slight revision. In order to

do this we use dimensionless torque M, defined by the expression
M, =202 M, (4.2)

Next we introduce argument of latitude u =w,(#—¢,) instead of time in (3.3)
and dimensionless angular momentum / according to the expression L =L,/ where

L, 1s the initial angular momentum magnitude. This leads to (3.3) being rewritten as

ﬂzslﬂsL,@ZSMua@: .8 M“’
du du du sinp
@:8(M2LCOS\|I—A_41LSinW)’
du
(4.3)
do € (s Mo si
—=mn,/cos0+— (Mchosw+Mstln\lf),
du sin O
dy

e N,/ —eM 1L cosyctgd —eM o (ctgp+sinyctgh).
u
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2
The following notations ezkli, u :i(l—lj, n, = L are introduced. In
0,4 o,\C 4 A

(’00
. . € \B;
case of weak magnetic dipole moment ¢ and expressions T are small.
N; 0

Parameter ¢ can be regarded as the ratio between angular momentum change during

: . .. € :
one orbit and its mean value on this interval; — are the same but for one satellite’s
N;

revolution about its center of mass. It is seen from (4.3) that ¢,y,u are fast variables,
while /,p,5,0 are slow ones. So, we can use asymptotical methods [9] to determine
slow variables evolution. In order to do that we need to average equations along the
undisturbed solution of equations (4.3). However, since this motion is a regular
precession, we need only to average separately the equations for slow variables over
fast variables. Equations (4.3) and following reasoning will be used again for other
algorithms.

For the nutation damping algorithm we get on the time interval of order 1/ ¢

dl 1 ) )

E:—Egl[Zp+(1—3p)s1n2p]s1n26,

@:lg(3p—1)sinpcospsin26,

du 2

do 1 .2 . 9
E:—Eg[2p+(l—3p)sm p}smecose,

45 _y

du

where p=0.5sin’®. Equations (4.4) admit two first integrals. The first one
is]l(l,e)zl cos0. It shows that the third component of angular velocity vector

conserves in the fixed frame. Another first integral 1s

Iz(p,e) :%ln(tg2p+1)— 3Iilillntgp+lncose.
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We got two first integrals satisfying conditions of the implicit function theorem

so the solution of (4.4) is obtained in quadratures.
There are three parameters which affect the time-response: i,p,,0,. As
expected, with O, rise the time response (the time necessary to lower O, and,
therefore, the equatorial component of angular velocity /sin0/ 4) falls. Parameter i

and p, effect is presented in figures 3 and 4.

5
=]
T

inclination, degrees
inclination. degrees

Py degrees Py, degrees
Fig. 3. Angle 0 after 2 orbits, 0, =30" Fig. 4. Angle 0 after 15 orbits, 0, =70
As seen from figure 2, if p, is less than approximately 50° the time response
rises with inclination rise, and if p, is greater, it falls. Figure 3 shows that if the
algorithm is considered on greater time interval, there is some area where the best
inclination is about 45°. But it is clear that for the greater inclination 6 would not
exceed 14°, while for the small inclination it may stay almost constant. So, it is

preferable to use high-inclined orbit.

15
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Fig. 5. Numerical simulation
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Figure 5 brings numerical simulation of the nutation damping algorithm

performance. Numerical analysis was conducted under following assumptions:

. Satellite tensor of inertia is J = diag(0.2,0.2,0.3)kg - m’

The gain k, =2-10°kg -m* / T - s
. Initial angular velocity of the satellite is (10,10,10) deg/ s

o Orbit inclination is 60°
o Orbit altitude 1s 400 km
o IGRF model is used (for the orbit with 400 km altitude).
Apart of initial conditions, other parameters will be used in further numerical
simulations. It is seen from figure 5 that the algorithm effectively damps nutational

motion.
4.2. First coarse reorientation algorithm

One way to achieve a terminal orientation is successive implementation of
nutation damping, spinning and reorientation algorithm. However, one can start
reorientation right after the separation from the launch vehicle. Coarse sun-pointing

algorithm is used [10]
m =k, (e;[BxS])e;. (4.5)

The analysis of the satellite motion with this algorithm implemented is rather
complex, so we consider one special case S, :(O, 0, I)T. That means the Sun

pointing vector is directed along the axis of the cone in the averaged geomagnetic
field model. Satellite is considered as fast rotating again since the coarse algorithm is
used right after the separation. So, we use equations (4.3) and all related reasoning to

get averaged equations. We need the torque to be written in OL;L,L; frame. Sun-

pointing vector is S, = (q31, 0, g, )T since ¢,, =0. Geomagnetic induction vector is
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9B\, +4,,B,, + 45, B;,
L =| 9B, 408y, + 43,85, |,
4381, +453B,, + 45385,

B

axis of symmetry is

€, = (a319 asz, a33)-

We introduce vector p=B xS for simplicity. The torque is

2 2
pBaza, + p,B, a5, + pByasas,, — p B, asa., — p,B, asa5, — piB,,as;
S 2 2
M, =k,B)| pBasa;+ p,Ba; + p,Basa,, — p,Byasa,, — piB;,a,a, — piBya; ((4.6)

2 2
DBy ,aay, + pB,,ay; + piBy,aza; — pB, ,aa,; — B anay, — p, B ,an,
In order to derive equations for slow variables, we need to obtain expressions for

<M L >¢,W’u ,<M . COS\V>¢,W,L, ,<M2L s1n\y>(p’w. Components M, do not contain ¢. Only
expressions a,a,, contain y, while expressions BB, contain u. So, only a,a,

should be averaged over v, and only BB, should be averaged over u. The latter

leads to B,, = B,, =0.5sin’ @ = p, B,, =cos’ ® = q. Averaging leads to equations

dr_ gpsin’ Ocosp,

du

dp .2 :

—= sp(O.Ssm 0— l)smp /1,

du

o 4.7)

22 =0,

du

49 =gpsinBcosOcosp//

du
BZ

where €= L2 0. New small parameter has the same sense. It is introduced because
0(’00

damping coefficients in algorithms are different. The same notation € is used for
convenience for the analysis of each algorithm. We immediately obtain the first
integral o =const (trivial equation for ¢ is omitted from now on). Next, we divide

the first equation in (4.7) with the last one,
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dl  sinQ

[ cosH

do.

That leads to the important first integral 1, (1,9) =[cos0. It means that the spinning
rate, that is, o, does not change during the coarse reorientation process. It eliminates

the danger of satellite being spinned too fast or detumbled. However, we have no
insight on the precession rate. In order to obtain second first integral we divide

second equation in (4.7) with the last one,

dp _sinp 0.5sin’0—1
d0 cosp sinBcosO

That leads to the integral
Iz(p,e) = O.251n(tg2 9+1)—lntg9—lnsinp.
These two first integrals bring the solution of (4.7) in quadratures.

Equations (4.7) have two equilibrium points (6=0, p=0 or n) and
(9 =n/2, p=0 or n), the first equation 1is separated. Only the point
(9 =n/2, p= O) is stable, so angle p tends to zero. Angular momentum magnitude

and nutation rate rise. In order to interpret this result, let us analyze the control law

(4.5). Clearly, it forces the satellite to one of two positions: [e,xB]=0, that is
geomagnetic attitude of the axis of symmetry, or e,[BxS]=0, that is the axis of
symmetry lying in the plane of vectors B,S. Position [e, x B]=0 is only the special

case of axis of symmetry lying in the plane (B,S). In our special case vector S

coincides with the axis of the cone in averaged geomagnetic field model. After
averaging the motion over fast angles ¢ and y the axis of symmetry coincides with
the angular momentum vector. So, vector L. should rotate with the plane (B,S). After
the motion is averaged over one orbit, angular momentum vector eventually
coincides with the axis of the cone which is represented by angle p tending to zero.

So, the time necessary for angle p to become zero may be considered as time-
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response of the algorithm (4.5). The time-response is affected by inclination (since p

depends on ® and, therefore, on i) and 0,. Figure 6 makes their influence clear.

90
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= 10 R
| 10
20 ; -
: 8 \ 30
10 : e
0 ' ‘ ' | ! ! ' ' % 08 1 15 2 25 3 35 4 45 s %
o 10 20 30 40 s 6 70 8 : - ; - :
By degree circles
Fig. 6. Angle p after 10 orbits, p, =20° Fig. 7. Angle p for a set of inclinations

Figure 6 brings angle p after 10 circles for different inclinations and 6, values.
It 1s seen that O, effects the time-response and it is better to have it small (that means
to have satellite possibly close to being spin-stabilized). So, the closer the satellite to
the spinning around the axis of symmetry, the better. Inclination has dramatic effect
on time-response. It is clearly better to have high inclinations: for inclinations less
than 10° p keeps almost constant (changes by several degrees), while for high

inclinations it reduces to only few degree. Figure 7 introduces angle p with respect to
time for different inclinations and 0, =20°.
The attitude of the axis of symmetry lying in the plane (B,S) is not exactly the

desired. In order to achieve sun-pointing, nutation damping (4.1) is introduced. It
does not change the spinning, since /cos9 is the first integral for both algorithms but
it decreases nutation that arises with algorithm (4.5) (since / rises and 0 tends to
zero). In terms of axis of symmetry lying in the plane (B,S) it also decreases angular
velocity that arises because of rotating vector B. So, the axis of symmetry slowly
tends to coincide with S. However, when coarse attitude is achieved and nutation is

damped, it is logical to switch to the spinning algorithm and then to the fine sun-
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pointing one. Figures 8-10 introduce numerical analysis of combined implementation

of algorithms (4.1) and (4.5).

a0 T T T T T T T T T 4

70k

60F

50 251

40t

30F

n
T

pointing angle, degree
pointing angle, degree
(2%

20

10+

1 1 1 1 1 1 1 Il 1 1 Il 1 1 1
0 0.2 04 06 0.8 1 12 14 16 1.8 2 1.7 1.75 18 1.85 19 195
time. s X 104 time, s x 104

Fig. 8. Pointing angle evolution. Fig. 9. Final pointing accuracy.
Figures 8 and 9 bring the pointing accuracy of the first coarse reorientation
algorithm (simulation time is about 4 circles). The accuracy is about two degree,
which is good for the coarse sun-pointing. It is possible to achieve even better
accuracy with different initial conditions but generally the accuracy is about few

degree.

angular rates, degree

1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
time,s

Fig. 10. Angular velocity rate

Figure 10 shows nutation damping when implementing both coarse reorientation
algorithm and nutation damping. Simulations were held with following initial
conditions:

o Initial Euler angles are a=a, —10°, =B, +7°, y=7,-61.3°

o Initial pointing error is 12°



17

J Angular rates ©, =0, =», =10°/s

o Damping and  reorientation  gains  are k,=5-10°%g -m*/T"-s,
k,=10%kg -m* /T?-s".

Orbit inclination and geomagnetic field model here and further are the same as for the
nutation damping numerical analysis. Angles o, ,y, meaning is briefly described

below. We introduce new Sun-related reference frame O,S;S,S; where O,S; coincides
with the Sun direction, O,S; axis is directed as the cross product of O,Z; and O,S;3,
while O,S; is directed such that the reference frame is right-handed. When the body
frame Ox;x,x; coincides with the O,S;S5,S; frame the satellite is actually pointing at
the Sun. The new set of Euler angles o ,3,,7, is used to describe Ox;x,x; attitude
relative to O,5,55S;. So the initial attitude is represented as a deviation from a perfect

Sun pointing.
4.3. Second coarse reorientation algorithm

Paper [1] introduces fine reorientation algorithm implemented by the third coil
m =,(0, 0, (S—L)[e, xB]). (4.8)

This algorithm is used for the spinned satellite when the axis of symmetry coincides

with the angular momentum. So, it may be rewritten in the form
m ~ k,(0, 0, (S —e; )[e; xB]).
Taking into account e,[e;xB]=0 it becomes identical to (4.5). The analysis of the

algorithm (4.8) for the case of already spinned satellite can be found in [1] and is
briefly considered in section 6. Here we try to use it for the coarse reorientation in the

case of arbitrary initial angular velocity. Magnetic dipole moment of the third coil is

my =k, B, |:S1 (asz3 —ayB, ) + (Ss - 1)(“1332 —ayB, ):|
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where S, are components of the direction to the Sun vector in OL,L,L; frame (we

consider S, = (O, 0, I)T again). The torque is

S(&B 20,88 +dB)+S 1) ¢,4,BB ~d,BB +a,4.B8~a.a.B)
M=FR)| S axa,BB ~@BB +aa BB ~a,48 | S, 1) 4:a,BB ~@BB +6:%:BR ~aa: 8 |
(st BB ~ BB, +as BB~ B ) +(S, 1) B ~20,0, BB+ )
It does not depend on ¢ again, and we need to average expressions a,a, over y and
expressions B,B, over u . Averaged equations are

d 1 . .
= Essm2 9[2p(cosp —1)+(3p—1)sin’ p},

@: —(C,psinp/l+lssin2 9[psinp+(3p —l)sinpcosp]/l,

du 2 (4.9)
do _
du
do

| i
E:Easm6c0s6[2p(cosp—1)+(3p —1)sin’ p]/l.

0,

2
3By
®,

where ¢ = . These equations admit first integral /, (l ,9) =/cos 0. Unfortunately,

no other first integrals can be obtained. Nevertheless equations (4.9) are proper for
numerical integration since they do not contain equations for variables with different
change rates. The first integral may be used to control the accuracy of numerical

integration. The time-response is determined by the time necessary for the angle p to

become close to zero again. Figures 11 and 12 introduce this angle for different

inclinations and initial values of angle 0.

The time 1s 10 orbits and p, =20° again, so we can compare two coarse sun-

pointing algorithms. Clearly, if 0, > 45" low inclination is better. All other algorithms

act better for high inclinations, so we consider this case. If the inclination is high, 0,

should be less than 45°. However, for 0, <45° the time-response is better than for the
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algorithm (4.5). So, for the best time-response it is logical to implement algorithm
(4.5) along with the nutation damping algorithm, and when 6 becomes less than 45°
to switch to the algorithm (4.8). It is not necessary to terminate nutation damping
algorithm though. The algorithm (4.8) does not increase the nutation rate. Figure 8

introduces angle 0 starting from 0, =40" (that means algorithm (4.8) is already

implemented instead of initial (4.5)). It is seen that for high inclinations we may
neglect the nutation damping effect of algorithm (4.8). If the inclination is low this
algorithm becomes especially important. It provides relatively fast coarse
reorientation in case of large initial nutation rate and detumbles the satellite keeping
the spinning rate. However, this is valid only if satellite angular momentum initial

attitude is far from necessary (p is not small).
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Fig. 11. Angle p after 10 orbits, p, = 20’ Fig. 12. Angle 0 after 10 orbits, 0, =40’
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Fig. 13. Pointing angle evolution. Fig. 14. Final pointing accuracy.
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Figures 13-15 introduce numerical analysis of combined implementation of
algorithms (4.1) and (4.8) for a chaotically rotating satellite. Figures 13 and 14 bring
the pointing accuracy of the second coarse reorientation algorithm. The accuracy is
about 3 degree, which is proper for the coarse sun-pointing. It is possible to achieve
even better accuracy with different initial conditions but generally the accuracy is

about few degree.

angular rates, degree/sec

1 1 1 1 1 1 1
50 100 150 200 250 300 350 400
time, s

Fig. 15. Angular velocity rate
Figure 15 shows nutation damping when implementing both coarse
reorientation algorithm and nutation damping. The following set of initial conditions

have been used:

o Initial Euler angles are a=a, +12.6°, B=p,—-16°, y=v, —61.3°

o Initial pointing error is 19.6°
J Angular rates o, =0, =»_ =10°/s
o Damping and  reorientation  gains  are k,=510"kg-m*/T-s,

k,=10%g -m* /T -s”.
If the satellite 1s already spinned the results are better. Figure 16 introduces the

pointing accuracy for this case.
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pointing angle, degree

1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time,s

Fig. 16. Pointing angle evolution

The following set of initial conditions have been used:
o Initial Euler angles are a=a, —10°, B=B,+7°, y=7,-61.3°
o Initial pointing error is 12°

J Angular rates ©, =®, =0, ®_=10°/s

o Damping reorientation gains are k, =5-10"kg -m*> /T s, k, =10°%kg -m* / T - s°
5. Spinning up

It is shown in previous section that initial attitude acquisition phase leads to the
satellite being reoriented in the necessary direction (by means of algorithms (4.5)
and/or (4.8)) with damped nutation rate (by means of algorithms (4.1) and/or (4.8)).
Spinning rate is not affected at all. In order to achieve the spin stabilization the
satellite should be spinned around the axis of symmetry to the proper angular velocity

® . This is achieved with the algorithm

m, =k,(B,,~B,,0) (5.1)
leading to the torque
Mx:k4802(_leB3x’_BZXB3x’Blzx+822x)' (52)
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5.1. Model problem
We use Euler equations (3.4). Clearly, if we consider the torque (5.2), M, is

always positive. We substitute M,  with positive constant value as well as M, and
M, ones but with less values since the actual sign of these components changes and

by substituting them with positive constant values we only worsen the situation. We

also consider satellite nutation as being damped after the initial attitude acquisition

stage. So, we analyze equations

dm
AT (4= o, = M,
Ada‘;z +(A-C)on, =M,, (5.3)
Cdm3 M,
dt

Assume the initial angular velocity in this stage @, = (®,,,0,,,0,,)" is no equal
to zero but either all of its components are small in comparison with ®, or only
equatorial component is small. For the further analysis we only need ®,,/ ®, = 0(1),

(i =1,2) which means that the initial equatorial component is small. The component

M,| << |M;|.

M, along the axis of symmetry is the prevailing one, i.e. ‘Ml‘ << ‘M 3

b

This should lead to the spinning around the axis of symmetry.

The latter equation in (5.3) is instantly solved

O, = 0, +—>¢
3 30
C

. . : C :
and this expression leads to the time ¢, :V(O)f —(030) necessary to achieve the
3

required velocity ® .

To get two first components of angular velocity we introduce a new time
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and denote a = M, | € , b= M, | € . Then (5.3) take a form
A\ 2M, A\ 2M,

4o, -\, =2 &+7me _b
dt

JiTodn Jt

A- . . :
where A = TC Homogenous equations solution is as following

®, =¢,COSAT+C,SINAT, M, =—¢,SINAT+C, COSAT.
Varying constants c,, ¢, we get the following equations

dc, _acosM _bsinM dc, _asinM +bcos7n:

dv — Jr Jo Tdr Jr

with a solution

2 2
¢ = a\/%C(M‘) - b\/%S(M) + ¢
C, = a\/%S(?w) + b\/%C(?\ft) +Cy

where C J—dy ,
J2n

CoS y

=g [

¢, C, are constants of integration. Note, that the Fresnels integrals are odd

——=dy are the Fresnels integrals [11],

functions. So, if A <0 then S(M ——S(W ) —C(Wr). The sign of A has

no impact on the further argument. We denote

c’:a\/%c(kr)—b\/sz(M) —a\/%S(M) bﬁcm),
cg:aﬁc(kro)—b\/%S(Mo) co—aﬁ S(0,)+ bﬁc(kro)

So, using the initial conditions we obtain
— 4 " . _ ! : "
oy =(c) + ¢,y )cosht, + (co +Cy )sm ATy, 0, =—(cp + ¢ )Sin AT, + () + ¢y )OS AT,

which leads to

4

~ : . :
Cro = (0,9 COSAT, — @, SINAT, ) —Cf, €y = () SINAT, + @y COSAT, ) — 5 -
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>

Since ‘0310‘ << ‘wf

0320‘<<‘oof‘ we need to compare ¢'—c; and ¢"—¢; with ®, in
order to compare ®, and ®, with ®,. The Fresnels integrals C (x) and S(x) are less
than unity by magnitude, so we need to consider expressions

(i=12).

LM | C
" Ao, \2M,

We have g =o0(1) since the components M, M, are small in comparison with
the component M; and Aw,. So, if initial equatorial component of the angular

velocity o, 1s small and the torque 1s directed almost along the axis of symmetry,

b

conditions ‘0)1‘ << ‘co3

coz‘ << ‘(03‘ are satisfied and the satellite may be considered

spinning around the axis of symmetry. Fig. 17 introduces the ratio ®, /®, with

respect to the time.

0 10 20 30 40 50 80 70 30 90
time, s

Fig. 17. The ratio between the equatorial and polar components of angular velocity

: : : . : : M,
Equatorial component ®, i1s finite and raises with expressions —,

—2 rise. It
3 3
: " . . M,
1s not damped to zero but to some minimum value which depends on —, —=. In
3 3

figure 7 the ratio % =o(1), (i=12).

3
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5.2. Real control law

Constant torque cannot be achieved with MACS. Paper [1] introduces analysis
of the control law (5.1). Here it is briefly considered. Averaged Beletsky-Chernousko

equations in case of small angle 6 are as follows

dl .

—=¢|2p+(1-3p)sin ,

~-=e[2p+(1-3p)sin’p]

dp 1 .

—=—¢—(3p—1)sinpcosp,

o= ~e7(3p—1)sinpeosp

do 1

—=——¢|2-2p—(1-3p)sin’p |0

a2 (1-3p)sinp]
kB | | |

where €= 1 These equations admit the first integral
O‘)O 0

Il(l,p):lnl—%ln(tg2p+l)+ 32p 1lntgp and equation for 6 is separated. Figure

18 bring the time-response of the algorithm.

90

Fig. 18. Angular momentum after 5 orbits
Figure 18 (¢=0.1, 6, =1") brings the effect of p, and i on the time-response.
For small p, raising the inclination results in the time-response rise, for p, close to
90°, the time-response falls with orbit inclination rise. However, high inclined orbit is
preferable again since there is no risk of extremely low time-response.

Equatorial component of angular velocity does not rise, its derivative is
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d(Isin6) C
——~=¢|-2+2p+(1-3p)sin“p |sinBcosO.
" [-2+2p+(1-3p)sin’p]
Since 0 is close to 0 equatorial component lowers. Note that the nutation

damping algorithm may be implemented simultaneously with the spinning algorithm.
6. Fine sun-pointing

The algorithm (4.8) may be used for fine sun-pointing. It is analyzed in paper [1]
and it is shown that high-inclined orbit is definitely better for this algorithm to be
implemented after the satellite is almost purely spinned. Here we have some

numerical simulation results showing its accuracy.

08r

06

peinting angle, degree

04

02r

0

| | 1 1 1 1 |
0 1000 2000 3000 4000 5000 6000 7000 3000
time,s

Figure 19. Pointing accuracy.

o Initial Euler angles are a=a, +1.2°, =0, +1.2°, y=7y, —61.3°

o Initial pointing error is 1.175°
J Angular rates ©, =®, =0, ®_=10°/s
o Damping and  reorientation  gains  are k,=510"kg-m*>/T-s,

k,=10%g -m* /T -s”.
It is seen from figure 19 that fine sun-pointing algorithm allows precise

orientation of the order of 10~ degree (see figure 16 also).
Instead of (4.8) the torque constructed on the basis of PD-controller may be

used. The simulations ran with previous algorithms underline how the necessary use
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of a nutation damper in combination with the pointing algorithms provides a pointing
accuracy strongly dependant on initial conditions and needing a careful tuning of
gains (compare figures 8 and 13).

Other well-known control laws might be used in order to achieve a more
precise and reliable pointing but the actuation is not always granted: in fact according
to the nature of magnetic control, no arbitrary torques can be achieved, but only the
components in the plane perpendicular to magnetic field vector.

This problem, indicated in literature as “underactuation”, can be limited using
in each instant the closer dipole moment to the theoretical one. So although
commanded dipole is not exactly the required one in each instant, it is possible to use
the closer one, selected using an optimization method (pseudo-inverse method).

Empirical result shows as for high-inclination orbits the underactuation
problem is not so limiting: the reason is that the magnetic field orientation greatly
changes along the orbit, so the probability of having a persisting underactuated axis is
rather low.

So, in this case a simple PD-controller is used in order to show how to achieve
the pointing of a spinned satellite is possible even with non-natively magnetic torques

[12]. The control torque can be represented as

M,,=-K 3-K,

where K jand K, are gain matrices, proportional to the 3x3 unit matrix I, K, =k I,
and K, =k, I, the pointing error is

& = arccos[(Se,)S xe, .

The closer dipole providing a torque as close as possible to the wished one using a
pseudo inverse method is

B

=—_xM,,.
mPD HBHZX PD
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The resulting torque is the projection of M,, on the plane perpendicular to B.

Simulations show how using this method an accurate pointing can be achieved and
maintained even with the underactuation issue.
Figures 20-22 introduce results of numerical analysis of combined

implementation of algorithms (4.1) and (4.5).

pointing angle, degree
pointing angle, degree
=
=
&

1 1 Il 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 300 320 340 360 380 400 420 440 460 480 500
time, s time, s

Fig. 20. Pointing angle evolution. Fig. 21. Final pointing accuracy.
Figures 20 and 21 bring the pointing accuracy of the PD-controller implemented

by magnetic coils. The accuracy is of order of 10~ degree.

angular rates, degree/s
2

1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
time, s

Fig. 22. Angular velocity rate

Figure 22 shows nutation damping when implementing both PD-controller
algorithm and nutation damping. It is seen that spinning is decreased slightly but
without any unnecessary effects. Initial conditions are as follows:

J Initial Euler angles are o =a, +1.3°, B=p, +1.4°, y=y, —61.3°

o Initial pointing error is 4.8°
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J Angular rates ©, =®, =0, ®_=10°/s
o Damping and  reorientation  gains  are k,=510"kg-m*/T-s,

k, =10"kg-m*> /s>, k, =10"kg -m* /5.

Conclusion

A spin-stabilized satellite equipped with active magnetic attitude control system
is considered. Satellite is reoriented to the required attitude of the axis of symmetry in
the inertial space. Attitude control system implements six algorithms: nutation
damping, two coarse reorientation algorithm, spinning and two fine reorientation
algorithms. For each algorithm the time-response with respect to the orbit inclination
and other system parameters is studied. Equations of motion are solved in quadratures
using averaging technique. Analytic results show that the magnetic attitude control
system time-response rises when orbit inclination is rather high. It is shown that
simultaneous implementation of coarse reorientation algorithm and nutation damping
algorithm leads to the satellite being reoriented to the accuracy of few degrees. This
scheme allows faster reorientation than continuous detumbling and reorientation.
Fine sun-pointing algorithm constructed on the basis of PD-controller is proposed,

numerical analysis is carried out.

Acknowledgements
The study is carried out by partial support of Russian Foundation for Basic
Research. We are especially gratefull to Prof. Filippo Graziani and mrs. Chantal

Cappelletti for their continuous support and important remarks on the paper.



30

References

1. Ovchinnikov M.Y., Roldugin D.S., Pen’kov V.I. Analytical study of a three-
stage magnetic attitude control to change a single-axis orientation // 62th IAC
Congress, Paper IAC-11.C1.5.6. Cape Town, 2011. p. 11.

2. Shigehara M. Geomagnetic attitude control of an axisymmetric spinning
satellite // Journal of Spacecraft and Rockets. 1972. V. 9. Ne 6. p. 391-398.

3. Renard M.L. Command laws for magnetic attitude control of spin-stabilized
earth satellites // Journal of Spacecraft and Rockets. 1967. V. 4. Ne 2. p. 156-163.

4. Shrivastava S.K., Modi V.J. Satellite attitude dynamics and control in the
presence of environmental torques — a brief survey // Journal of Guidance, Control,
and Dynamics. 1983. V. 6. Ne 6. p. 461-471.

5. Beletsky V.V., Novogrebelsky A.B. Occurence of Stable Relative
Equilibrium of a Satellite in Model Magnetic Field // Astronomical Journal. 1973. V.
50. Ne 2. p. 327-335.

6. Beletsky V.V. Motion of a Satellite about its Center of Mass in the
Gravitational Field. Moscow: MSU publishers, 1975.

7. Stickler A.C., Alfriend K.T. Elementary Magnetic Attitude Control System //
Journal of Spacecraft and Rockets. 1976. V. 13. Ne 5. p. 282-287.

8. Beletsky V.V., Khentov A.A. Tumbling Motion of a Magnetized Satellite.
Moscow: Nauka, 1985.

9. Grebenikov E.A. Averaging in Applied Problems. Moscow: Nauka, 1986.

10. Grahn S. An On-Board Algorithm for Automatic Sun-Pointing of a Spinning
Satellite // Swedish patent application n. 9702333-7.

11. Handbook of Mathematical Functions: with Formulas, Graphs, and
Mathematical Tables / editors M. Abramowitz, I.A. Stegun. New York: Dover, 1972.
ed. 9.

12. Sedlund C.A. A simple sun-pointing magnetic controller for satellites in
equatorial orbits // IEEE Aerospace conference. Big Sky, Montana, 7-14 march 2009.
p. 1-12.



31

Contents
5315 (06 18 o1 03 PSR 3
L. Problem deSCriPtioN........ccuieieiieiiieeiieeieecteeeiteeiee et erereesreesbeesreeenreeeseeeneees 3
2. Geomagnetic field Mmodel ...........coooviiiiiiiiiiiieee e 4
3. Problem State€ment ..........cceeieiiieeeiiie ettt e e e 5
4. Initial attitude aCUISTLION.....ccuueeeieeeiieeiieeiie ettt e et e eeee e e sereeessee e 8
4.1, NUtation dampPing........ccceveeeeeiereeiiieeecieeesieeeesreeeereeeeereeessreeessaeeessseeeans 8
4.2. First coarse reorientation algorithm.............cccccveviviiiiiiine e, 12
5. SPINNING UP .evieeiiiiieeiiieeeiieeeeieeeeeteeeetteeeeteeeestbeeesssseeessseeessseeessseeessseeessseens 21
5.1. Model problem .........cccuiiieiiiieiie e 22
5.2. Real control 1aW ........ccueeiiiiiiiiiiiicee et 25
6. FINE SUN-POINEING....ccuviiiiiiiieeiiie ettt et e e tre e e sraeeessraeeenens 26
(07071 T¢] 18 15 10 ) s WSS 29

RETCICICES .. e e e e 30



	Untitled.pdf
	prep2012_04_eng
	Untitled.pdf
	prep2012_04_en
	1. Problem description
	2. Geomagnetic field model
	3. Problem statement
	4. Initial attitude acquisition
	4.1. Nutation damping
	4.2. First coarse reorientation algorithm

	5. Spinning up
	5.1. Model problem
	5.2. Real control law

	6. Fine sun-pointing
	Conclusion
	Acknowledgements
	References





