
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 5, 2012

Slesarenko A.V.

Polytypic Staging: a new
approach to an

implementation of Nested
Data Parallelism in Scala

Recommended form of bibliographic references: Slesarenko A.V. Polytypic Staging: a new
approach to an implementation of Nested Data Parallelism in Scala. Keldysh Institute preprints, 2012,
No. 5, 24 p. URL: http://library.keldysh.ru/preprint.asp?id=2012-5&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2012-5&lg=e
http://library.keldysh.ru/preprint.asp?id=2012-5&lg=e

K E L D Y S H I N S T I T U T E O F A P P L I E D M A T H E M A T I C S

R u s s i a n A c a d e m y o f S c i e n c e s

Alexander Slesarenko

Polytypic Staging: a new approach

to an implementation

of Nested Data Parallelism

Moscow

2012

Alexander Slesarenko

Polytypic Staging: a new approach to an implementation of Nested Data Paral-

lelism in Scala

This paper describes polytypic staging, – an approach to staging of a domain-specific

language (DSL) that is designed and implemented by means of polytypic (datatype-

generic) programming techniques. We base our implementation on Lightweight

Modular Staging (LMS) framework by extending and making it polytypic. We show

how to apply it to a particular domain. The domain is nested data parallelism where

data parallel programs are expressed in the DSL embedded in Scala. The paper is or-

ganized around a specific DSL, but our implementation strategy should be applicable

to any polytypic DSL in general.

Key words: polytypic, staging, generic programming, embedded DSL, nested data

parallelism, Scala

Supported by Russian Foundation for Basic Research project No. 12-01-00972-a

Александр Владимирович Слесаренко

Политиповое многостадийное программирование: новый подход к реали-

зации вложенного параллелизма на Scala

Эта работа описывает политиповое многостадийное программирование – но-

вый подход к реализации глубокого вложения (deep embedding) предметно-

ориентированного языка (DSL), который реализован посредством методов по-

литипового (обобщенного) программирования. В качестве основы используется

Lightweight Modular Staging (LMS) фреймворк, который расширяется и делается

политиповым. В работе показано, как применить политиповое многостадийное

программирование на примере конкретной предметной области – вложенный

параллелизм по данным, при этом параллельные программы записываются на

DSL вложенном в язык Scala. Работа построена на примере конкретного DSL,

однако, описанный подход может быть применен к любому политиповому DSL.

Ключевые слова: политиповое программирование, многостадийное програм-

мирование, предметно-ориентированный язык, параллельное программирова-

ние

Работа выполнена при поддержке проекта РФФИ № 12-01-00972-a

3

1. INTRODUCTION ... 3

2. DSL VIEW ON NESTED DATA PARALLELISM .. 4

3. FOUNDATIONS OF OUR APPROACH ... 6

3.1. POLYMORPHIC EMBEDDING OF DSLS ... 6

3.2. POLYMORPHIC EMBEDDING IN OUR DSL .. 6

3.3. PHANTOM TYPES .. 7

3.4. GENERIC PROGRAMMING .. 7

3.5. GENERIC PROGRAMMING IN SCALA .. 8

3.6. TYPE-INDEXED DATA TYPES ... 8

3.7. TYPE-INDEXED ARRAYS IN THE DSL‟S IMPLEMENTATION 10

3.8. LIGHTWEIGHT MODULAR STAGING (LMS) .. 12

4. POLYTYPIC STAGING .. 14

4.1. STAGED VALUES .. 14

4.2. TYPE DESCRIPTORS .. 15

4.3. STAGING TYPE-INDEXED DATA TYPES... 16

4.4. STAGING POLYTYPIC FUNCTIONS .. 19

4.5. GENERALIZING DOMAIN-SPECIFIC REWRITES .. 20

5. CONCLUSION .. 22

6. ACKNOWLEDGEMENTS .. 23

7. REFERENCES .. 23

1. Introduction

It is well known that modern computing hardware is able to execute many com-

putational threads in parallel allowing a programmer to increase performance of the

program. It is especially true in such a new area as GPGPU [1] where hardware sup-

ports the execution of hundreds and thousands of program threads. However for this

purpose the program must be written in a proper format, significantly different from

the traditional sequential style. In other words, if the program has not been designed

for parallel execution, then this program will not be able to fully use

the capabilities of modern equipment.

A long-term trend in the field of development tools for parallel computing con-

sists in lowering of the threshold of complexity, namely the development of easy to

use languages and libraries [9,10,22], encapsulation of complexity in the implementa-

tion of the system software [19], creating interactive working environments [26].

In this paper, we continue to explore different methods and approaches to simpl-

ify parallel programming. We rely on a series of publications [17,4,18] on the nested

data parallelism model (NDP), as well as on our previous work [23] on this subject.

The model of NDP was first formulated in the early 90's [3], but still is not

widely used in practice, although there is a series of publications and a publicly avail-

able implementation [6].

On the other hand, many techniques and technologies [2,8,14,21,24], which we

use as a foundation of our approach, have appeared only in recent years so we have

attempted to restate the problem and implement the model in the new environment.

4

We envision our implementation of NDP as a DSL embedded in Scala-

Virtualized as a host language and packaged as a library. We compare it with Parser

Combinators library which also has limited expressiveness, focused target purpose

and inherent composability, while still having a wide range of applications in differ-

ent problem domains.

In our previous work [23] we covered a DSL view on nested data parallelism

and described a design of our library. As it turned out, the implementation of the li-

brary and the DSL is most naturally expressible by using generic programming [11]

(polytypic programming [16]) techniques, hence our DSL is polytypic.

From the DSL point of view, we regard our previous implementation as 'shallow

embedding' as oppose to 'deep embedding' that is described in this paper and which is

consistent with our previous work.

For deep embedding we use polymorphic embedding [14] and LMS [24] as its

particular instance. We extend the later to account for polytypism of our DSL.

In summary, this paper makes the following main contributions:

1. We extend our previously published work [23] by introducing a "Polytypic Stag-

ing" technique (PTS).

2. We show how to extend Lightweight Modular Staging (LMS) framework by mak-

ing it polytypic (datatype-generic) over a family of type constructors: sum, product

and array

3. We show how to apply Polytypic Staging to a special problem domain of nested

data parallelism. It turned out that Generic Programming is natural in this problem

domain and leads to a modular and compositional design.

4. We briefly overview the theoretical and technical foundations of our approach such

as Polymorphic Embedding, Phantom Types, Generic Programming and LMS

5. And last but not the least, we show yet another application of Virtualized Scala [2]

In this paper we also describe some aspects of the design and implementation of

the Scalan library. (source code being available at http://github.org/scalan).

2. DSL view on nested data parallelism

We start with some model examples to illustrate basic ideas of NDP and what is

it looks like to program against this model. Note, that we only show parts of the code

relevant to our discussion and refer to our previous paper [23] for details of the li-

brary design.

Consider the definition of sparseVectorMul in Fig. 1. We represent a sparse vec-

tor as an array of pairs where the integer value represents the index of an element in

the vector and the float value represents the value of the element (compressed row

format). Having this representation, we can define a dot-product of sparse and dense

vectors as a function over arrays.

Note, that instead of using the ordinary Array[T] type we use an abstract PAr-

ray[T] trait and thus, first, make the code abstract, and second, expressing our intent

for a parallel evaluation.

5

When it comes to multiplying a sparse matrix with a dense vector, we can reuse

our parallel function sparseVectorMul to define another parallel function matrixVec-

torMul realizing the principle of composability inherent to nested data parallelism.

trait PArray[A]
type VectorElem = (Int,Float)
type SparseVector = PArray[VectorElem]
type Vector = PArray[Float]
type Matrix = PArray[SparseVector]
def sparseVectorMul(sv: SparseVector, v: Vector): Float =
 sum(sv map { case Pair(i,value) => v(i) * value })
def matrixVectorMul(matr: Matrix, vec: Vector): Vector =
 matr map {row => sparseVectorMul(row, vec)}

Fig. 1. Sparse matrix vector multiplication

Also note that due to polytypic nature of our DSL we have a freedom (up to a

family of product, sum and PArray type constructors) to select data structures and

must select them „properly‟ (It is our choice here to represent sparse matrix as a pa-

rallel array of sparse vectors and not dense ones).

We can also use a parallel function inside its own definition i.e. recursively.

Fig. 2. shows how QuickSort recursive algorithm can be implemented in NDP model.

trait PArray[T] {
 def partition(flags: PA[Boolean]): PArray[PArray[T]]
}
def qsort(xs: PArray[Int]): PArray[Int] = {
 val len = xs.length
 if (len <= 1) xs
 else {
 val pivot = xs(len / 2)
 val less = xs map { x => x < pivot }
 val subs = xs.partition(less)
 val sorted = subs map { sub => qsort(sub) }
 concat(sorted)
 }
}

Fig. 2. Parallel QuickSort

Note that there are no parallel primitives in the code, as the semantics is purely

functional, sequential and deterministic. Nevertheless, we express parallelism (what

we want to be executed in parallel and what is not) by using types of input data (PAr-

ray in this case), intermediate data (subs: PArray[PArray[Int]]) and also by using

combinators over «parallel» data types (map, partition).

Note also how we use polymorphic method concat declared as

def concat[A:Elem](a: PArray[PArray[A]]): PA[A]

6

It has an implicit annotation to express a requirement that type parameter A

should be an instance of typeclass Elem[A]. We systematically use the techniques de-

scribed in [8] to introduce polytypism in our DSL.

3. Foundations of our approach

3.1. Polymorphic Embedding of DSLs

It is well known that a domain specific language (DSL) can be embedded in an

appropriate host language [15]. When embedding a DSL in a rich host language, the

embedded DSL (EDSL) can reuse the syntax of the host language, its module system,

typechecking(inference), existing libraries, its tool chain, and so on.

In pure embedding (or shallow embedding) the domain types are directly im-

plemented as host language types, and domain operations as host language functions

on these types. This approach is similar to the development of a traditional library,

but DSL approach emphasizes the domain semantics: concepts and operations in the

design and implementation.

Because the domain operations are defined in terms of the domain semantics, ra-

ther than the syntax of the DSL, this approach automatically yields compositional

semantics with its well-known advantages, such as easier and modular reasoning

about programs and improved composability. However, the pure embedding ap-

proach cannot utilize domain semantics for optimization purposes because of tight

coupling of the host language and the embedded one.

Recently, polymorphic embedding – a generalization of Hudak‟s approach – was

proposed [14] to support multiple interpretations by complementing the functional

abstraction mechanism with an object-oriented one. This approach introduces the

main advantage of an external DSL, while maintaining the strengths of the embedded

approach: compositionality and integration with the existing language. In this frame-

work, optimizations and analyses are just special interpretations of the DSL program.

3.2. Polymorphic Embedding in our DSL

Considering advantages of the polymorphic embedding approach we employ it

in our design. For details we refer to [14]. Conside the following example

type Rep[A]
trait PArray[A]
type SparseVector = PArray[(Int,Float)]
type Vector = PArray[Float]
def sparseVectorMul(sv: Rep[SparseVector], v: Rep[Vector]) =
 sum(sv map { case Pair(i,value) => v(i) * value })

On the DSL level we use Scala‟s abstract types and type constructors as domain

types. Moreover, we lift all the functions over abstract type constructor Rep. This is

important because later we can provide concrete definitions yielding specific imple-

mentations.

Our sequential implementation (we call it simulation) is implemented by defin-

ing Rep as
type Rep[A] = A

7

and in our staged implementation (we call it code generation) is implemented by de-

fining Rep as
type Rep[A] = Exp[A]

where Exp is a representation of terms evaluating to values of the type A. Later we

will see how it is defined in LMS framework.

The ultimate goal is to expose Scalan as a polymorphically embedded DSL in

the Scala language in such a way that the same code could have two different imple-

mentations with equivalent semantics. And thus we would benefit from both simula-

tion (evaluation for debugging) and code generation (for actual data processing).

3.3. Phantom types

In addition to the polymorphic embedding technique, we also need a couple of

others that were recently developed in the area of generic programming. We shall

briefly overview them here starting with the notion of Phantom Types [7,12]. Consid-

er the definition of a data type. (in a Haskell-like notation) shown in Fig. 3.

data Term τ =
 Zero with τ = Int
| Succ (Term Int) with τ = Int
| Pred (Term Int) with τ = Int
| IsZero (Term Int) with τ = Bool
| If (Term Bool) (Term α) (Term α) with τ = α

Fig. 3. Term as phantom type

Types defined this way have some interesting properties:

 Term is not a container type: an element of Term Int is an expression that eva-

luates to an integer; it is not a data structure that contains integers.

 We cannot define a mapping function (α -> β)-> (Term α -> Term β) as

for many other data types.

 The type Term β might not even be inhabited: there are, for instance, no terms of

type Term String

It has been shown [12] that phantom types appear naturally when we need to

represent types as data at runtime. In our DSL we make use of phantom types to

represent types of array elements (see Fig. 9) and staged values (see section 4.1).

3.4. Generic programming

Runtime type representations are a foundation of generic programming tech-

nique [11]. The idea is to define a data type whose elements (instances) represent

types of data that we want to work with. A Generic Function is one that employs run-

time type representations and is defined by induction on the structure of types.

Consider the definition of the data type Type.

data Type τ =
 RInt with τ = Int
| RChar with τ = Char
| RPair (Type α) (Type β) with τ = (α, β)
| RList (Type α) with τ = [α]

8

An element rt of type Type τ is a representation of τ.

For example, following is a representation of type String.

rString :: Type String
rString = RList RChar

A generic function pattern matches on the type representation and then takes the

appropriate action.
data Bit= 0|1
compress :: forall τ.Type τ -> τ -> [Bit]
compress (RInt) i = compressInt i
compress (RChar) c = compressChar c
compress (RList ra) [] = 0:[]
compress (RList ra) (a : as) =
 1 : compress ra a ++ compress (RList ra) as
compress (RPair ra rb) (a, b) =
 compress ra a ++ compress rb b

We assume here that compressInt::Int->[Bit] and compressChar :: Char -> [Bit]

are given.

3.5. Generic programming in Scala

Functions like this can be encoded in Scala using an approach suggested in [21].

Fig. 4 shows Scala encodings for the above function compress.

trait Rep[A]
implicit object RInt extends Rep[Int]
implicit object RChar extends Rep[Int]
case class RProd[A,B](ra:Rep[A], rb:Rep[B])
 extends Rep[(A,B)]
implicit def RepProd[A,B](
 implicit ra:Rep[A], rb: Rep[B]) = RProd(ra, rb)
def compress[A](x:A)(implicit r:Rep[A]):List[Bit]= r match {
 case RInt => compressInt (x)
 case RChar => compressChar (x)
 case RProd(a, b) => compress(x._1)(a) ++ compress(x._2)(b)
}

Fig. 4. Generic function in Scala

In the DSL we use a similar technique and we also employ type representations

to implement array combinators as generic functions. But because parallel arrays that

we discuss here are all implemented using type-indexed types (also known as non-

parametric representations) we follow a different pattern to introduce generic func-

tions in our library.

3.6. Type-indexed data types

A type-indexed data type is a data type that is constructed in a generic way from

an argument data type. It is a generic technique and we briefly introduce it here

adapted for our needs. For a more thorough treatment the reader is referred to [13].

9

In our example, in the case of parallel arrays, we have to define an array type by

induction on the structure of the type of an array element.

Suppose we have a trait PArray[T] (to represent parallel arrays) and conveni-

ence type synonym PA[T] defined as

trait PArray[A] // here PArray stands for Parallel Array
type PA[A] = PArray[A]

For this abstract trait we want to define concrete representations depending on

the underlying structure of type A.

First, let us define what types can be used as types of array elements. As shown

in Fig. 5 we consider a family of types constructed by the recursive definition:

A,B = Unit | Int | Float | Boolean // base types
| (A,B) // product (pair of types)
| (A|B) // sum type where (A|B) = Either[A,B]
| PArray[A] // nested array

Fig. 5. Family of element types

Thus, considering each case in the definition above, we can define a representa-

tion transformation function RT (see Fig. 6) that works on types. It was shown [4]

how such array representations enable nested parallelism to be implemented in a sys-

tematic way

RT: * -> *
RT[PArray[Unit]] = UnitArray(len:Int)

RT[PArray[T]] = BaseArray(arr:Array[T])

 where T = Int | Float | Boolean
RT[PArray[(A,B)]] = PairArray(a:RT[PArray[A]],

 b:RT[PArray[B]])

RT[PArray[(A|B)]] = SumArray(

 flags: RT[PArray[Int]],

 a: RT[PArray[A]],

 b: RT[PArray[B]])

RT[PArray[PArray[A]]] = NArray(

 values : RT[PArray[A]],

 segments: RT[PArray[(Int,Int)]])

Fig. 6. Representation Transformation

Below we show how to use Scala‟s case classes to represent structure nodes of a con-

crete representation (UnitArray, BaseArray, etc.) and how to keep the data values

(data nodes) unboxed in Scala arrays (Array[A]). A graphical illustration of these re-

presentations is shown on in Fig. 7. For details related to these representations we re-

fer to [4].

10

Fig. 7. Type-indexed representations of PArray

Consider as an example a representation of a sparse matrix rendered by applying

RT function to Matrix type. It is shown graphically in Fig. 8.
type VectorElem = (Int,Float)
type SparseVector = PArray[VectorElem]
type Matrix = PArray[SparseVector]

Fig. 8. Sparse matrix representation

3.7. Type-indexed arrays in the DSL’s implementation

To employ the above techniques in the design of our DSL lets first represent a type

structure of an array element type by using the Scala encodings of generic functions

described above (see [23] for details).

11

type Elem[A] = Element[A] // convenience type synonim
trait Element[A] { // abstract type descriptor for type A
 def replicate(count: Int, v: A): PA[A] // factory methods
 def fromArray(arr: Array[A]): PA[A]
}
class BaseElement[T] extends Element[T] {
 def fromArray(arr:Array[T]) = BaseArray(arr)
 def replicate(len:Int,v:T) = BaseArray(Array.fill(len)(v))
}
implicit val unitElement: Elem[Unit] = new UnitElement
implicit val intElement: Elem[Int] = new BaseElement[Int]
implicit val floatElement: Elem[Float] =
 new BaseElement[Float]
implicit def pairElement[A,B]
 (implicit ea: Elem[A], eb: Elem[B]) = new Element[(A,B)] {
 def replicate(count: Int, v: (A,B)) =
 PairArray(ea.replicate(count, v._1),
 eb.replicate(count, v._2))
}

Fig. 9. Representation of the types of array elements

Note, that in Scala we can equip type representations with generic functions

(replicate in this sample) by using inheritance. Moreover, we can use a concrete

array representation (PairArray) in the implementation for a particular type case (pai-

rElement). All these lead to a fully generic while still statically typed code.

Next, we need to represent arrays as type-indexed data types thus implementing

the RT function defined in previous section. Consider the code shown in Fig. 10.

type PA[A] = PArray[A] // convenience type synonim
trait PArray[A]
case class UnitArray(len: Int) extends PArray[Unit]
case class BaseArray[A:Elem](arr: Array[A])
 extends PArray[A]
case class PairArray[A:Elem,B:Elem](a: PA[A], b:PA[B])
 extends PArray[(A,B)]
case class NArray(values:PA[A], segments:PA[(Int,Int)])
 extends PArray[PA[A]]

Fig. 10. Concrete array classes

To define generic (polytypic) functions over our arrays we first declare them in

the PArray trait:
trait PArray[A] {
 def length: Int
 def map[B:Elem](f: A => B): PA[B]
 /* and other methods */
}

And then we implement these abstract methods in concrete array classes. Note

how the implementation changes depending on the type of an array element.

12

case class UnitArray(len: Int) extends PArray[Unit] {
 def length = len
 def map[B:Elem](f: Unit=>B) =
 element[B].tabulate(len)(i => f())
}
case class BaseArray[A:Elem](arr: Array[A])
 extends PArray[A] {
 def length = arr.length
 def map[B:Elem](f: A => B) =
 element[B].tabulate(arr.length)(i => f(arr(i)))
}
case class PairArray[A:Elem,B:Elem](a:PA[A], b:PA[B])
 extends PArray[(A,B)] {
 def length = a.length
 def map[R:Elem](f: ((A,B)) => R) =
 element[R].tabulate(length)(i => f(a(i),b(i)))
}
case class NArray[A:Elem](arr:PA[A],segments: PA[(Int,Int)])
 extends PArray[PArray[A]] {
 def length = segments.length
 def map[R:Elem](f: PA[A] => R): PA[R] =
 element[R].tabulate(length)(
 i => {val (p,l) = segments(i); f(arr.slice(p,l))}
)
}

Fig. 11. Polytypic PArray methods

3.8. Lightweight Modular Staging (LMS)

So far, given a type A of an array element we know how to build a type-indexed

representation of the array using RT function thus yielding RT[PA[A]] type. Next, we

have seen how to encode in our DSL these array representations together with poly-

typic operations on them. These techniques form the basis of our sequential reference

implementation of nested data parallelism (as described in [23]).

As it was mentioned before, our sequential implementation is straightforward,

inefficient and is supposed to be used for debugging (in the aforementioned simula-

tion mode). To enable a parallel and efficient implementation, we employ a polymor-

phic embedding technique, namely its particular instance of it known as Lightweight

Modular Staging (LMS) [24]

In the name LMS, Lightweight means that it uses just Scala‟s type system. Mod-

ular means that we can choose how to represent intermediate representation (IR)

nodes, what optimizations to apply, and which code generators to use at runtime. And

Staging means that a program instead of executing a value, first, produces other (op-

timized) program (in form of a program graph) and then executes that new program

to produce the final result.

Consider the method matrixVectorMul in Fig. 1. and types Matrix, Vector that

were used in its declaration. That is how we usually write methods in our programs.

Instead of this, in LMS framework, in order to express staging, we are required to lift

13

some types using the type constructor Rep[_] and use Rep[Matrix], Rep[Vector], etc.

In fact, sparseVectorMul should have been declared like this to enable polymorphic

embedding

def sparseVectorMul(
 sv: Rep[SparseVector], v: Rep[Vector]): Rep[Float] =
 sum(sv map { case Pair(i,value) => v(i) * value })

In the case of sequential implementation we define Rep as

type Rep[A] = A

and provide sequential implementation using a usual evaluation semantics of the

host language (i.e. Scala).

On the other hand, LMS is a staging framework and we want to build IR instead

of just evaluating the method. To achieve this, LMS defines Rep as shown in Fig. 12.

trait BaseExp extends Base with Expressions {
 type Rep[T] = Exp[T]
}
trait Expressions {
 abstract class Exp[T]
 case class Const[T](x: T) extends Exp[T]
 case class Sym[T](n: Int) extends Exp[T]
 abstract class Def[T] // operations (defined in subtraits)

 class TP[T](val sym: Sym[T], val rhs: Def[T])
 var globalDefs: List[TP[_]] = Nil
 def findDefinition[T](d: Def[T]): TP[T] =
 globalDefs.find(_.rhs == d)
 def findOrCreateDefinition[T](d: Def[T]): TP[T] =
 findDefinition(d).getOrElse{
 createDefinition(fresh[T],d)
 }
 implicit def toExp[T](x: T): Exp[T] = Const(x)
 implicit def toExp[T](d: Def[T]): Exp[T] =
 findOrCreateDefinition(d).sym
}

Fig. 12. How Rep[T] defined in LMS

This, in effect, enables lifting of the method‟ bodies too, so that its evaluation yields a

program graph.

Lifting of expressions is performed when the code is compiled using Virtualized

Scala [2]. For example, consider the following lines of code:

val x: Rep[Int] = 1
val y = x + 1

There is no method „+‟ defined for Rep[Int], but we can define it on DSL level

without providing any concrete implementation as follows:

14

trait IntOps extends Base {
 def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]
}

When such a declaration is in the scope of x+1 then „+‟ is replaced by Scala

compiler with infix_+(x, toExp(1)).

In a staging context infix_+ is defined so that it generates an IR node of the op-

eration

trait IntOpsExp extends BaseExp with IntOps {
 case class IntPlus(x:Exp[Int],y:Exp[Int]) extends Def[Int]
 def infix_+(x: Exp[Int], y: Exp[Int]) = IntPlus(x,y)
}

Here IntPlus is an IR node that represents „+‟ in the program graph. Note that in-

fix_+ should return Rep[Int] while IntPlus extends Def[Int], so implicit conversion

implicit def toExp[T](d: Def[T]): Exp[T] =
 findOrCreateDefinition(d).sym

which is defined in Expressions trait is called here thus providing graph building ma-

chinery.

We refer to [24] for detailed explanation of how LMS works.

4. Polytypic Staging

We have shown that for each type A of array element we use the type represen-

tation function RT to build type-indexed representation of PArray[A] type. We also

showed how we define PArray‟s methods using polytypic techniques so that once de-

fined they work for all types in the family. Thus, emphasizing the domain-specific

nature of our library and considering its polytypic design we can think of it as a poly-

typic DSL.

If we want to deeply embed our Polytypic DSL in Scala by applying Polymor-

phic Embedding techniques in general and LMS framework in particular we need to

answer the question: “How are we going to lift type-indexed types along with polytyp-

ic functions in the Rep world?”

In this section we describe Polytypic Staging, – our approach to “deep embed-

ding” of Polytypic DSLs. By design, our framework:

 is an extension of LMS

 respects type-indexed representations described before

 adds additional dimension of flexibility to LMS by making it polytypic

 behaves as core LMS in the non-polytypic case

4.1. Staged Values

To be consistent with LMS, we do not change the original definition of Rep, but

we need to make some extensions to account for a polytypic case, they are shown in

the following listing in italicized bold.

15

type Rep[T] = Exp[T]
abstract class Exp[+T] {
 def Type: Manifest[T] = manifest[T] // in LMS
 def Elem: Elem[T] // added in Scalan
}
case class Sym[T:Elem](val id: Int) extends Exp[T] {
 override def Elem = element[T]
}
case class Const[+T:Manifest](x: T) extends Def[T]
def element[T] = implicitly[Element[T]]

These additions ensure that each staged value has a runtime type descriptor that

we use to implement polytypism. We also regard constants as definitions (more pre-

cisely as operations of arity 0), and we can do it without a loss of generality since

given a symbol we can always extract its right-hand-side definition by using Def ex-

tractor [20] defined in core LMS
object Def {
 def unapply[T](e: Exp[T]): Option[Def[T]] = e match {
 case s @ Sym(_) => findDefinition(s).map(_.rhs)
 case _ => None
 }
}

Treating constants as definitions in our implementation of LMS means that any

lifted value of type Rep[T] is always an instance of Sym[T] which simplifies our im-

plementation.

4.2. Type Descriptors

The descriptors of types of array elements shown in Fig. 9 remain unchanged.

This means that we can keep our type representation schema with one adaptation: we

need to lift all the methods of Element[T] trait.
type Elem[A] = Element[A]
trait Element[A] {
 def replicate(count: Rep[Int], v: Rep[A]): PA[A]
 def fromArray(arr: Rep[Array[A]]): PA[A]
}
class BaseElement[T] extends Element[T] {
 def fromArray(arr: Rep[Array[A]]) = BaseArray(arr)
 def replicate(len: Rep[Int], v: Rep[A]) =
 BaseArray(ArrayFill(len, v))
}
implicit val unitElement: Elem[Unit] =new UnitElement
implicit val intElement: Elem[Int] = new BaseElement[Int]
implicit val floatElement:Elem[Float]=new BaseElement[Float]
implicit def pairElement[A,B]
 (implicit ea: Elem[A], eb: Elem[B]) = new Element[(A,B)] {
 def replicate(count:Rep[Int], v:Rep[(A,B)]):PA[(A,B)] =
 PairArray(ea.replicate(count, v._1),
 eb.replicate(count, v._2))
}

Fig. 13. Staged representation of types

16

Note that even after the lifting of the methods their bodies remain literally the

same. This is achieved by systematic use of Rep[T] type constructor in signatures of

classes and methods. We also employ Scala idiom known as the “pimp my library”

pattern to add methods that work with values lifted over Rep[T]. For example, con-

sider expressions v._1 and v._2 in Fig. 13, whose implementation is shown in Fig. 14.

def unzipPair[A,B](p: Rep[(A,B)]): (Rep[A],Rep[B]) = p match {
 case Def(Tup(a, b)) => (a, b)
 case _ => (First(p), Second(p))
}
class PairOps[A:Elem,B:Elem](p: Rep[(A,B)]) {
 def _1: Rep[A] = { val (a, _) = unzipPair(p); a }
 def _2: Rep[B] = { val (_, b) = unzipPair(p); b }
}
implicit def pimpPair[A:Elem,B:Elem](p: Rep[(A,B)]) = new PairOps(p)

case class Tup[A,B](a: Exp[A], b: Exp[B])
 extends Def[(A,B)]
case class First[A,B](pair: Exp[(A,B)])
 extends Def[A]
case class Second[A,B](pair: Exp[(A,B)]) extends Def[B]

Fig. 14. Staging methods using Pimp my Library pattern

Note how we use the core LMS‟s Def extractor to implement staging logic. Giv-

en lifted pair (p: Rep[(A,B)]) we either successfully extract Tup(a,b) constructor

and return original constituents of the pair, or we emit new IR nodes thus deferring

tuple deconstruction until later stages.

Figures above show how we implement our polytypic staging framework on top

of core LMS, but as we will see in the next section, to lift type-indexed representa-

tions of PArray[A] over Rep[_] and to stage polytypic array methods we still need to

introduce some extensions above core LMS.

4.3. Staging type-indexed data types

Polytypism in our DSL is focused around the PArray[A] trait (which on the DSL

level represents parallel arrays) and every value of the PArray[T] type has a type-

indexed representation that is built by induction on the structure of T. We also exten-

sively use a convenience type synonym PA defined as follows:

trait PArray[A]
type PA[A] = Rep[PArray[A]]

Thus, PA is no longer a synonym of PArray and now it is a synonym of lifted

PArray. In other words PA[T] is a lifted value of array with elements of type T.

Let us use the example in Fig. 13 to illustrate how values of the type PArray are

staged (or lifted) in our polytypic staging framework. First, notice that replicate

method of pairElement produces a value of PA[(A,B)] type which is a synonym of

Rep[PArray[(A,B)]] and so it is a lifted PArray[(A,B)] and in LMS such

values are represented by symbols of type Sym[PArray[(A,B)]]. Thus having a

17

value of type PA[(A,B)] we can think of it as a value of some symbol of type

Sym[PArray[(A,B)]].

Next, recall that in LMS we get lifted values of the type Rep[T] by implicit con-

version (recall that Rep[T] = Exp[T]):

implicit def toExp[T](d: Def[T]): Exp[T] =
 findOrCreateDefinition(d).sym

which is automatically inserted by the compiler, converts any definition to a symbol

and builds a program graph as its side effect. We employ this design by deriving all

classes that represent arrays from Def[T] with appropriate T. As an example see

Fig. 13 where PairArray is returned by the method replicate. Definitions to

represent arrays are shown in Fig. 15.

abstract class PADef[A] extends Def[PArray[A]]
 with PArray[A]
case class UnitArray(len: Rep[Int]) extends PADef[Unit]
case class BaseArray[A:Elem](arr: Rep[Array[A]])
 extends PADef[A]
case class PairArray[A:Elem,B:Elem](a: PA[A], b: PA[B])
 extends PADef[(A,B)]
case class SumArray[A:Elem,B:Elem]
 (flags: PA[Boolean], a: PA[A], b: PA[B])
 extends PADef[(A|B)]
case class NArray[A:Elem](arr:PA[A], segments:PA[(Int,Int)])
 extends PADef[PArray[A]]

Fig. 15. Array classes as graph nodes (Defs)

Compare these classes with those shown in Fig. 10. and note how class signa-

tures became lifted either explicitly by using Rep[T] constructor or implicitly by re-

defining PA[T] synonym as Rep[PArray[A]]. Moreover, the type Representation

Transformation function TR shown in Fig. 6 also remains almost the same, but works

with lifted types (see Fig. 16). This similarity is due to the polymorphic embedding

design of our approach where we want to give different implementations to the same

code.

Note, how we mix-in the PArray[A] trait into every graph node of the type PA-

Def[A]. In this way, when we stage (or lift over Rep) a type-indexed representation

of PArray[T] we both create structure nodes using our concrete array classes and at

the same time we build program graph nodes.

The Representation Transformation in a staged context is shown in Fig. 16.

18

L[UnitArray(len: Rep[Int])] = Sym[PArray[Unit]]

L[BaseArray[T](arr:Rep[Array[T]])] = Sym[PArray[T]]

 where T=Int|Float|Boolean

L[PairArray(a:PA[A], b:PA[B])] = Sym[PArray[(A,B)]]

L[SumArray(flags:PA[Boolean],

 a:PA[A],b:PA[B])] = Sym[PArray[(A|B)]]

L[NArray(values:PA[A],

 segments:PA[(Int,Int)])] = Sym[PArray[PArray[A]]]

TR[PArray[Unit]] = UnitArray(len:Rep[Int])

TR[PArrya[T]] = BaseArray(arr:Rep[Array[T]])

 where T = Int|Float|Boolean
TR[PArray[(A,B)]] = PairArray(a:L[TR[PArray[A]]],

 b:L[TR[PArray[B]]])

TR[PArray[(A|B)]] = SumArray(

 flags: L[TR[PArray[Int]]],

 a: L[TR[PArray[A]]],

 b: L[TR[PArray[B]]])

TR[PArray[PArray[A]]] = NArray(

 values : L[TR[PArray[A]]],

 segments: L[TR[PArray[(Int,Int)]]])

Fig. 16. Staged Representation Transformation

A graphical illustration of these representations in a form of program graph is

shown in Fig. 17, where we use methods defined like this

def fromArray[T:Elem](x: Rep[Array[T]]): PA[T] =
 element[T].fromArray(x)
def replicate[T:Elem](count: Rep[Int], v: Rep[T]):PA[T]=
 element[T].replicate(count, v)

Note also that we can achieve effects of constant propagation and partial evalua-

tion by applying domain-specific rewritings. Our experiments show that if all input

data are known at staging time, our rewriting method, while simple enough, is still

able to fully evaluate intermediate graph nodes resulting in a type-indexed representa-

tion that only contains data arrays in Const nodes and structure nodes that represent

PArray values. (see Fig. 17)

19

Val rowInds = fromArray(Array(0, 1))

val rowVals = replicate(2, 0.5f)

val sparseRow = rowInds.zip(rowVals)

val matr = replicate(2, sparseRow)

Fig. 17. Array constructors and the resulting graph

4.4. Staging polytypic functions

The same way as we lift methods in type descriptors (types derived from Ele-

ment[T]) we can lift methods in concrete array classes (those derived from PAr-

ray[T]). We‟ve already shown in Fig. 15 how we lift signatures of array classes, here

is how we stage polytypic method map (see Fig. 18)

20

case class UnitArray(len: Rep[Int]) extends ... {
 def map[R:Elem](f: Rep[Unit] => Rep[R]): PA[R] =
 element[R].tabulate(len)(i => f(toRep(())))
}
case class BaseArray[A:Elem](arr: Rep[Array[T]]) extends ... {
 def map[B:Elem](f: Rep[A] => Rep[B]) =
 element[B].tabulate(arr.length)(i => f(arr(i)))
}
case class PairArray[A:Elem,B:Elem](a:PA[A], b:PA[B])
 extends ... {
 def map[R:Elem](f: Rep[(A,B)] => Rep[R]): PA[R] = {
 element[R].tabulate(length)(i => f(a(i),b(i)))
 }
}
case class NArray[A:Elem](arr:PA[A],segments:PA[(Int,Int)])
 extends ... {
 def map[R:Elem](f: PA[A] => R): PA[R] =
 element[R].tabulate(length)(i => {
 val Pair(p,l) = segments(i); f(arr.slice(p,l))
 })
}

Fig. 18. Staged polytypic method map

Compare this code with the non-staged version in Fig. 11 and note how the sig-

nature lifted over Rep and bodies of the methods remain literally unchanged.

As an example of staging something not very trivial, we show in Fig. 19 a pro-

gram graph that we get by staging the following function:

val svm = (sv: Rep[SparseVector])=>(v: Rep[Vector]) =>
 sparseVectorMul(sv, v)

4.5. Generalizing Domain-Specific Rewrites

One of the benefits that we can get out of deep embedding is the ability to per-

form domain-specific optimizations. For instance we can use staging time rewrites.

Our method of implementing rewrites is very simple and is based on the one pro-

posed in [24]. We just slightly improve it by making it more general while still sim-

ple.

Recall that when a definition (an instance of Def class) should be converted to

Rep, an implicit conversion defined by core LMS is inserted by the compiler to do

the job. Fig. 20 shows how we redefine this conversion to enable rewritings.

21

implicit def toExp[T:Elem](d: Def[T]): Exp[T] =
 findDefinition(d) match {
 case Some(TP(s, _)) => s
 case None =>
 val newD = rewrite(d)
 if (newD == d) {
 val TP(newSym, _) = createDefinition(fresh[T], d)
 newSym
 } else
 toExp(newD.asInstanceOf[Def[T]])
 }
def rewrite[T](d: Def[T]): Def[_] = d

Fig. 20. Generalized Rewritings

Fig. 19. Program Graph

22

If we can find the definition in the graph, we just return its symbol. Otherwise,

we try to rewrite the Def yielding a new one. If it is the same (which means that we

cannot apply any rewriting rule), then we add the Def to the graph. If the rewriting

returns something new, then we drop the original Def and go recursively with the

new.

We have found that this iterative rewriting has to be continued until a fixed point

is reached, since rewrite often happens to create a new definition that leads to the

possibility of another rewrite. In particular, it is necessary in order to achieve the ef-

fects of partial evaluation.

We use stackable overrides to implement domain-specific rules in a modular

way

trait StagedArithmetic extends … {
 override def rewrite[T](d: Def[T]): Def[_] = d match {
 case FractionalMod(Def(Const(x)), Def(Const(y)), i) =>
 Const(i.quot(x, y))
 case _ => super.rewrite(d)
 }
}
trait StagedStdArrayOps extends … {
 override def rewrite[T](d: Def[T]): Def[_] = d match {
 case ArrayLength(Def(ArrayScan(arr, _))) =>
 ArrayLength(arr)
 case arrDef@ArrayFill(Def(Const(len)), Def(Const(v))) =>
 Const(Array.fill(len)(v))
 case _ => super.rewrite(d)
}

5. Conclusion

There are some interesting features of the nested data parallelism that make it at-

tractive to research. First, – it has been shown (at least theoretically) that it admits an

efficient implementation, second, - this model covers a wide class of algorithms of

practical importance [3], and third, – it has a purely functional and deterministic se-

mantics of the language and, as a consequence, enables programs to be written in

declarative style.

Declarative languages are usually easier to use, because they allow the pro-

grammer to directly formulate what is to be done without specifying how it has to be

done, while some decisions may be postponed even until the runtime.

Another interesting feature of NDP is compositionality (or, more generally,

modularity). Once a program has been written, it can be repeatedly reused as a sub-

routine without modification.

In this paper we have made another step towards the effective implementation of

the NDP model. We initially chose an approach and a development platform that is

different from our predecessors and we put emphasis on limiting the degree of gene-

rality by formulating the problem as the development of DSL.

There are reasons to believe that by limiting the degree of generality, we can

more easily use the domain semantics for implementing deeper and more significant

optimizations. In addition, the LMS platform gives us some opportunities for integra-

23

tion with other DSLs [2,25], which, in turn, will allow us, by combining their seman-

tics, to improve the depth of optimizations and performance.

Although the proposed method of polytypic staging is formulated in terms of the

NDP domain, still, the implementation strategy described here should be applicable

to any polytypic DSL in general.

6. Acknowledgements

The author expresses his gratitude to Sergei Romanenko, Andrei Klimov and

other participants of Refal seminar at Keldysh Institute for useful comments and

fruitful discussions of this work.

7. References

[1] General-Purpose Computation on Graphics Hardware. http://gpgpu.org/.

[2] Philipp Haller Adriaan Moors, Tiark Rompf and Martin Odersky. Tool Demo:

Scala-virtualized, 2012.

[3] Guy E. Blelloch. Vector models for data-parallel computing. MIT Press, Cam-

bridge, MA, USA, 1990.

[4] Manuel M. T. Chakravarty and Gabriele Keller. An Approach to Fast Arrays in

Haskell, 2002.

[5] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon

Marlow. Associated Types with Class. In In POPL ‟05: Proceedings of the 32nd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 1–13. ACM Press, 2005.

[6] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele

Keller, and Simon Marlow. Data Parallel Haskell: a status re- port. In In DAMP

2007: Workshop on Declarative Aspects of Multicore Programming. ACM Press,

2007.

[7] James Cheney and Ralf Hinze. Phantom types, 2003.

[8] Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type Classes as

Objects and Implicits. In n Proceedings of the 25th ACM International Confe-

rence on Systems, Programming, Languages and Applications: Soft- ware for

Humanity (SPLASH/OOPSLA), October 2010.

[9] Jeffrey Dean, Sanjay Ghemawat, and Google Inc. MapReduce: simplified data

processing on large clusters. In In OSDI‟04: Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation. USENIX Asso-

ciation, 2004.

[10] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill

Nitzberg, William Saphir, and Marc Snir. MPI: The Complete Reference (Vol. 2).

Technical report, The MIT Press, 1998.

[11] Ralf Hinze. A new approach to generic functional programming. In Pro- ceed-

ings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL ‟00, pages 119–132, New York, NY, USA, 2000.

ACM.

[12] Ralf Hinze. Fun with phantom types. The Fun of Programming, pages 245– 262,

2003.

24

[13] Ralf Hinze, Johan Jeuring, and Andres L oh. Type-indexed data types. In

SCIENCE OF COMPUTER PROGRAMMING, pages 148–174, 2004.5

[14] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Poly-

morphic embedding of DSLs. In Proceedings of the 7th international conference

on Generative programming and component engineering, GPCE ‟08, pages 137–

148, New York, NY, USA, 2008. ACM.

[15] Paul Hudak. Building domain-specific embedded languages. ACM COM- PUT-

ING SURVEYS, 28, 1996.

[16] Patrik Jansson. Polytypic programming. In 2nd Int. School on Advanced Func-

tional Programming, pages 68–114. Springer-Verlag, 1996.

[17] Simon Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.

Chakravarty. Harnessing the Multicores: Nested Data Parallelism in Haskell,

2008.

[18] Gabriele Keller and Manuel M.T. Chakravarty. Flattening Trees, 1998.

[19] NVIDIA. NVIDIA CUDA C Programming Guide., 2011.

[20] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala, Second

Edition. Artima, 2010.

[21] Bruno C.d.S. Oliveira and Jeremy Gibbons. Scala for generic programmers. In

Proceedings of the ACM SIGPLAN workshop on Generic programming, WGP

‟08, pages 25–36, New York, NY, USA, 2008. ACM.

[22] Aleksandar Prokopec, Tiark Rompf, Phil Bagwell, and Martin Odersky. A gener-

ic parallel collection framework, 2010.

[23] Alexander Slesarenko. Scalan: polytypic library for nested parallelism in Scala.

Preprint 22, Keldysh Institute of Applied Mathematics, 2011.

[24] Martin Odersky Tiark Rompf. Lightweight modular staging: a pragmatic ap-

proach to runtime code generation and compiled dsls, 2010.

[25] Arvind Sujeeth and HyoukJoong Lee and Kevin Brown and Tiark Rompf and

Hassan Chafi and Michael Wu and Anand Atreya and Martin Odersky and Kunle

Olukotun. OptiML: An Implicitly Parallel Domain-Specific Language for Ma-

chine Learning. ICML '11

[26] Eclipse. http://eclipse.org

http://eclipse.org/

	Untitled.pdf
	prep2012_05_en
	1. Introduction
	2. DSL view on nested data parallelism
	3. Foundations of our approach
	3.1. Polymorphic Embedding of DSLs
	3.2. Polymorphic Embedding in our DSL
	3.3. Phantom types
	3.4. Generic programming
	3.5. Generic programming in Scala
	3.6. Type-indexed data types
	3.7. Type-indexed arrays in the DSL’s implementation
	3.8. Lightweight Modular Staging (LMS)

	4. Polytypic Staging
	4.1. Staged Values
	4.2. Type Descriptors
	4.3. Staging type-indexed data types
	4.4. Staging polytypic functions
	4.5. Generalizing Domain-Specific Rewrites

	5. Conclusion
	6. Acknowledgements
	7. References

