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Spin-stabilized satellite with Sun-pointing active magnetic attitude control 

system. M.Yu. Ovchinnikov, D.S. Roldugin, P. Testani. The Keldysh Institute of 

Applied Mathematics of Russian Academy of Sciences, 2012, 31p., 12 items of 

bibliography, 22 figures 

The angular motion of an axisymmetrical satellite equipped with the active 

magnetic attitude control system is considered. Dynamics of the satellite is 

analytically studied on the whole control loop. Two coarse sun-pointing algorithms 

and nutation damping are studied. Fine sun-pointing algorithm is implemented last. 

Two different algorithms are proposed. Active magnetic attitude control system time-

response with respect to its parameters is analyzed, orbit inclination is of particular 

interest. Numerical simulation is carried out. 

Key words: active magnetic attitude control, spin-stabilized satellite, averaged 

geomagnetic field model, time-response, sun-pointing 

Спутник c активной магнитной системой ориентации, реализующей 

его разворот на Солнце. М.Ю. Овчинников, Д.С. Ролдугин, П. Тестани. ИПМ 

им. М.В.Келдыша РАН, Москва, 2012 г., 31с., библиография: 12 наименований, 

22 рисунков 

Рассматривается осесимметричный спутник, оснащенный активной 

магнитной системой ориентации. В рамках осредненной модели геомагнитного 

поля аналитически исследуются два алгоритма грубой ориентации на Солнце, 

используемые совместно с алгоритмом гашения нутационных колебаний. После 

них используется один из двух различных алгоритмов точной ориентации на 

Солнце. Рассматривается зависимость быстродействия активной магнитной 

системы от параметров задачи, в первую очередь – от наклонения орбиты. 

Результаты подтверждаются численным моделированием. 

Ключевые слова: магнитная система ориентации, спутник, 

стабилизируемый собственным вращением, осредненная модель магнитного 

поля Земли, быстродействие системы ориентации, ориентация на Солнце 
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Introduction 

 

Spin stabilization is a common way to maintain a satellite attitude. Satellite 

acquires the properties of a gyroscope while it is spinned around the axis of 

symmetry with a high angular velocity. In our recent work [1] attitude control system 

(ACS) functioning was divided into three stages: nutation damping, spinning around 

the axis of symmetry, reorientation of the axis in the inertial space. These stages may 

be combined. To conduct the whole control circle, satellite must be equipped with an 

active ACS to control its angular velocity and attitude. Here new algorithms are 

introduced that allows us to start reorientation right after the separation from the 

launch vehicle. 

In this paper we consider the most common way of attitude control of a spinning 

satellite. The method is based on the interaction between the geomagnetic field and 

satellite magnetized elements. Magnetic attitude control systems (MACS) are 

especially attractive when it is critical to get low-cost and low-mass ACS capable of 

implementing conventional algorithms for onboard computer. Principal methods of 

magnetic attitude control of a spinning satellite are considered in [2] and [3]. Paper 

[4] is a comprehensive survey of works on satellite orientation and stabilization, 

steady-state motion stability and external torques effect including these problems for 

a spinning satellite. 

 

1. Problem description 

 

Angular motion of a spinning satellite equipped with MACS is considered in the 

paper. MACS consists of three mutually orthogonal magnetic coils. Assume that 

MACS is capable of producing magnetic dipole moment in arbitrary direction in the 

satellite reference frame but of bounded value. Only torque produced by the 

interaction of MACS with the geomagnetic field is taken into account. Averaged 

geomagnetic field model is used to represent the geomagnetic field [5]. Angular 
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motion of a satellite is described by the Beletsky-Chernousko variables [6] and the 

Euler equations. Satellite’s orbit is considered as a Keplerian circular one. MACS 

implements following algorithms: 

1. Nutation damping. Single coil implementing “-Bdot” [7] algorithm is 

used. In some cases general “-Bdot” itself may be used. 

2. Coarse axis of symmetry reorientation. Two different algorithms are 

used. 

3. Spinning of the satellite around its axis of symmetry. We assume that 

initial equatorial component of the satellite angular velocity is small due to nutation 

damping or “-Bdot” implementation. 

4. Fine axis reorientation in the inertial space. The satellite is assumed to be 

spinned fast around the axis of symmetry. Two different algorithms are used. 

The terminal attitude is the axis of symmetry sun pointing.  

 

2. Geomagnetic field model 

 

The choice of geomagnetic field model is one of the most crucial points for the 

success of whole work. The most common inclined dipole model or right dipole 

model both do not allow us to get the solution of the equations of motions in terms of 

explicit formulas or quadratures. So, we introduce one more simplification 

considering the geomagnetic induction vector as moving uniformly on the circular 

cone side and its magnitude is constant. To do this we need to introduce a reference 

frame OaY1Y2Y3 where Оa is the Earth center, OaY3 axis is directed along the Earth 

spin axis, OaY1 lies in the Earth equatorial plane and is directed to the ascending 

node, OaY2 axis is directed so the system to be a right-handed. If the magnetic 

induction vector source point is translated to the Oa then the cone is tangent to the 

OaY3 axis, its axis lies in the OaY2Y3 plane (figure 1). The cone half-opening angle is 

given [5] by 
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( )2 2

3sin 2t g
2 1 3sin 1 3sin

i

i i
Θ =

− + +
       (2.1) 

where  is the orbit inclination. The geomagnetic induction vector moves uniformly 

on the cone side with the double orbital angular speed, 

i

02uχ = + χ  where u is the 

argument of latitude, 0ω  is the orbital angular velocity. Without loss of generality we 

can assume . 0 0χ =

 
Fig.1. Averaged geomagnetic field model 

This model, sometimes called averaged, is used in our work. It does not allow 

us to take into account non-uniformity of geomagnetic induction vector motion (as 

right dipole model does) and its diurnal change (as inclined dipole model does) but it 

is considered as a good trade-off between the accuracy of modeling geomagnetic 

field and the possibility to get closed-form result.  

Angle  is of great importance for our work. Expression Θ (2.1) introduces the 

relationship between Θ  and the orbit inclination. In fact, these angles are close, so we 

may consider i  for a qualitative analysis of the system time-response with 

respect to the orbit inclination since the maximum value of i  is about 10˚. 

Comprehensive comparison of models can be found in [8]. 

Θ ≈

 Θ−

 

3. Problem statement 

 

Let us introduce all necessary reference frames. 
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 bound frame, its axes are directed along the principal axes of inertia of 

the s

renc escribed through the direct cosine 

matrices  expressed in the following tables 

3

3

3

OaZ1Z2Z3 is the inertial frame, got from OaY1Y2Y3 turning by angle Θ  about OaY1 

axis. 

OL1L2L3 is the frame associated with the angular momentum of a satellite. О is the 

satellite’s center of mass, OL3 axis is directed along the angular momentum, OL2 axis 

is perpendicular to OL3 and lies in a plane parallel to the OaZ1Z2 plane and containing 

O, OL1 is directed such that the reference frame is right-handed. 

Ox1x2x3 is the

atellite. 

Refe e frames mutual orientation is d

,Q A

1 2

1 11 12 1

2 21 22 2

3 31 32 33

L L L
Z q q q
Z q q q
Z

, 

3

3

3

q q q 3 31 33

1 2

1 11 12 1

2 21 22 2

32

x x x
L a a a
L a a a
L a a a

We introduce low indices , ,

. 

Z L x  to denote the vector components in frames 

OaZ1Z2Z3, OL1L2L3 and Ox1x2x3 re r spectively. Fo example, for the first component of 

a torque in these frames we write 1 1 1, ,Z L xM M M . 

We use the Beletsky-Chernousko variables and Eule represent th  

motion of the satellite. Beletsky-Chernousko variables are , , , , ,

r angles to e

L ρ σ ϕ ψ θ  [6] where L  

is the angular momentum magnitude, angles ,ρ σ  represent its orientation with 

respect to OaZ1Z2Z3 frame (figure 2). Orientation of the frame Ox1x2x3 with respect to 

OL1L2L3 is described using Euler angles , ,ϕ ψ θ . Direct cosine matrix  takes form 

⎞
.      (3.1) 

Direct cosine matrix  is as following 

. (3.2) 

Q

cos cos sin sin cos
cos sin cos sin sin

ρ σ − σ ρ σ⎛
⎜ ⎟= ρ σ σ ρ σ⎜ ⎟
⎜ ⎟

Q
sin 0 cos− ρ ρ⎝ ⎠

A

cos cos cos sin sin sin cos cos cos sin sin sin
cos sin cos sin cos sin sin cos cos cos sin cos

sin sin sin cos cos

ϕ ψ− θ ϕ ψ − ϕ ψ− θ ϕ ψ θ ψ⎛ ⎞
⎜ ⎟= ϕ ψ+ θ ϕ ψ − ϕ ψ+ θ ϕ ψ − θ ψ⎜ ⎟
⎜ ⎟θ ϕ θ ϕ θ⎝ ⎠

A
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Fig. 2. Angular momentum orientation in the inertial space 

Inertia tensor of the satellite is ( , , )x diag A A C=J . Angular motion of the 

satellite in a circular Keplerian orbit is described [6] by the equations 

3L
dL M
dt

= , 1
1

L
d M
dt L
ρ
= , 2

1
sin L

d M
dt L
σ
=

ρ
, 

( 2 1
1 cos sinL L

d M M
dt L
θ
= ψ − )ψ ,       (3.3) 

( )1 2
1 1 1cos cos sin

sin L L
d L M
dt C A L
ϕ ⎛ ⎞= θ − + ψ +⎜ ⎟ θ⎝ ⎠

M ψ , 

( )1 2
1 1cos ctg ctg sin ctgL L

d L M M
dt A L L
ψ
= − ψ θ − ρ + ψ θ  

where 1 2 3, ,L L LM M M  are the torque components in OL1L2L3 frame. 

In case of the Euler equations we use variables 1 2 3, ,ω ω ω  to describe the 

dynamics of the satellite. In this set iω  are the components of the absolute angular 

velocity of the satellite in Ox1x2x3 frame ( 1,2,3i = ). Satellite dynamics is described 

by equations 

1
2 3 1( ) ,x

dA A C M
dt
ω

− − ω ω =  

2
1 3 2( ) ,x

dA A C M
dt
ω

+ − ωω =         (3.4) 

3
3 ,x

dC M
dt
ω

=  
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kinematic relations are not used. 

 

4. Initial attitude acquisition 

 

Since small satellites are of particular interest in this work, initial conditions 

after the separation from the launch vehicle cannot be restricted during mission 

design period. So, coarse pointing and detumbling are necessary prior to fine pointing 

algorithm implementation. 

 

4.1. Nutation damping 

 

Algorithm “-Bdot” [7] is the most common way for detumbling the satellite at 

the initial stage of mission. However, in the considered case its implementation may 

be illogical since the satellite should be spinned about its axis of symmetry, so 

damping the angular velocity component along the axis of symmetry is undesirable. 

Instead, nutation damping algorithm is used. It is discussed in another work [1], so 

we bring only brief analysis here. We will use the “-Bdot” algorithm implemented by 

a single coil only. Magnetic dipole moment of the satellite ( )0,0, T
x m=m  in this case 

is determined by the expression 

1 3
x

x
dk
dt

⎛= − ⎜
⎝ ⎠

Bm 3
⎞
⎟e e ,         (4.1) 

where  is a positive coefficient,  is a unit vector of the axis of symmetry of the 

satellite.  

1k 3e

Consider fast rotations of a satellite ( , ). Such a regime 

is typical for the initial rotation of a satellite after the separation from launcher. Our 

assumption is further justified when one notes that the nutation damping algorithm is 

the first in sequence and it is implemented right after the separation. 

0/L A >> ω 0/L C >> ω
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After some mathematics the magnetic dipole moment of the single coil in 

OL1L2L3 frame is 

( ) (1 1 31 12 32 11 2 31 22 32 21L L
Lm k B a a a a B a a a a )
A

⎡ ⎤= − + −⎣ ⎦  

and the dipole moment of the satellite is 

( )13 23 33, , T
L x m a a a= =m Am , 

which leads to the torque 

23 3 33 2

33 1 13 3

13 2 23 1

L L

L L L

L L

a B a B
m a B a B

a B a B

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

M . 

Let us transform equations of motion to the dimensionless form. These 

equations will be used for other algorithms analysis with slight revision. In order to 

do this we use dimensionless torque LM  defined by the expression  
2

1 0
LL

k B L
A

=M M

)

.           (4.2) 

Next we introduce argument of latitude 0 0(u t t= ω −  instead of time in (3.3) 

and dimensionless angular momentum  according to the expression l 0L L l=  where 

0L  is the initial angular momentum magnitude. This leads to (3.3) being rewritten as 

3L
dl lM
du

= ε , 1L
d M
du
ρ
= ε , 2

sin
L

d M
du
σ ε
=

ρ
, 

( )

( )

2 1

1 21

cos sin ,

cos cos sin ,
sin

L L

L L

d M M
du
d l M M
du

θ
= ε ψ − ψ

ϕ ε
= η θ + ψ+ ψ

θ

     (4.3) 

( )1 22 cos ctg ctg sin ctgL L
d l M M
du
ψ
= η − ε ψ θ − ε ρ + ψ θ . 
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The following notations 
2

1 0

0

k B
A

ε =
ω

, 0
1

0

1 1L
C A

⎛ ⎞η = −⎜ ⎟ω ⎝ ⎠
, 0

2
0

L
A

η =
ω

 are introduced. In 

case of weak magnetic dipole moment ε  and expressions 
2

1 0

0i

k B
L

ε
η
∼  are small. 

Parameter  can be regarded as the ratio between angular momentum change during 

one orbit and its mean value on this interval; 

ε

i

ε
η

 are the same but for one satellite’s 

revolution about its center of mass. It is seen from (4.3) that , ,uϕ ψ  are fast variables, 

while  are slow ones. So, we can use asymptotical methods [9] to determine 

slow variables evolution. In order to do that we need to average equations along the 

undisturbed solution of equations 

, ,l ρ σ θ,

(4.3). However, since this motion is a regular 

precession, we need only to average separately the equations for slow variables over 

fast variables. Equations (4.3) and following reasoning will be used again for other 

algorithms. 

For the nutation damping algorithm we get on the time interval of order 1 / ε  

( ) 2 21 2 1 3 sin sin
2

dl l p p
du

⎡ ⎤= − ε + − ρ θ⎣ ⎦ , 

( )

( )

2

2

1 3 1 sin cos sin ,
2

1 2 1 3 sin sin cos
2

d p
du
d p p
du

ρ
= ε − ρ ρ θ

θ ⎡ ⎤= − ε + − ρ θ θ⎣ ⎦ ,
      (4.4) 

0d
du
σ
=  

where . Equations 20.5sinp = Θ (4.4) admit two first integrals. The first one 

is ( )1I l

( )

, coslθ = θ . It shows that the third component of angular velocity vector 

conserves in the fixed frame. Another first integral is 

( )2
2 , ln tgρ θ =

1 21 ln tg ln cos
2 3 1

pI
p

ρ + − ρ + θ
−

.  
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We got two first integrals satisfying conditions of the implicit function theorem 

so the solution of (4.4) is obtained in quadratures. 

There are three parameters which affect the time-response: . As 

expected, with  rise the time response (the time necessary to lower 

0 0, ,i ρ θ

0θ θ , and, 

therefore, the equatorial component of angular velocity sin /l Aθ ) falls. Parameter i  

and  effect is presented in figures 3 and 4. 0ρ

  

Fig. 3. Angle  after 2 orbits,  θ 0 30θ = D Fig. 4. Angle θ  after 15 orbits,  0 70θ = D

As seen from figure 2, if  is less than approximately 50˚ the time response 

rises with inclination rise, and if 

0ρ

0ρ  is greater, it falls. Figure 3 shows that if the 

algorithm is considered on greater time interval, there is some area where the best 

inclination is about 45˚. But it is clear that for the greater inclination θ  would not 

exceed 14˚, while for the small inclination it may stay almost constant. So, it is 

preferable to use high-inclined orbit. 

 
Fig. 5. Numerical simulation 
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Figure 5 brings numerical simulation of the nutation damping algorithm 

performance. Numerical analysis was conducted under following assumptions: 

• Satellite tensor of inertia is ( ) 20.2,0.2,0.3diag kg m= ⋅J  

• The gain s  6 2 2
1 2 10 /k kg m T= ⋅ ⋅ ⋅

( )10,10,10 deg/T s  • Initial angular velocity of the satellite is 

• Orbit inclination is 60° 

• Orbit altitude is 400 km 

• IGRF model is used (for the orbit with 400 km altitude). 

Apart of initial conditions, other parameters will be used in further numerical 

simulations. It is seen from figure 5 that the algorithm effectively damps nutational 

motion. 

 

4.2. First coarse reorientation algorithm 

 

One way to achieve a terminal orientation is successive implementation of 

nutation damping, spinning and reorientation algorithm. However, one can start 

reorientation right after the separation from the launch vehicle. Coarse sun-pointing 

algorithm is used [10] 

[ ]( )2 3k= ×m e B S 3e .         (4.5) 

The analysis of the satellite motion with this algorithm implemented is rather 

complex, so we consider one special case ( )0, 0, 1 T
Z =S . That means the Sun 

pointing vector is directed along the axis of the cone in the averaged geomagnetic 

field model. Satellite is considered as fast rotating again since the coarse algorithm is 

used right after the separation. So, we use equations (4.3) and all related reasoning to 

get averaged equations. We need the torque to be written in OL1L2L3 frame. Sun-

pointing vector is ( )31 33, 0, T
L q q=S  since q32 0= . Geomagnetic induction vector is 
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Z11 1 21 2 31 3

12 1 22 2 32 3

13 1 23 2 33 3

Z Z

L Z Z Z

Z Z Z

q B q B q B
q B q B q B
q B q B q B

+ +⎛ ⎞
⎜ ⎟= + +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

B , 

axis of symmetry is 

( )3 31 32 3, ,L a a a=e 3

2
Z

Z

. 

We introduce vector  for simplicity. The torque is = ×p B S

2 2
1 3 13 23 2 3 23 3 3 33 323 1 2 13 33 2 2 23 33 3 2 33

2 2
2 0 1 1 13 33 3 1 33 2 1 33 23 2 3 13 23 3 3 13 33 1 3 13

2
2 2 13 23 1 2 13 3 2 33 13 1 1 13 23 3 1 23 33

Z Z Z Z Z

L Z Z Z Z Z

Z Z Z Z Z

p B a a p B a p B a a p B a a p B a a p B a
k B p B a a p B a p B a a p B a a p B a a p B a

p B a a p B a p B a a p B a a p B a a

+ + − − −
= + + − − −

+ + − −
M

2
2 1 23Zp B a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

(4.6) 

In order to derive equations for slow variables, we need to obtain expressions for 

1 2, , , ,, ,
, cos , siniL L Luu

M M M
uϕ ψ ϕ ψϕ ψ

ψ ψ . Components iLM  do not contain ϕ . Only 

expressions  contain ψ , while expressions ij kla a i jB B  contain u . So, only  

should be averaged over ψ , and only 

ij kla a

i jB B  should be averaged over u . The latter 

leads to 2
11 0.5sin22B B p== = Θ , 2cos33B q= Θ = . Averaging leads to equations 

( )

2

2

sin cos ,

0.5sin 1 sin / ,

0,

sin cos cos /

dl p
du
d p l
du
d
du
d p l
du

= ε θ ρ

ρ
= ε θ − ρ

σ
=

θ
= ε θ θ ρ

       (4.7) 

where 
2

2 0

0 0

k B
L

ε =
ω

. New small parameter has the same sense. It is introduced because 

damping coefficients in algorithms are different. The same notation  is used for 

convenience for the analysis of each algorithm. We immediately obtain the first 

integral  (trivial equation for 

ε

constσ = σ  is omitted from now on). Next, we divide 

the first equation in (4.7) with the last one, 
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sin
cos

dl d
l

θ
= θ

θ
. 

That leads to the important first integral ( )1 , coI l l sθ = θ . It means that the spinning 

rate, that is,  does not change during the coarse reorientation process. It eliminates 

the danger of satellite being spinned too fast or detumbled. However, we have no 

insight on the precession rate. In order to obtain second first integral we divide 

second equation in 

3ω

(4.7) with the last one, 
2sin 0.5sin 1

cos sin cos
d
d
ρ ρ θ −
=

θ ρ θ θ
. 

That leads to the integral 

( ) ( )2
2 , 0.25ln tg 1 ln tg lnsinI ρ θ = θ + − θ − ρ . 

These two first integrals bring the solution of (4.7) in quadratures. 

Equations (4.7) have two equilibrium points ( )0,  0  or  θ = ρ = π  and 

, the first equation is separated. Only the point 

 is stable, so angle 

( / 2,  0  or  θ = π ρ = π

( / 2,  0θ = π ρ =

)

) ρ  tends to zero. Angular momentum magnitude 

and nutation rate rise. In order to interpret this result, let us analyze the control law 

(4.5). Clearly, it forces the satellite to one of two positions: [ , that is 

geomagnetic attitude of the axis of symmetry, or 

]3 0× =e B

[ ] 03 × =Se B , that is the axis of 

symmetry lying in the plane of vectors . Position ,B S [ ] 03 × =e B  is only the special 

case of axis of symmetry lying in the plane ( ). In our special case vector S  

coincides with the axis of the cone in averaged geomagnetic field model. After 

averaging the motion over fast angles 

,B S

ϕ  and ψ  the axis of symmetry coincides with 

the angular momentum vector. So, vector L  should rotate with the plane ( ,B S ). After 

the motion is averaged over one orbit, angular momentum vector eventually 

coincides with the axis of the cone which is represented by angle ρ  tending to zero. 

So, the time necessary for angle ρ  to become zero may be considered as time-
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response of the algorithm (4.5). The time-response is affected by inclination (since p  

depends on  and, therefore, on i ) and Θ 0θ . Figure 6 makes their influence clear. 

Fig. 6. Angle  after 10 orbits,  Fig. 7. Angle ρ  for a set of inclinations ρ 0ρ = D20

Figure 6 brings angle ρ  after 10 circles for different inclinations and  values. 

It is seen that  effects the time-response and it is better to have it small (that means 

to have satellite possibly close to being spin-stabilized). So, the closer the satellite to 

the spinning around the axis of symmetry, the better. Inclination has dramatic effect 

on time-response. It is clearly better to have high inclinations: for inclinations less 

than 10˚  keeps almost constant (changes by several degrees), while for high 

inclinations it reduces to only few degree. Figure 7 introduces angle ρ  with respect to 

time for different inclinations and . 

0θ

0θ

ρ

0 20θ = D

The attitude of the axis of symmetry lying in the plane ( ),B S  is not exactly the 

desired. In order to achieve sun-pointing, nutation damping (4.1) is introduced. It 

does not change the spinning, since cosl θ  is the first integral for both algorithms but 

it decreases nutation that arises with algorithm (4.5) (since l  rises and θ  tends to 

zero). In terms of axis of symmetry lying in the plane ( ) it also decreases angular 

velocity that arises because of rotating vector . So, the axis of symmetry slowly 

tends to coincide with S . However, when coarse attitude is achieved and nutation is 

damped, it is logical to switch to the spinning algorithm and then to the fine sun-

,B S

B
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pointing one. Figures 8-10 introduce numerical analysis of combined implementation 

of algorithms (4.1) and (4.5). 

Fig. 8. Pointing angle evolution. Fig. 9. Final pointing accuracy. 

Figures 8 and 9 bring the pointing accuracy of the first coarse reorientation 

algorithm (simulation time is about 4 circles). The accuracy is about two degree, 

which is good for the coarse sun-pointing. It is possible to achieve even better 

accuracy with different initial conditions but generally the accuracy is about few 

degree. 

 
Fig. 10. Angular velocity rate 

Figure 10 shows nutation damping when implementing both coarse reorientation 

algorithm and nutation damping. Simulations were held with following initial 

conditions: 

• Initial Euler angles are 10s , 7sα = α − ° β = β + ° , 6  1.3sγ = γ − °

• Initial pointing error is 12˚ 
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• Angular rates 10  / sx y zω = ω = ω = °

• Damping and reorientation gains are s6 2 2
1 5 10 /k kg m T= ⋅ ⋅ ⋅ , 

2s . 6 2 2
2 10 /k kg m T= ⋅ ⋅

Orbit inclination and geomagnetic field model here and further are the same as for the 

nutation damping numerical analysis. Angles , ,s s sα β γ  meaning is briefly described 

below. We introduce new Sun-related reference frame OaS1S2S3 where OaS3 coincides 

with the Sun direction, OaS1 axis is directed as the cross product of OaZ3 and OaS3, 

while OaS2 is directed such that the reference frame is right-handed. When the body 

frame Ox1x2x3 coincides with the OaS1S2S3 frame the satellite is actually pointing at 

the Sun. The new set of Euler angles , ,s s sα β γ  is used to describe Ox1x2x3 attitude 

relative to OaS1S2S3. So the initial attitude is represented as a deviation from a perfect 

Sun pointing.  

 

4.3. Second coarse reorientation algorithm 

 

Paper [1] introduces fine reorientation algorithm implemented by the third coil 

( )[( ])3 0, 0,k= −m S L e3 ×B .        (4.8) 

This algorithm is used for the spinned satellite when the axis of symmetry coincides 

with the angular momentum. So, it may be rewritten in the form  

( )[ ]( )3 3 30, 0,k≈ −m S e e ×B . 

Taking into account  it becomes identical to [ ]3 3 0× =e e B (4.5). The analysis of the 

algorithm (4.8) for the case of already spinned satellite can be found in [1] and is 

briefly considered in section 6. Here we try to use it for the coarse reorientation in the 

case of arbitrary initial angular velocity. Magnetic dipole moment of the third coil is 

( ) ( )( )3 3 0 1 23 3 33 2 3 13 2 23 11m k B S a B a B S a B a B⎡ ⎤= − + − −⎣ ⎦  
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)

where  are components of the direction to the Sun vector in OL1L2L3 frame (we 

consider  again). The torque is 

iS

S (0, 0, 1 T
Z =

( ) ( )( )
( ) ( )( )

2 2 2 2 2 2
1 23 3 23 33 2 3 33 2 3 23 13 2 3 23 1 3 23 33 2 1 33 13 2

2 2 2 2
3 0 1 23 33 1 3 33 1 2 13 33 2 3 23 13 3 3 33 13 2 1 13 2 3 13 23 3 1 33 23 1

2
1 23 13 2 3 23 1 3 23 33 2 1

2 1

1

S a B a a BB a B S a a BB a BB a a BB a a B

k B S a a BB a BB a a BB a a B S a a BB a BB a a BB a a B

S a a BB a BB a a BB

− + + − − + −

= − + − + − − + −

− +

M

( ) ( )( )2 2 2 2 2
33 13 2 3 13 2 23 13 2 1 23 11 2a a B S a B a a BB a B

⎛

2

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− + − − +⎝ ⎠

. 

It does not depend on ϕ  again, and we need to average expressions  over ij kla a ψ  and 

expressions i jB B  over u . Averaged equations are 

( ) ( )2 21 sin 2 cos 1 3 1 sin ,
2

dl p p
du

⎡ ⎤= ε θ ρ − + − ρ⎣ ⎦  

( )21sin / sin sin 3 1 sin cos / ,
2

0,

d p l p p
du
d
du

ρ
= −ε ρ + ε θ ρ + − ρ ρ⎡ ⎤⎣ ⎦

σ
=

l
  (4.9) 

( ) ( ) 21 sin cos 2 cos 1 3 1 sin / .
2

d p p l
du
θ ⎡ ⎤= ε θ θ ρ − + − ρ⎣ ⎦  

where 
2

3 0

0

k B
ε =

ω
. These equations admit first integral ( )1 , coI l l sθ = θ . Unfortunately, 

no other first integrals can be obtained. Nevertheless equations (4.9) are proper for 

numerical integration since they do not contain equations for variables with different 

change rates. The first integral may be used to control the accuracy of numerical 

integration. The time-response is determined by the time necessary for the angle ρ  to 

become close to zero again. Figures 11 and 12 introduce this angle for different 

inclinations and initial values of angle θ .  

The time is 10 orbits and  again, so we can compare two coarse sun-

pointing algorithms. Clearly, if  low inclination is better. All other algorithms 

act better for high inclinations, so we consider this case. If the inclination is high, 

0 20ρ = D

0 45θ > D

0θ  

should be less than 45˚. However, for  the time-response is better than for the 0θ < 45D
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algorithm (4.5). So, for the best time-response it is logical to implement algorithm 

(4.5) along with the nutation damping algorithm, and when θ  becomes less than 45˚ 

to switch to the algorithm (4.8). It is not necessary to terminate nutation damping 

algorithm though. The algorithm (4 s not increase the nutation rate. Figure 8 

introduces angle θ  starting from 0 40θ = D  (that means algorithm 

.8) doe

i  if sate omentum initial 

attitude is far from necessary (ρ

(4.8) is already 

implemented instead of initial (4.5)). It is seen that for high inclinations we may 

neglect the nutation damping effect of algorithm (4.8). If the inclination is low this 

algorithm becomes especially important. It provides relatively fast coarse 

reorientation in case of large initial nutation rate and detumbles the satellite keeping 

the spinning rate. However, th s is valid only llite angular m

 is not small). 

Fig. 11. Angle  after 10 orbits, Fig. 12. Angle ρ 0ρ = 20D   after 10 orbits, θ 0 40θ = D  

Fig. 13. Pointing angle evolution. Fig. 14. Final pointing accuracy. 
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Figures 13-15 introduce numerical analysis of combined implementation of 

algorithms (4.1) and (4.8) for a chaotically rotating satellite. Figures 13 and 14 bring 

the pointing accuracy of the second coarse reorientation algorithm. The accuracy is 

about 3 degree, which is proper for the coarse sun-pointing. It is possible to achieve 

even better accuracy with different initial conditions but generally the accuracy is 

about few degree. 

 
Fig. 15. Angular velocity rate 

Figure 15 shows nutation damping when implementing both coarse 

reorientation algorithm and nutation damping. The following set of initial conditions 

have been used: 

• Initial Euler angles are 12.6 , 16ssα = α + ° β = β − ° , 6  1.3sγ = γ − °

• Initial pointing error is 19.6˚ 

• Angular rates 10  / sx y zω = ω = ω = °

• Damping and reorientation gains are T s7 2
1 5 10 /k kg m= ⋅ ⋅ ⋅ , 

2s . 6 2
2 10 /k kg m T= ⋅ ⋅

If the satellite is already spinned the results are better. Figure 16 introduces the 

pointing accuracy for this case. 
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Fig. 16. Pointing angle evolution 

The following set of initial conditions have been used: 

• Initial Euler angles are 10s , 7sα = α − ° β = β + ° , 6  1.3sγ = γ − °

• Initial pointing error is 12˚ 

• Angular rates 0  , 10 /x yω = ω = z sω = °  

• Damping reorientation gains are s7 2
1 5 10 /k kg m T= ⋅ ⋅ ⋅ , 2s   6 2

2 10 /k kg m T= ⋅ ⋅

 

5. Spinning up 

 

It is shown in previous section that initial attitude acquisition phase leads to the 

satellite being reoriented in the necessary direction (by means of algorithms (4.5) 

and/or (4.8)) with damped nutation rate (by means of algorithms (4.1) and/or (4.8)). 

Spinning rate is not affected at all. In order to achieve the spin stabilization the 

satellite should be spinned around the axis of symmetry to the proper angular velocity 

fω . This is achieved with the algorithm 

( )4 2 1, , 0 T
x x xk B B= −m          (5.1) 

leading to the torque 

( )2
4 0 1 3 2 3 1 2, , 2 2

x x x x x x xk B B B B B B B= − − +M .      (5.2) 
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5.1. Model problem 

We use Euler equations (3.4). Clearly, if we consider the torque (5.2), 3xM  is 

always positive. We substitute 3xM  with positive constant value as well as 1xM  and 

2xM  ones but with less values since the actual sign of these components changes and 

by substituting them with positive constant values we only worsen the situation. We 

also consider satellite nutation as being damped after the initial attitude acquisition 

stage. So, we analyze equations 

1
2 3 1( )dA A C M

dt
ω

− − ω ω = , 

2
1 3 2( )dA A C M

dt
ω

+ − ωω = ,       (5.3) 

3
3

dC M
dt
ω

=  

Assume the initial angular velocity in this stage  is no equal 

to zero but either all of its components are small in comparison with 

0 10 20 30( , , )T= ω ω ωω

fω  or only 

equatorial component is small. For the further analysis we only need ( )0 / 1o=i fω ω , 

( 1 ) which means that the initial equatorial component is small. The component ,i =

3

2

M  along the axis of symmetry is the prevailing one, i.e. 1 3M M<< , 2 3M M<< . 

This should lead to the spinning around the axis of symmetry. 

The latter equation in (5.3) is instantly solved 

3
3 30

M t
C

ω = ω +  

and this expression leads to the time ( 30
3

rot f
Ct

M
)= ω −ω  necessary to achieve the 

required velocity fω . 

To get two first components of angular velocity we introduce a new time 
2

3
30

32
C M t
M C

⎛τ = ω +⎜
⎝ ⎠

⎞
⎟        
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and denote 1

32
M Ca
A M

= , 2

32
M Cb
A M

= . Then (5.3) take a form 

1
2

d a
d
ω

− λω =
τ τ

, 2
1

d b
d
ω

+ λω =
τ τ

 

where A C
A
−

λ = . Homogenous equations solution is as following 

1 1 2cos sinc cω = λτ + λτ , . 2 1 2sin cosc cω = − λτ + λτ

Varying constants ,  we get the following equations  1c 2c

1 cos sindc a b
d

λτ λτ
= −

τ τ τ
, 2 sin cosdc a b

d
λτ λ

= +
τ

τ
τ τ

 

with a solution 

( ) ( )1 1
2 2c a C b S cπ π

= λτ − λτ
λ λ 0+ , 

( ) ( )2 2
2 2c a S b C cπ π

= λτ + λτ
λ λ 0+  

where ( )
0

1 sin
2

x yC x dy
y

=
π ∫ , ( )

0

1 cos
2

x yS x dy
y

=
π ∫  are the Fresnels integrals [11], 

,  are constants of integration. Note, that the Fresnels integrals are odd 

functions. So, if  then 

10c 20c

0λ < ( ) ( ) ( ) ( ),S S C Cλτ = − λ τ λτ = − λ τ . The sign of λ  has 

no impact on the further argument. We denote 

( ) ( )2 2c a C b Sπ π′ = λτ − λτ
λ λ

, ( ) ( )2 2c a S b Cπ π′′ = λτ + λτ
λ λ

, 

( ) ( )0 0 0τ
2 2c a C b Sπ π′ = λτ − λ
λ λ

, ( ) ( )0 0
2 2c a S b Cπ π′′ 0= λτ + λτ
λ λ

. 

So, using the initial conditions we obtain 

( ) ( )10 0 10 0 0 20 0cos sinc c c c′ ′′ω = + λτ + + λτ , ( ) ( )20 0 10 0 0 20 0sin cosc c c c′ ′′ω = − + λτ + + λτ  

which leads to 

( )10 10 0 20 0 0cos sinc c′= ω λτ −ω λτ − , ( )20 10 0 20 0 0sin cosc c′′= ω λτ + ω λτ − . 
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Since 10 fω << ω , 20 fω << ω  we need to compare 0c c′ ′−  and  with 0c c′′ ′′− fω  in 

order to compare  and  with 1ω 2ω fω . The Fresnels integrals ( )C x  and ( )S x  are less 

than unity by magnitude, so we need to consider expressions 

32
i

i
f

M C
A M

ε =
ω

, ( )1,2i = . 

We have ( )1i oε =  since the components 1, 2M M  are small in comparison with 

the component 3M  and fAω . So, if initial equatorial component of the angular 

velocity  is small and the torque is directed almost along the axis of symmetry, 

conditions 

⊥ω

1 3ω << ω , 2ω << 3ω  are satisfied and the satellite may be considered 

spinning around the axis of symmetry. Fig. 17 introduces the ratio  with 

respect to the time. 

3/⊥ω ω

 
Fig. 17. The ratio between the equatorial and polar components of angular velocity 

Equatorial component  is finite and raises with expressions ⊥ω
1

3

M
M

, 2

3

M
M

 rise. It 

is not damped to zero but to some minimum value which depends on 1

3

M
M

, 2

3

M
M

. In 

figure 7 the ratio ( )
3

1iM o
M

= , ( )1,2=i . 
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5.2. Real control law 

 

Constant torque cannot be achieved with MACS. Paper [1] introduces analysis 

of the control law (5.1). Here it is briefly considered. Averaged Beletsky-Chernousko 

equations in case of small angle  are as follows θ

( ) 22 1 3 sindl p p
du

⎡ ⎤= ε + − ρ⎣ ⎦ , 

( )1 3 1 sin cosd p
du l
ρ
= −ε − ρ ρ ,  

( ) 21 2 2 1 3 sin
2

d p p
du l
θ ⎡ ⎤= − ε − − − ρ θ⎣ ⎦  

where 
2

4 0

0 0

k B
L

ε =
ω

. These equations admit the first integral 

( ) ( )2
1

1 2, ln ln tg 1 ln tg
2 3 1

pI l l
p

ρ = − ρ + + ρ
−

 and equation for θ  is separated. Figure 

18 bring the time-response of the algorithm. 

 
Fig. 18. Angular momentum after 5 orbits 

Figure 18 ( , ) brings the effect of 0.1ε = 0 1θ = D
0ρ  and i  on the time-response. 

For small  raising the inclination results in the time-response rise, for  close to 

90˚, the time-response falls with orbit inclination rise. However, high inclined orbit is 

preferable again since there is no risk of extremely low time-response. 

0ρ 0ρ

Equatorial component of angular velocity does not rise, its derivative is 
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( ) ( ) 2sin
2 2 1 3 sin sin cos

d l
p p

du
θ

⎡ ⎤= ε − + + − ρ θ θ⎣ ⎦ . 

Since  is close to 0 equatorial component lowers. Note that the nutation 

damping algorithm may be implemented simultaneously with the spinning algorithm. 

θ

 

6. Fine sun-pointing 

 

The algorithm (4.8) may be used for fine sun-pointing. It is analyzed in paper [1] 

and it is shown that high-inclined orbit is definitely better for this algorithm to be 

implemented after the satellite is almost purely spinned. Here we have some 

numerical simulation results showing its accuracy. 

 
Figure 19. Pointing accuracy. 

• Initial Euler angles are 1.2s , 1.2sα = α + ° β = β + ° , 61.3  sγ = γ − °

• Initial pointing error is 1.175˚ 

• Angular rates 0  , 10 /x yω = ω = z sω = °  

• Damping and reorientation gains are T s7 2
1 5 10 /k kg m= ⋅ ⋅ ⋅ , 

2s . 6 2
2 10 /k kg m T= ⋅ ⋅

It is seen from figure 19 that fine sun-pointing algorithm allows precise 

orientation of the order of  degree (see figure 16 also). 110−

Instead of (4.8) the torque constructed on the basis of PD-controller may be 

used. The simulations ran with previous algorithms underline how the necessary use 
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of a nutation damper in combination with the pointing algorithms provides a pointing 

accuracy strongly dependant on initial conditions and needing a careful tuning of 

gains (compare figures 8 and 13).  

 Other well-known control laws might be used in order to achieve a more 

precise and reliable pointing but the actuation is not always granted: in fact according 

to the nature of magnetic control, no arbitrary torques can be achieved, but only the 

components in the plane perpendicular to magnetic field vector.  

 This problem, indicated in literature as “underactuation”, can be limited using 

in each instant the closer dipole moment to the theoretical one. So although 

commanded dipole is not exactly the required one in each instant, it is possible to use 

the closer one, selected using an optimization method (pseudo-inverse method). 

 Empirical result shows as for high-inclination orbits the underactuation 

problem is not so limiting: the reason is that the magnetic field orientation greatly 

changes along the orbit, so the probability of having a persisting underactuated axis is 

rather low.  

 So, in this case a simple PD-controller is used in order to show how to achieve 

the pointing of a spinned satellite is possible even with non-natively magnetic torques 

[12]. The control torque can be represented as 

PD p= − −M K δ K δ�d  

where and are gain matrices, proportional to the 3x3 unit matrix , pK dK 3I 3p pk=K I  

and , the pointing error is 3dd k=K I

[ ]3 3arccos ( )= ×δ Se S e . 

The closer dipole providing a torque as close as possible to the wished one using a 

pseudo inverse method is 

2PD P= ×
Bm M
B D . 
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The resulting torque is the projection of PDM  on the plane perpendicular to B . 

Simulations show how using this method an accurate pointing can be achieved and 

maintained even with the underactuation issue. 

Figures 20-22 introduce results of numerical analysis of combined 

implementation of algorithms (4.1) and (4.5). 

Fig. 20. Pointing angle evolution. Fig. 21. Final pointing accuracy. 

Figures 20 and 21 bring the pointing accuracy of the PD-controller implemented 

by magnetic coils. The accuracy is of order of 10-3 degree. 

 
Fig. 22. Angular velocity rate 

Figure 22 shows nutation damping when implementing both PD-controller 

algorithm and nutation damping. It is seen that spinning is decreased slightly but 

without any unnecessary effects. Initial conditions are as follows: 

• Initial Euler angles are 1.3s , 1.4sα = α + ° β = β + ° , 6  1.3sγ = γ − °

• Initial pointing error is 4.8˚ 
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• Angular rates 0  , 10 /x yω = ω = z sω = °  

• Damping and reorientation gains are T s7 2
1 5 10 /k kg m= ⋅ ⋅ ⋅ , 

2s , s . 2 210 /pk kg m−= ⋅ 2 210 /dk kg m−= ⋅

 

Conclusion 

 

A spin-stabilized satellite equipped with active magnetic attitude control system 

is considered. Satellite is reoriented to the required attitude of the axis of symmetry in 

the inertial space. Attitude control system implements six algorithms: nutation 

damping, two coarse reorientation algorithm, spinning and two fine reorientation 

algorithms. For each algorithm the time-response with respect to the orbit inclination 

and other system parameters is studied. Equations of motion are solved in quadratures 

using averaging technique. Analytic results show that the magnetic attitude control 

system time-response rises when orbit inclination is rather high. It is shown that 

simultaneous implementation of coarse reorientation algorithm and nutation damping 

algorithm leads to the satellite being reoriented to the accuracy of few degrees. This 

scheme allows faster reorientation than continuous detumbling and reorientation. 

Fine sun-pointing algorithm constructed on the basis of PD-controller is proposed, 

numerical analysis is carried out. 
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