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The paper presents a simple domain-specific multi-result supercompiler for counter
systems implemented by means of the MRSC toolkit. The input language of the
supercompiler is a non-deterministic domain-specific language meant for speci-
fying models of communication protocols. The implementation of this DSL is
based on “embedding” and the heavy use of higher-order constructs. There are
presented 2 versions of the multi-result supercompiler. The first one implements
a näıve algorithm, which turns out to be rather inefficient. The second version
exploits the specifics of the domain, thereby drastically reducing the number of
generated graphs of configurations and the amount of resources consumed by
supercompilation.
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ализация предметно-ориентированного многорезультатного супер-
компилятора с помощью инструментария MRSC

В работе представлен простой предметно-ориентированный многорезультат-
ный суперкомпилятор, предназначенный для анализа поведения счетчиковых
систем и реализованный с помощью инструментария MRSC. Входным языком
суперкомпилятора является недетерминированный предметно-ориентирован-
ный язык, предназначенный для описания моделей коммуникационных про-
токолов. Реализация этого языка основана на поверхностном встраивании
и существенном использовании конструкций высшего порядка. Рассматри-
вается две версии многорезультатного суперкомпилятора. В первой из них
реализован “наивный” алгоритм, который оказывается низкоэффективным.
Во второй версии, благодаря учету особенностей проблемной области, удает-
ся значительно уменьшить количество порождаемых графов конфигураций
и снизить потребление вычислительных ресурсов.
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1 Introduction

Supercompilation [22, 23] is a program manipulation technique that was origi-
nally introduced by V. Turchin in terms of the programming language Refal (a
first-order applicative functional language) [21], for which reason the first super-
compilers were designed and developed for the language Refal [20, 24, 16, 15].

Further development of supercompilation led to a more abstract reformulation
of supercompilation [18, 19, 5]. It particular, it was shown that supercompilation
is as well applicable to non-functional programming languages (imperative and
object-oriented ones) [7].

Multi-result supercompilation is a technique of constructing supercompilers
that, given an input program, are able to produce a set of residual programs,
rather than just a single one [14, 9].

Another line of development is domain-specific supercompilation for domain-
specific languages, and, as has been shown in [12], there are some cases where
domain-specific supercompilation has certain advantages over general-purpose su-
percompilation.

∙ The tasks for a domain-specific supercompiler can be written in a domain-
specific language in terms of a specific problem domain.

∙ The machinery of supercompilation can be simplified.
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∙ The amount of resources consumed by multi-result supercompilation can be
significantly reduced by exploiting the knowledge about the specifics of the
domain.

However, the main argument against domain-specific supercompilation is that,
upon having designed and implemented a general-purpose supercompiler, we can
apply it to various problems again and again (theoretically speaking, without any
extra effort). While, in the case of domain-specific supercompilation, we have to
develop a whole “zoo” of supercompilers tailored for different application areas.

Hence, the use of domain-specific supercompilation seems to be justified only
in cases where the design and implementation of a domain-specific supercompiler
would take a fraction of the effort needed for creating a general-purpose super-
compiler.

The paper presents a simple domain-specific multi-result supercompiler [14, 12]
for counter systems [2, 7, 8, 6, 9, 11, 10] implemented by means of the MRSC
toolkit [13]. The input language of the supercompiler is a non-deterministic
domain-specific language meant for specifying models of communication proto-
cols. The implementation of this DSL is based on embedding [17, 4] and the
heavy use of higher-order constructs. There are presented 2 versions of the multi-
result supercompiler. The first one implements a näıve algorithm, which turns out
to be rather inefficient. The second version exploits the specifics of the domain,
thereby drastically reducing the number of generated graphs of configurations and
the amount of resources consumed by supercompilation.

The implementation of the aforementioned supercompilers takes only a few
dozen lines of code, which is achieved by using prefabricated components provided
by the MRSC toolkit [13].

Thus it can be argued that the MRSC toolkit allows domain-specific multi-
result supercompilers to be manufactured at low cost, making them a budget
solution, rather than a luxury.

2 Multi-result supercompilation from a bird’s-eye
view

As was shown in [13] various kinds of supercompilation (deterministic, non-
deterministic and multi-result supercompilation) can be described by sets of rewrite
rules. The rules corresponding to multi-result supercompilation are shown in
Fig. 1. Given an (incomplete) graph of configurations 𝑔, the rules specify which
new graphs of configurations can be produced from 𝑔 by a single step of super-
compilation.

Thus, the rules specify a relation on the set of graphs of configurations. How-
ever, when implementing a supercompiler, we need an algorithm which, given an
initial configuration, generates a collection of completed graphs corresponding to
the initial configuration.
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(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

Notation:
𝑔 – a current graph of configurations
𝛽 – a current node in a graph of configurations
𝑐 – a configuration in a current node 𝛽

Figure 1: Multi-result supercompilation specified by rewrite rules

The core of the MRSC toolkit implements an iterative algorithm that main-
tains a collection 𝑈 of incomplete graphs of configurations. At the start, 𝑈 con-
tains a single graph whose single node contains the initial configuration.

At every step, the algorithm selects an incomplete graph 𝑔 in the collection.
Let 𝐷 = {𝑔1, . . . , 𝑔𝑛} be the collection of graphs that can be immediately derived
from 𝑔 by applying one of the rules (Fold, Drive or Rebuild). The supercompiler
removes 𝑔 from 𝑈 , generates the collection 𝐷 and inspects the graphs in 𝐷 to
see which ones are completed. The completed graphs are “final products” of
the supercompiler and need not be further processed. As regards the incomplete
graphs appearing in 𝐷, they are added to the collection 𝑈 .

When the collection 𝑈 becomes empty, the algorithm terminates.
There are a number of subtle points in which this algorithm differs from those

used by classic single-result supercompilers.

∙ The algorithm deals with a collection of incomplete graphs, rather than
with a single graph. At every step, one of the graphs produces a number of
“descendants” and “dies out”, while in the case of single-result supercompi-
lation, there is a single graph that “grows” and “evolves” until it becomes
completed.

∙ Upon selecting a graph 𝑔 in the collection 𝑈 , the algorithm tries to apply
each of the rules Fold, Drive and Rebuild to 𝑔. However, some rules may
turn out to be inapplicable. In the extreme case, when no rule is applicable,
𝑔 just “dies out”, without producing descendants. Thus the size of the
collection 𝑈 gets reduced, which, in the long run, leads to the termination
of the algorithm.

∙ The rules Drive and Rebuild can be triggered simultaneously, while in the
case of single-result supercompilation driving and rebuilding are mutually



6

exclusive.

∙ The whistle controls the applicability of the rules, but has no effect on the
results they produce. In particular, in contrast to single-result supercom-
pilation, the whistle need not to take care of how and where to generalize
configurations.

∙ Generalization is only performed for the leaves of graphs of configurations.
Thus, in contrast to single-result supercompilation, there never arises a need
to perform the upper rebuilding of a graph of configurations (a rollback to
𝛼), which consists in the deletion of all successors of the node 𝛼, followed
by the replacement of a configuration 𝑐 in 𝛼 with a configuration 𝑐′.

Hence, as paradoxical as it may seem, the anatomy of multi-result supercom-
pilation, in some respects, is simpler than that of single-result supercompilation.

3 Supercompilation for counter systems

One of the applications of multi-result supercompilation is the verification of cache
coherence and communication protocols modeled by counter systems [2]. Which
of the techniques used by general-purpose supercompilers are really essential for
the analysis of counter systems? This question was investigated by Klimov, who
developed several specialized supercompilation algorithms, which were proven to
be correct, always terminating, and able to solve reachability problems for a
certain class of counter systems [7, 8, 6, 9, 11, 10].

It was found that, in the case of counter systems, the supercompilation algo-
rithm can be simplified in the following ways.

∙ It is sufficient to deal with configuration of the form (𝑎1, . . . , 𝑎𝑛), whose each
component 𝑎𝑖 is either a natural number 𝑁 , or the symbol 𝜔.

∙ As regards driving, it is sufficient to deal with tests of the form either
𝑒 = 𝑁 , or 𝑒 ≥ 𝑁 , where 𝑁 is a natural number and 𝑒 is an arithmetic
expression that can only contain the operators +, −, natural numbers and
𝜔. The operations on arguments with 𝜔 are performed in the following way:
𝜔 ≥ 𝑁 = True and 𝜔 + 𝑁 = 𝜔 −𝑁 = 𝜔 + 𝜔 = 𝜔.

∙ All generalizations of a configuration 𝑐 can be obtained by replacing some
numeric components of 𝑐 with 𝜔.

∙ The termination of the supercompilation algorithm is ensured by means of
a very simple whistle: if a component of a configuration is a natural number
𝑛, and 𝑛 ≥ 𝑙, where 𝑙 is a constant given to the supercompiler as one of its
input parameters, then the configuration is declared to be “dangerous”. It
can be easily seen that, given an 𝑙, the set of “non-dangerous” configurations
is finite.
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In the following sections we present an implementation of a domain-specific
multi-result supercompiler for counter systems that has been used for producing
minimal graphs of configuration for a number of protocols [12]. The implemen-
tation is based on the use of prefabricated components provided by the MRSC
toolkit [13]. The source codes of the MRSC toolkit and of the supercompiler can
be found at https://github.com/ilya-klyuchnikov/mrsc.

4 A domain-specific input language and its im-
plementation

package mrsc.counters

case object MSI extends Protocol {
val start: Conf = List(Omega, 0, 0)
val rules: List[TransitionRule] = List(
{case List(i, m, s) if i >= 1 => List(i + m + s - 1, 1, 0)},
{case List(i, m, s) if s >= 1 => List(i + m + s - 1, 1, 0)},
{case List(i, m, s) if i >= 1 => List(i - 1, 0, m + s + 1)}

)

def unsafe(c: Conf) = c match {
case List(i, m, s) if m >= 1 && s >= 1 => true
case List(i, m, s) if m >= 2 => true
case _ => false

}

}

Figure 2: MSI protocol: a protocol model in form of a DSL program

package mrsc

package object counters {
type Conf = List[Expr]
type TransitionRule = PartialFunction[Conf, Conf]
implicit def intToExpr(i: Int): Expr = Num(i)

}

Figure 3: Package mrsc.counters: declarations and implicit conversions

We consider a domain-specific supercompiler for counter systems, which takes
as input a specification of a communication protocol written in a domain-specific
language (DSL). Fig. 2 shows a model of the MSI protocol in form of a DSL

https://github.com/ilya-klyuchnikov/mrsc
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package mrsc.counters

trait Protocol {
val start: Conf
val rules: List[TransitionRule]
def unsafe(c: Conf): Boolean
def isabelleEncoding: String
def name: String

}

sealed trait Expr {
def +(comp: Expr): Expr
def -(comp: Expr): Expr
def >=(i: Int): Boolean
def ===(i: Int): Boolean

}

case class Num(i: Int) extends Expr {
def +(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i + j)

}

def -(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i - j)

}

def ===(j: Int) = i == j
def >=(j: Int) = i >= j

}

case object Omega extends Expr {
def +(comp: Expr) = Omega
def -(comp: Expr) = Omega
def >=(comp: Int) = true
def ===(j: Int) = true

}

Figure 4: DSL for specifying counter systems: its implementation in Scala

program. Additional examples of protocol models with an explanation of the
meaning of DSL programs can be found in [12].

Note that this DSL is far from being ideal, as some constructs look somewhat
awkward. For example, each rule starts with the combination case List(i, m,
s) if, which, for example, could be shortened to (i, m, s) |. Moreover, the
size of the program could be further reduced by specifying the list of variables (i,
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m, s) once, at the beginning of the program, instead of repeating it in every rule.
However, we have preferred not to implement these improvements just because
they are easy to implement in the language Scala [17] by using a number of
standard tricks [4]. Since, at the moment, our goal is to show how a domain-
specific supercompiler can be implemented by means of MRSC, we have chosen
to minimize the DSL-related parts of the supercompiler.

Thus the implementation of the DSL has been reduced to a bare minimum
and takes only a few lines of code (see Fig. 3). A “configuration” is a list of
“expressions”, and a “transition rule” is a partial function taking a configuration
to another configuration. Why has this function to be partial? Just because
a transition rule may not be applicable to a configuration, in which case the
function is not defined for this configuration. Otherwise, if a rule is applicable to
a configuration, it produces a single configuration. Note that the supercompiler
deals with configurations that does not contain variables, for which reason the
edges in graphs of configurations do not have to be labeled with conditions on
variables.

We exploit the fact that, in Scala, the construct case p if c => e, where
p is a pattern, c a condition, and e an expression, defines an anonymous partial
function. If the function’s arguments matches p and satisfies 𝑝, then the function
returns the value obtained by evaluating 𝑒. Otherwise, the function is undefined
for this argument. Therefore, a transition rule can just be written as case p if
c => e.

A task for our domain-specific supercompiler comprises the following parts.

∙ start – an initial configuration.

∙ rules – a list of transition rules.

∙ unsafe – a predicate that determines whether a configuration is “unsafe”.

The predicate unsafe is a domain-specific part of a supercompilation task,
and is used for determining whether a graph of configurations contains “unsafe”
configurations, or not.

A formal definition of the notion of “a protocol model” is given in Fig. 4 in
form of the trait Protocol. A protocol model is a task for the supercompiler, but,
on the other hand, can be regarded as a program in a domain-specific language.

Note that a DSL program is not a first-order value (as is implicitly assumed in
the classic formulation of the Futamura projections [3]), but rather is a mixture
of first-order values (numbers, lists) and higher-order values (functions). This
approach is close to the DSL implementation technique known as “embedding”
[4]. Since the embedded DSL inherits the constructs of its host language Scala,
its implementation is so trivial, taking about 10 lines of code.

To be fair, we should note that the DSL’s implementation is based on the use
of “expressions” (Expr), whose implementation additionally takes about 20 lines
of code (and will be described in the next sections). However, expressions are
used not only in DSL programs, but also as components of configurations.
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5 Operations over configurations

As has been pointed out in Section 3, a configuration has the form (𝑎1, . . . , 𝑎𝑛),
where each component 𝑎𝑖 is either a natural number 𝑁 , or the symbol 𝜔. In the
Scala implementation, a configuration is represented by a list of “expressions” of
type Expr (see Fig. 4).

The type Expr is declared as a trait with 2 subtypes: the class Num, representing
natural numbers, and the object Omega, representing the symbol 𝜔. There are
defined the following operations over values of the type Expr: + (addition), -
(subtraction), >= (comparison ≥) and === (the test for equality =). The equality
operation is denoted by ===, because == and = are used in Scala programs for
other purposes.

Note that, when an operand of an operation is the symbol 𝜔 (representing an
arbitrary natural number), the result of the operation is an “upper approxima-
tion”. For instance, 𝜔 ≥ 𝑁 is assumed to be true for any natural number 𝑁 , since
the conditions of that kind are used for deciding whether a rule can be triggered?
Since 𝜔 is a wildcard representing an arbitrary natural number 𝑁 ′, and 𝑁 ′ ≥ 𝑁
is true for some 𝑁 ′, the rule may be applicable in some cases. Hence, to be on
the safe side, 𝜔 ≥ 𝑁 is assumed to be true.

Thus, in Fig. 3 and 4, we now have a complete implementation of the DSL
for formulating tasks for the supercompiler. At the same time we get an imple-
mentation of the language of configurations and of a number of operations over
components of configurations, which will be used in the implementation of driving.

Besides driving, the supercompiler has to perform two more operations: test-
ing whether a configuration 𝑐1 is an instance of a configuration 𝑐2, and enumerat-
ing all possible generalizations of a configuration 𝑐. An implementation of these
operations is shown in Fig. 5.

The function instanceOf tests whether a configuration c1 is an instance of a
configuration c2.

The function genExpr generates all possible generalization of an expression
(which is a component of a configuration). Note that the original expression is
included into the set of generalization. The set of generalization of the symbol
𝜔 contains only the symbol 𝜔, while the set of generalizations of a number 𝑁
consists of two elements: 𝑁 and 𝜔.

The function gens generates the set of all possible generalizations of a config-
uration 𝑐. Note that 𝑐 is not included into this set.

The function oneStepGens generates the set of all generalizations of a config-
urations 𝑐 that can be produced by generalizing a single component of 𝑐. This
function will be used in the optimized version of the supercompiler described in
Section 7.
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package mrsc.counters

object Conf {
def instanceOf(c1: Conf, c2: Conf): Boolean =
(c1, c2).zipped.forall((e1, e2) => e1 == e2 || e2 == Omega)

def gens(c: Conf) =
product(c map genExpr) - c

def oneStepGens(c: Conf): List[Conf] =
for (i <- List.range(0, c.size) if c(i) != Omega)
yield c.updated(i, Omega)

def product[T](zs: List[List[T]]): List[List[T]] = zs match {
case Nil => List(List())
case x :: xs => for (y <- x; ys <- product(xs)) yield y :: ys

}

private def genExpr(c: Expr): List[Expr] = c match {
case Omega => List(Omega)
case Num(i) if i >= 0 => List(Omega, Num(i))
case v => List(v)

}

}

Figure 5: Operations over configurations: testing for instances and building gen-
eralizations

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

Figure 6: MRSC “middleware” for supercompiler construction
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6 Graph builder

6.1 From rewrite rules to an algorithm

Technically, a supercompiler written using MRSC is based upon two components
shown in Fig. 6: GraphRewriteRules and GraphGenerator [13].

The trait GraphRewriteRules declares the method steps, which is used in
the main loop of supercompilation for obtaining all graphs that can be derived
from a given incomplete graph 𝑔 by applying the rewrite rules Fold, Drive and
Rebuild shown in Fig. 1. Namely, steps(𝑔) returns a list of “graph rewrite steps”
[13]. Then the graph generator applies each of these “steps” to the graph 𝑔 to
produce the collection of the descendants of 𝑔.

A concrete supercompiler is required to provide an implementation for the
method steps. The class GraphGenerator, by contrast, is a ready-to-use compo-
nent: it is a constituent part of any supercompiler built on top of MRSC.

In the case of supercompilation for counter systems the method steps can be
straightforwardly implemented as shown in Fig. 7.

The methods fold, drive and rebuild correspond to the rewrite rules Fold,
Drive and Rebuild (Fig. 1). Since the rewrite rules are independent from each
other, the body of the method (steps) could have been defined in the following
trivial way:

fold(g) ++ rebuild(g) ++ drive(g)

However, we have preferred to slightly optimize the implementation by taking into
account that the rule Fold is mutually exclusive with the rules Drive and Rebuild.
Another subtle point is that, in general, the rule Fold is non-deterministic, because
the current configuration may be foldable to several configurations in the graph.
Thus, the rule Fold may be applicable in zero, one or more ways. However, in the
case of counter systems, all variants of folding are equally good. For this reason, in
the implementation in Fig. 7, the method fold returns no more than one variant
of folding, the type of the results being Option[S], rather than List[S]. And the
rules Drive and Rebuild are only applied if fold returns zero results.

The implementations of the methods fold and rebuild are straightforward.
The method dangerous implements the whistle suggested by Klimov [6, 11,

10]: a configuration is considered as “dangerous” if it contains a number 𝑁 , such
that 𝑁 ≥ 𝑙, where 𝑙 is a constant given to the supercompiler as one of its input
parameters.

The implementation of the method drive uses an auxiliary method next,
which tries to apply all transition rules to a configuration 𝑐. If a rule is applicable,
it returns a configuration 𝑐′, in which case the pair (𝑐′, ()) is included in the
list returned by next. In general, this pair has the form 𝑐′, 𝑑, where 𝑐′ is the
new configuration and 𝑑 the label for the edge entering the node containing the
configuration 𝑐′. But, in the case of counter systems, edges need not be labeled,
for which reason we put the placeholder () in the second component of the pair.
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package mrsc.counters

class MRCountersRules(protocol: Protocol, l: Int)
extends GraphRewriteRules[Conf, Unit] {

override def steps(g: G): List[S] =
fold(g) match {
case None => rebuild(g) ++ drive(g)
case Some(s) => List(s)

}

def fold(g: G): Option[S] = {
val c = g.current.conf
for (n <- g.completeNodes.find(n => instanceOf(c, n.conf)))
yield FoldStep(n.sPath)

}

def drive(g: G): List[S] =
if (dangerous(g)) List()
else List(AddChildNodesStep(next(g.current.conf)))

def rebuild(g: G): List[S] =
for (c <- gens(g.current.conf))
yield RebuildStep(c): S

def dangerous(g: G): Boolean =
g.current.conf exists

{ case Num(i) => i >= l; case Omega => false }

def next(c: Conf): List[(Conf, Unit)] =
for (Some(c) <- protocol.rules.map(_.lift(c)))
yield (c, ())

}

Рис. 7: Graph rewrite rules: an implementation for counter systems

6.2 Functional programming meets OOP

Note that the MRSC toolkit [13] provides infrastructure for writing supercompil-
ers in “functional” style. Graphs of configurations are never “transformed”: an
incomplete graph 𝑔 produces descendants and “dies out”. In the implementation,
however, the descendants of a graph 𝑔 share some parts of their parent 𝑔, which
enables the supercompiler to deal with thousands of graphs.

Thus, in the case of multi-result supercompilation, this functional approach
has certain advantages over the imperative-style approach based on the language
SCPL suggested by Turchin [23].
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package mrsc.counters

class SRCountersRules(protocol: Protocol, l: Int)
extends MRCountersRules(protocol, l) {

def genExpr(e: Expr): Expr =
if (e >= l) Omega else e

override def rebuild(g: G): List[S] =
if (dangerous(g))
List(RebuildStep(g.current.conf.map(genExpr)))

else List()
}

Рис. 8: Graph rewrite rules: an implementation for single-result supercompilation

The MRSC toolkit exploits the fact that the language Scala integrates object-
oriented and functional features. This enables supercompilers to be produced by
reusing the components provided by the MRSC toolkit and to create specialized
components for specific problem domains. Besides, if we have to implement sev-
eral variations of a supercompiler their common parts can be easily shared. For
example, Fig. 8 shows an implementation of a single-result supercompilation al-
gorithm developed by Klimov [6, 11, 10]. This implementation has been produced
by subclassing the multi-result supercompiler in Fig. 7, and as can be easily seen,
most part of the code is shared between the two supercompilers.

Another useful feature of Scala are traits. Instead of implementing a super-
compiler as a monolithic class, we could have separated the implementations of
driving, rebuilding and the whistle into a number of trait. This approach gives
an opportunity to define several variants of driving, rebuilding and the whistle,
and then produce different variations of the supercompiler by trying various com-
binations of traits. But this topic is beyond the scope of the present work.

7 Reducing the search space by taking into ac-
count the specifics of the domain

The main drawback of the näıve multi-result supercompiler presented in Fig. 7 is
that, when used for the verification of a protocol, it may consider thousands (or
even millions) of graphs, thereby consuming considerable resources.

However the search space can be drastically reduced by taking into account the
specifics of the problem domain. In the case of counter systems this is achieved
by implementing the following optimizations [12].

∙ Filtering graphs of configurations, rather than residual programs. When
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supercompilation is used for solving a “reachability problem” (e.g. proving
the fact that unsafe states are unreachable), the graphs containing unsafe
configurations can be discarded, without transforming them into residual
programs.

∙ A graph containing an unsafe configuration can be immediately discarded,
even if this graph is incomplete. Thereby the search space is reduced, be-
cause the supercompiler does not have to consider the graphs that would
be derived from this graph. This optimization exploits the monotonicity of
the predicate unsafe: if a configuration 𝑐 is an instance of a configuration
𝑐′, and if unsafe c is true, then unsafe c’ is also true. In addition, during
multi-result supercompilation, a configuration 𝑐, appearing in a graph, can
be removed only by replacing 𝑐 with a more general configuration 𝑐′. Hence,
if a graph 𝑔 contains an unsafe configuration, all graphs that could be de-
rived from 𝑔 would contain at least one unsafe configuration. Therefore,
there is no point in trying to complete this graph.

∙ The number of graphs considered during supercompilation can be reduced
by performing only “one-step” generalizations, which amount to replacing
a single numeric component 𝑁 in a configuration with the symbol 𝜔. This
is correct, because any generalization can be achieved by a sequence of one-
step generalizations.

∙ If multi-result supercompilation is used for finding completed graphs of min-
imum size, there is no point in considering incomplete graphs that are too
big. Namely, if the supercompiler have already found a complete graph
(without unsafe configurations) whose size is maxSize, all incomplete graphs
whose size is greater than maxSize can be discarded. This optimization ex-
ploits the monotonicity of multi-result supercompilation: the descendants
of a graph 𝑔 cannot be smaller in size than their parent 𝑔.

Fig. 9 shows the supercompiler for counter systems that has been produced
from the supercompiler in Fig. 7 by implementing the aforementioned opti-
mizations. Technically, the improved supercompiler is implemented as the class
FastMRCountersRules, which is a subclass of MRCountersRules.

The main loop of the optimized supercompiler is shown in Fig. 10. Complete
graphs are produced by the iterator graphs by demand. Since the goal is to find a
graph of minimum size, the variable minGraph contains the smallest of the graphs
that have been encountered.

Now let us consider the internals of the class FastMRCountersRules.
The variable maxSize holds the maximum size of graphs that are worth con-

sidering: if the supercompiler encounters a graph whose size exceeds maxSize,
this graph is discarded (see the definition of the method steps).

The method rebuild is redefined: now, instead of considering all possible
generalization (produced by the method gens), it only considers one-step gener-
alizations (produced by the method oneStepGens).
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package mrsc.counters

class FastMRCountersRules(protocol: Protocol, l: Int)
extends MRCountersRules(protocol, l) {

var maxSize: Int = Int.MaxValue

override def drive(g: G): List[S] =
for (AddChildNodesStep(ns) <- super.drive(g)

if ns.forall(c =>!protocol.unsafe(c._1)))
yield AddChildNodesStep(ns)

override def rebuild(g: G): List[S] =
for (c <- oneStepGens(g.current.conf) if !protocol.unsafe(c))
yield RebuildStep(c): S

override def steps(g: G): List[S] =
if (protocol.unsafe(g.current.conf) || size(g) > maxSize)
List()

else
super.steps(g)

private def size(g: G) =
g.completeNodes.size + g.incompleteLeaves.size

}

Figure 9: Graph rewrite rules: an optimized implementation for counter systems

val rules = new FastMRCountersRules(protocol, l)
val graphs = GraphGenerator(rules, protocol.start)

var minGraph: SGraph[Conf, Unit] = null
for (graph <- graphs) {
val size = graphSize(graph)
if (size < rules.maxSize) {
minGraph = graph
rules.maxSize = size

}

}

Figure 10: Optimized implementation of the main loop of multi-result supercom-
pilation
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All other modifications are related to detecting unsafe configurations: the goal
is to detect unsafe configurations as soon as possible. This is achieved by applying
the predicate unsafe to the following configurations.

∙ The current configuration (the method steps). This test is necessary, be-
cause, in principle, even the initial configuration may turn out to be unsafe.
If the current configuration is unsafe, the graph is discarded.

∙ The configurations that are produced by a driving step (the method drive).
If at least one of these configurations is unsafe, the driving step is not
performed.

∙ The configurations that are produced by a one-step generalization of the
current configuration (the method rebuild). The generalizations that lead
to unsafe configurations are discarded.

As has been shown in [12], the above optimizations produce a considerable
effect. For example, when verifying the ReaderWriter protocol, the näıve version
of the supercompiler performs 24963661 graph building steps, while the optimized
version – only 3213.

Note that, although the implementation of the above optimizations is rather
trivial, the correctness of the optimizations is based on taking into account a
number of specifics of the problem domain, and exploiting some subtle properties
of the supercompilation algorithm (such as the fact that only the leaves of a graph
can be rebuild).

8 Conclusions

We have considered a simple domain-specific multi-result supercompiler for counter
systems implemented by means of the MRSC toolkit. The implementation of the
aforementioned supercompilers takes only a few dozen lines of code, which is
achieved by simplifying the supercompilation algorithms and by using prefabri-
cated components provided by the MRSC toolkit.

Thus it can be argued that the MRSC toolkit allows domain-specific multi-
result supercompilers to be manufactured at low cost, thereby making them tools
of practical value.
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