

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 64 за 2012 г.</u>

<u>Елизарова Т.Г., Устюгов С.Д.,</u> Истомина М.А.

Квазигазодинамический алгоритм решения уравнений мелкой воды для магнитной гидродинамики

Рекомендуемая форма библиографической ссылки: Елизарова Т.Г., Устюгов С.Д., Истомина М.А. Квазигазодинамический алгоритм решения уравнений мелкой воды для магнитной гидродинамики // Препринты ИПМ им. М.В.Келдыша. 2012. № 64. 24 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2012-64</u>

РОССИЙСКАЯ АКАДЕМИЯ НАУК ОРДЕНА ЛЕНИНА ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.КЕЛДЫША

Т.Г. Елизарова, С.Д. Устюгов, М.А. Истомина

Квазигазодинамический алгоритм решения уравнений мелкой воды для магнитной гидродинамики

Москва2012

Т.Г. Елизарова, С.Д. Устюгов, М.А. Истомина

Квазигазодинамический алгоритм решения уравнений мелкой воды для магнитной гидродинамики

Аннотация

В данной работе представлена методика решения уравнений идеальной магнитной гидродинамики в приближении уравнений мелкой воды в одномерном случае с помощью квазигазодинамического алгоритма. Проведено тестирование алгоритма на примере двух тестов. Показано, что численное решение для всех случаев сходится к тестовым решениям при сгущении пространственной сетки.

T.G. Elizarova, S.D. Ustyugov, M.A. Istomina

A quasi-gas dynamic algorithm for the numerical solution of shallow water equations for magnetic hydrodynamics

Abstract

In this paper the technique of the solution of the ideal magnetohydrodynamic equations in shallow water approximation for a one-dimensional case by means of quasi-gas dynamic algorithm is presented. Algorithm for an example two problems one-dimensional magnetohydrodynamic was tested. Algorithm is employed for two test-cases. For both tests the numerical solution converges to self-similar ones by mesh refinement.

Содержание

1	Введение	3
2	Вывод уравнений магнитной гидродинамики для мелкой воды	5
3	Численный алгоритм	15
4	Тесты	18
5	Выводы	21

1 Введение

В данной работе речь идет о расширении квазигазодинамического алгоритма для решения задач магнитной гидродинамики в приближении мелкой воды. Квазигазодинамический алгоритм строится на основе математической модели, обощающей систему уравнений Навье-Стокса и отличающейся от нее дополнительными диссипативными слагаемыми, имеющими вид вторых пространственных производных с малым параметром в виде коэффициента [1]. Система квазигазодинамических уравнений, являющаяся расширением модели Навье-Стокса, начала разрабатываться в восьмидесятых годах под руководством Б.Н. Четверушкина [2]. Позднее Ю.В. Шеретов представил квазигазодинамические уравнения в виде законов сохранения, исследовал и теоретически обосновал. Подход, разработанный для газовой динамики, был обобщен для вязкой несжимаемой жидкости и была построена родственная квазигидродинамическая система уравнений [3]-[4]. Принципиальным отличием КГД (квазигазодинамических и квазигидродинамических) систем от системы уравнений Навье-Стокса является пространственно-временное осреднение для определения основных газодинамических величин. Впоследствии на основе регуляризации уравнений Навье-Стокса, записанных в виде квазигазодинамических и квазигидродинамических уравнений, были выведены регуляризованные уравнения мелкой воды (MB).

Уравнения MB являются упрощением полных уравнений Навье-Стокса, описывающих нестационарное течение вязкого сжимаемого газа. В приближении MB рассматривается несжимаемая жидкость при постоянной температуре в поле силы тяжести. Приближение MB используют в случае, когда жидкость представляет собой слой, глубина которого много меньше продольной составляющей, поэтому вертикальной составляющей скорости в слое можно пренебречь. При этом полагают продольные компоненты скорости постоянными вдоль вертикальной оси. Классические уравнения MB также выводятся из уравнений Эйлера в баротропном приближении для вязкого сжимаемого газа. Поэтому квазигазодинамические методы, развитые для решения задач в рамках уравнений Эйлера, можно использовать для расчета течений в приближении мелкой воды. КГД алгоритм для уравнений MB детально рассмотрен в [5]–[6]. Последние шаги в расширении применения КГД алгоритмов были сделаны в работах [7]–[8] для задач газовой магнитной гидродинамики в одномерном и многомерном случаях.

Приближение MB с магнитным полем интересно в некоторых задачах астрофизики [9]–[18]. В работе [9] в задаче о сохранении тороидального магнитного поля в солнечном тахоклине сравниваются полная система магнитных гидродинамических уравнений с магнитным гидродинамическим приближением мелкой воды. С помощью приближения мелкой воды в [9] впервые описаны глобальные неустойчивости в солнечном тахоклине, несмотря на то, что данная модель не описывает, например, неустойчивость плавучести. Также глобальные неустойчивости в солнечном тахоклине с помощью приближения мелкой воды исследуются в [11], [12], [14], [13], [15], [16]. В работе [10] строится модель, соответствующая в земных условиях процессу зарождения нейтронных звезд, впервые поставлен лабораторный эксперимент, основанный на гидравлических скачках. В работе [19] основные свойства магнитной гидродинамической системы уравнений MB выводятся из гиперболических законов сохранения. С помощью магнитной гидродинамической системы МВ исследуются решения Рэнкина-Гюгонио. В настоящее время наиболее широкое применение система магнитных гидродинамических уравнений МВ нашла в исследовании внутренних солнечных звездных слоев.

Исходные уравнения MB для магнитной гидродинамики выведены в [20]. В данной работе строится и исследуется расширение КГД алгоритма для магнитной гидродинамики в приближении мелкой воды с помощью осреднения по времени [21].

Приведен алгоритм численного решения и его тестирование на двух одномерных предельных тестах.

2 Вывод уравнений магнитной гидродинамики для мелкой воды

Классические уравнения MB с магнитным полем в одномерном случае имеют следующий вид [20]

$$\frac{\partial h}{\partial t} + \frac{\partial h u_1}{\partial x} = 0,\tag{1}$$

$$\frac{\partial hu_1}{\partial t} + \frac{\partial \left(hu_1^2 - hB_1^2 + \frac{gh^2}{2}\right)}{\partial x} = -gh\frac{\partial b}{\partial x},\tag{2}$$

$$\frac{\partial hu_2}{\partial t} + \frac{\partial \left(hu_1u_2 - hB_1B_2\right)}{\partial x} = 0,\tag{3}$$

$$\frac{\partial hB_1}{\partial t} = 0,\tag{4}$$

$$\frac{\partial hB_2}{\partial t} + \frac{\partial \left(hB_2u_1 - hB_1u_2\right)}{\partial x} = 0, \tag{5}$$

$$\frac{\partial hB_1}{\partial x} = 0,\tag{6}$$

где h(x,t) – высота жидкости, $u_1(x,t)$ – продольная компонента скорости, $u_2(x,t)$ – поперечная компонента скорости, $B_1(x,t)$ – продольная компонента магнитного поля, $B_2(x,t)$ – поперечная компонента магнитного поля, b – профиль дна. Отметим, что в используемой системе уравнений MB (1) – (6) в одномерном приближении присутствует вторая компонента скорости, которая зависит только от x, и не зависит от y.

Для вывода мелких КГД уравнений применим осреднение по малому интервалу времени Δt и вычислим среднее на отрезке $(t, t + \Delta t)$ [21]. Будем разлагать все переменные в ряд Тейлора и пренебрегать вторыми производными по времени и членами с τ второго порядка, где $0 \le \tau \le \Delta t$ – параметр сглаживания по времени. Факт преобразований отметим $\langle \rangle$, который будет соответствовать

$$\langle f(x,t)\rangle = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} f(x,t)^* dt = f(x,t^*) = f(x,t) + \tau \frac{\partial f(x,t)}{\partial t}, \qquad (7)$$

где $t \leq t^* \leq t + \Delta t$.

$$\frac{\partial \langle h \rangle}{\partial t} + \frac{\partial \langle h u_1 \rangle}{\partial x} = 0, \tag{8}$$

$$\frac{\partial \langle hu_1 \rangle}{\partial t} + \frac{\partial \left\langle hu_1^2 - hB_1^2 + \frac{gh^2}{2} \right\rangle}{\partial x} = -g \langle h \rangle \frac{\partial \langle b \rangle}{\partial x},\tag{9}$$

$$\frac{\partial \langle hu_2 \rangle}{\partial t} + \frac{\partial \langle hu_1u_2 - hB_1B_2 \rangle}{\partial x} = 0, \tag{10}$$

$$\frac{\partial \langle hB_1 \rangle}{\partial t} = 0, \tag{11}$$

$$\frac{\partial \langle hB_2 \rangle}{\partial t} + \frac{\partial \langle hB_2 u_1 - hB_1 u_2 \rangle}{\partial x} = 0, \qquad (12)$$

$$\frac{\partial \langle hB_1 \rangle}{\partial x} = 0. \tag{13}$$

Тогда

$$h^{*}(x,t) = h(x,t^{*}) = h(x,t) + \tau \frac{\partial h(x,t)}{\partial t},$$

$$u_{1}^{*}(x,t) = u_{1}(x,t^{*}) = u_{1}(x,t) + \tau \frac{\partial u_{1}(x,t)}{\partial t},$$

$$u_{2}^{*}(x,t) = u_{2}(x,t^{*}) = u_{2}(x,t) + \tau \frac{\partial u_{2}(x,t)}{\partial t},$$

$$B_{1}^{*}(x,t) = B_{1}(x,t^{*}) = B_{1}(x,t) + \tau \frac{\partial B_{1}(x,t)}{\partial t},$$

$$B_{2}^{*}(x,t) = B_{2}(x,t^{*}) = B_{2}(x,t) + \tau \frac{\partial B_{2}(x,t)}{\partial t}.$$

(14)

Первое уравнение: после осреднения по времени первое слагаемое первого уравнения (1) остается без изменений

$$\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \frac{\partial h}{\partial t} dt = \frac{\partial h^*}{\partial t} = \frac{\partial h}{\partial t} + \frac{\partial}{\partial t} \left(\tau \frac{\partial h}{\partial t}\right) = \frac{\partial h}{\partial t}.$$
(15)

Осреднение соответствующего значения потока массы представляется в виде

$$(hu_1)^* = hu_1 + \tau \frac{\partial}{\partial t} (hu_1) = hu_1 + \Delta (hu_1) = j_1, \qquad (16)$$

где

$$\Delta (hu_1) = -hw_1,$$

$$w_1 = \frac{\tau}{h} \left[gh \frac{\partial b}{\partial x} + \frac{\partial hu_1^2}{\partial x} - \frac{\partial hB_1^2}{\partial x} + \frac{\partial}{\partial x} \frac{gh^2}{2} \right].$$
(17)

Тем самым, второе слагаемое **первого уравнения** преобразовывается следующим образом

$$\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \frac{\partial h u_1}{\partial x} dt = \frac{\partial (h u_1)^*}{\partial x} = \frac{\partial}{\partial x} h(u_1 - w_1) = \frac{\partial j_1}{\partial x}.$$
(18)

Уравнение (1) принимает вид

$$\frac{\partial h}{\partial t} + \frac{\partial j_1}{\partial x} = 0 \tag{19}$$

Для второго уравнения (2) имеем следующее преобразование $\frac{\partial (hu_1)^*}{\partial t} = \frac{\partial hu_1}{\partial t}$. Тогда

$$(hu_1^2)^* = (hu_1)^* u_1^* = (hu_1 - hw_1)(u_1 + \Delta u_1) = j_1 u_1 + hu_1 \Delta u_1 - -hw_1 \Delta u_1 = j_1 u_1 + hu_1 \Delta u_1.$$
(20)

$$\frac{\partial (hu_1^2)^*}{\partial x} = \frac{\partial}{\partial x} \left(j_1 u_1 \right) + \frac{\partial}{\partial x} \left(hu_1 \Delta u_1 \right).$$
(21)

$$\Delta u_1 = \frac{\tau}{h} h \frac{\partial u_1}{\partial t} = \tau \frac{\partial u_1}{\partial t} = -\tau \left(u_1 \frac{\partial u_1}{\partial x} + \frac{1}{h} \frac{\partial}{\partial x} \left(-hB_1^2 + \frac{gh^2}{2} \right) + g \frac{\partial b}{\partial x} \right) = -\tau \left(u_1 \frac{\partial u_1}{\partial x} - \frac{1}{h} \frac{\partial}{\partial x} hB_1^2 + \frac{1}{h} \frac{\partial}{\partial x} \frac{gh^2}{2} + g \frac{\partial b}{\partial x} \right).$$
(22)

$$\frac{\partial \left(hB_1^2\right)^*}{\partial x} = \frac{\partial}{\partial x} \left(hB_1\right)^* B_1^*.$$
(23)

$$(hB_{1})^{*}B_{1}^{*} = (hB_{1} + \Delta (hB_{1}))(B_{1} + \Delta B_{1}) =$$

= $hB_{1}^{2} + B_{1}\Delta (hB_{1}) + hB_{1}\Delta B_{1} = hB_{1}^{2} + hB_{1}\Delta B_{1} =$ (24)
= $hB_{1}^{2} + \tau B_{1}^{2}\frac{\partial hu_{1}}{\partial x},$

т.к. $\Delta(hB_1) = \tau \frac{\partial hB_1}{\partial t} = 0, \ \Delta B_1 = \tau \frac{\partial B_1}{\partial t} = \frac{\tau}{h} B_1 \frac{\partial hu_1}{\partial x}.$

$$\frac{1}{\Delta t} \int_{t}^{t+\Delta t} \frac{\partial}{\partial x} \left(\frac{gh^2}{2}\right) dt = \frac{\partial}{\partial x} \left(\frac{gh^2}{2}\right)^* = \frac{\partial}{\partial x} \frac{g}{2} (h+\Delta h)^2 = \\
= \frac{\partial}{\partial x} \frac{gh^2}{2} + \frac{\partial}{\partial x} (gh\Delta h) = \\
= \frac{\partial}{\partial x} \frac{gh^2}{2} - \frac{\partial}{\partial x} \left(\tau gh \frac{\partial hu_1}{\partial x}\right),$$
(25)

так как $\Delta h = -\tau \frac{\partial h u_1}{\partial x}.$

Рельеф дна со временем не меняется, т.е. $b^* = b + \tau \frac{\partial b}{\partial t} = b$, осреднение по времени дает следующее слагаемое

$$\frac{1}{\Delta t} \int_{t}^{t+\Delta t} gh \frac{\partial b}{\partial x} dt = gh^* \frac{\partial b^*}{\partial x} = g(h+\Delta h) \frac{\partial b}{\partial x} = gh \frac{\partial b}{\partial x} + g\Delta h \frac{\partial b}{\partial x} = gh \frac{\partial b}{\partial x} - g\tau \frac{\partial b}{\partial x} \frac{\partial hu_1}{\partial x}.$$
(26)

Полученное МКГД уравнение МВ (2) примет вид

$$\frac{\partial hu_1}{\partial t} + \frac{\partial}{\partial x} j_1 u_1 - \frac{\partial}{\partial x} \left(hB_1^2 \right) + \frac{\partial}{\partial x} \left(\frac{gh^2}{2} \right) = -gh \frac{\partial b}{\partial x} - g\Delta h \frac{\partial b}{\partial x} - \frac{\partial}{\partial x} \left(hu_1 \Delta u_1 \right) + \frac{\partial}{\partial x} \left(hB_1 \Delta B_1 \right) - \frac{\partial}{\partial x} \left(gh \Delta h \right).$$
(27)

Введем обозначения

$$T_{11} = j_1 u_1 + \frac{gh^2}{2} - hB_1^2,$$

$$\Pi_{11} = -hu_1 \Delta u_1 + hB_1 \Delta B_1 - gh \Delta h.$$
(28)

Полученное уравнение в новых обозначениях имеет вид

$$\frac{\partial hu_1}{\partial t} + \frac{\partial T_{11}}{\partial x} = -gh\frac{\partial b}{\partial x} - g\Delta h\frac{\partial b}{\partial x} + \frac{\partial}{\partial x}\Pi_{11}.$$
(29)

Далее, переходя к осреднению уравнения (3), имеем

$$\frac{\partial (hu_2)^*}{\partial t} = \frac{\partial hu_2}{\partial t},\tag{30}$$

$$(hu_1u_2)^* = (hu_2)^* u_1^* = (hu_2 + \Delta(hu_2)) (u_1 + \Delta u_1) =$$

= $(hu_2 - hw_2)(u_1 + \Delta u_1) = j_2u_1 + hu_2\Delta u_1.$ (31)

$$\frac{\partial (hu_1 u_2)^*}{\partial x} = \frac{\partial j_2 u_1}{\partial x} + \frac{\partial}{\partial x} (hu_2 \Delta u_1), \qquad (32)$$

где соответствующее значение потока массы вычисляется как

$$j_2 = h(u_2 - w_2). (33)$$

$$\Delta(hu_2) = \tau \frac{\partial hu_2}{\partial t} = \tau \frac{\partial}{\partial x} (hB_1B_2 - hu_1u_2) = -hw_2,$$

$$w_2 = -\frac{\tau}{h} \frac{\partial}{\partial x} (hB_1B_2 - hu_1u_2).$$
(34)

$$\frac{\partial (hB_1B_2)^*}{\partial x} = \frac{\partial}{\partial x} (hB_1)^* B_2^* = \frac{\partial}{\partial x} (hB_1B_2 + hB_1\Delta B_2),$$

$$\Delta B_2 = \tau \frac{\partial B_2}{\partial t} = \frac{\tau}{h} \left(B_2 \frac{\partial hu_1}{\partial x} - \frac{\partial hB_2u_1}{\partial x} + \frac{\partial hB_1u_2}{\partial x} \right).$$
(35)

МКГД уравнение МВ (3) принимает вид

$$\frac{\partial hu_2}{\partial t} + \frac{\partial j_2 u_1}{\partial x} - \frac{\partial hB_1 B_2}{\partial x} = \frac{\partial}{\partial x} \left(hB_1 \Delta B_2 \right) - \frac{\partial}{\partial x} \left(hu_2 \Delta u_1 \right).$$
(36)

Введем обозначение

$$T_{21} = j_2 u_1 - h B_1 B_2, (37)$$

тогда уравнение (3) можно переписать как

$$\frac{\partial hu_2}{\partial t} + \frac{\partial T_{21}}{\partial x} = \frac{\partial}{\partial x} \left(hB_1 \Delta B_2 \right) - \frac{\partial}{\partial x} \left(hu_2 \Delta u_1 \right).$$
(38)

Уравнение (4) остается без изменений

$$\frac{\partial hB_1}{\partial t} = 0. \tag{39}$$

Для уравнения (5) получаем следующие осреднения

$$\frac{\partial (hB_2)^*}{\partial t} = \frac{\partial hB_2}{\partial t},$$

$$(hB_2u_1)^* = (hu_1)^* B_2^* = (hu_1 + \Delta (hu_1)) (B_2 + \Delta B_2) =$$

$$= (hu_1 - hw_1) (B_2 + \Delta B_2) = j_1 B_2 + hu_1 \Delta B_2.$$
(40)

$$(hu_2B_1)^* = (hu_2)^* B_1^* = (hu_2 + \Delta (hu_2)) (B_1 + \Delta B_1) =$$

= $j_2B_1 + hu_2\Delta B_1.$ (41)

Выписываем мелкое уравнение (5) в МКГД приближении

$$\frac{\partial hB_2}{\partial t} + \frac{\partial j_1B_2}{\partial x} - \frac{\partial j_2B_1}{\partial x} = -\frac{\partial}{\partial x}\left(hu_1\Delta B_2\right) + \frac{\partial}{\partial x}\left(hu_2\Delta B_1\right).$$
(42)

Вместо **уравнения (6)** можно написать следующее выражение $\frac{\partial (hB_1)^*}{\partial x} = \frac{\partial}{\partial x} (hB_1 + \Delta (hB_1)) = \frac{\partial}{\partial x} \left(hB_1 + \tau \frac{\partial hB_1}{\partial t} \right) = \frac{\partial}{\partial x} (hB_1)$ или

$$hB_1 = const. \tag{43}$$

Перепишем МКГД систему уравнений в развернутом виде.

Уравнение (1) принимает вид

$$\frac{\partial h}{\partial t} + \frac{\partial j_1}{\partial x} = 0, \tag{44}$$

Выписываем уравнение (2)

$$\frac{\partial h u_1}{\partial t} + \frac{\partial}{\partial x} j_1 u_1 - \frac{\partial}{\partial x} \left(h B_1^2 \right) + \frac{\partial}{\partial x} \left(\frac{g h^2}{2} \right) = -g h \frac{\partial b}{\partial x} - g \Delta h \frac{\partial b}{\partial x} - \frac{\partial}{\partial x} \left(h u_1 \Delta u_1 \right) + \frac{\partial}{\partial x} \left(h B_1 \Delta B_1 \right) - \frac{\partial}{\partial x} \left(g h \Delta h \right),$$

$$(45)$$

т.е. МКГД **уравнение (2)** принимает вид

$$\frac{\partial hu_1}{\partial t} + \frac{\partial}{\partial x} j_1 u_1 - \frac{\partial}{\partial x} \left(hB_1^2 \right) + \frac{\partial}{\partial x} \left(\frac{gh^2}{2} \right) = -gh \frac{\partial b}{\partial x} + g\tau \frac{\partial hu_1}{\partial x} \frac{\partial b}{\partial x} + \\
+ \frac{\partial}{\partial x} \left(\tau hu_1 \left(u_1 \frac{\partial u_1}{\partial x} - \frac{1}{h} \frac{\partial}{\partial x} hB_1^2 + \frac{1}{h} \frac{\partial}{\partial x} \frac{gh^2}{2} + g \frac{\partial b}{\partial x} \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\tau B_1^2 \frac{\partial hu_1}{\partial x} \right) + \frac{\partial}{\partial x} \left(\tau gh \frac{\partial hu_1}{\partial x} \right).$$
(46)

Выписываем уравнение (3)

$$\frac{\partial hu_2}{\partial t} + \frac{\partial j_2 u_1}{\partial x} - \frac{\partial hB_1B_2}{\partial x} = \frac{\partial}{\partial x} \left(hB_1 \Delta B_2 \right) - \frac{\partial}{\partial x} \left(hu_2 \Delta u_1 \right), \tag{47}$$

т.е. МКГД **уравнение (3)** принимает вид

$$\frac{\partial hu_2}{\partial t} + \frac{\partial j_2 u_1}{\partial x} - \frac{\partial hB_1B_2}{\partial x} = \\
= \frac{\partial}{\partial x} \left(\tau B_1 \left(B_2 \frac{\partial hu_1}{\partial x} - \frac{\partial}{\partial x} hB_2 u_1 + \frac{\partial}{\partial x} hB_1 u_2 \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\tau hu_2 \left(u_1 \frac{\partial u_1}{\partial x} - \frac{1}{h} \frac{\partial}{\partial x} hB_1^2 + \frac{1}{h} \frac{\partial}{\partial x} \frac{gh^2}{2} + g \frac{\partial b}{\partial x} \right) \right).$$
(48)

Уравнение (4) остаётся без изменений

$$\frac{\partial hB_1}{\partial t} = 0. \tag{49}$$

Выписываем уравнение (5)

$$\frac{\partial hB_2}{\partial t} + \frac{\partial j_1B_2}{\partial x} - \frac{\partial j_2B_1}{\partial x} = -\frac{\partial}{\partial x}\left(hu_1\Delta B_2\right) + \frac{\partial}{\partial x}\left(hu_2\Delta B_1\right),\tag{50}$$

т.е. МКГД уравнение (5) принимает вид

$$\frac{\partial hB_2}{\partial t} + \frac{\partial j_1B_2}{\partial x} - \frac{\partial j_2B_1}{\partial x} = \\
= -\frac{\partial}{\partial x} \left(\tau u_1 \left(B_2 \frac{\partial hu_1}{\partial x} - \frac{\partial}{\partial x} hB_2 u_1 + \frac{\partial}{\partial x} hB_1 u_2 \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\tau u_2 B_1 \frac{\partial hu_1}{\partial x} \right).$$
(51)

При выводе магнитных уравнений в приближении MB с помощью осреднения по времени в компонентах тензора вязких напряжений Π_{ij} не присутствуют компоненты, соответствующие тензору Навье-Стокса [1]. Дополним полученные магнитные уравнения MB слагаемыми с множителем $\mu = \tau g \frac{gh^2}{2}$, соответствующим тензору Навье-Стокса и являющимися компонентами естественной физической вязкости. Тогда выпишем полученные МКГД уравнения в виде, в котором они будут использованы при численной реализации.

В окончательном варианте регуляризованная **система уравнений** (1)– (6) принимает вид

$$\frac{\partial h}{\partial t} + \frac{\partial j_1}{\partial x} = 0, \tag{52}$$

$$\frac{\partial hu_1}{\partial t} + \frac{\partial}{\partial x} j_1 u_1 - \frac{\partial}{\partial x} \left(hB_1^2 \right) + \frac{\partial}{\partial x} \left(\frac{gh^2}{2} \right) = -gh \frac{\partial b}{\partial x} + g\tau \frac{\partial hu_1}{\partial x} \frac{\partial b}{\partial x} + \\
+ \frac{\partial}{\partial x} \left(\tau hu_1 \left(u_1 \frac{\partial u_1}{\partial x} - \frac{1}{h} \frac{\partial}{\partial x} hB_1^2 + \frac{1}{h} \frac{\partial}{\partial x} \frac{gh^2}{2} + g \frac{\partial b}{\partial x} \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\tau B_1^2 \frac{\partial hu_1}{\partial x} \right) + \frac{\partial}{\partial x} \left(\tau gh \frac{\partial hu_1}{\partial x} \right) + \frac{\partial}{\partial x} \left(\frac{4}{3} \mu \frac{\partial u_1}{\partial x} \right),$$
(53)

$$\frac{\partial hu_2}{\partial t} + \frac{\partial j_2 u_1}{\partial x} - \frac{\partial hB_1B_2}{\partial x} = \\
= \frac{\partial}{\partial x} \left(\tau B_1 \left(B_2 \frac{\partial hu_1}{\partial x} - \frac{\partial}{\partial x} hB_2 u_1 + \frac{\partial}{\partial x} hB_1 u_2 \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\tau hu_2 \left(u_1 \frac{\partial u_1}{\partial x} - \frac{1}{h} \frac{\partial}{\partial x} hB_1^2 + \frac{1}{h} \frac{\partial}{\partial x} \frac{gh^2}{2} + g \frac{\partial b}{\partial x} \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\mu \frac{\partial u_2}{\partial x} \right),$$
(54)

$$\frac{\partial hB_1}{\partial t} = 0,\tag{55}$$

$$\frac{\partial hB_2}{\partial t} + \frac{\partial j_1B_2}{\partial x} - \frac{\partial j_2B_1}{\partial x} = \\
= -\frac{\partial}{\partial x} \left(\tau u_1 \left(B_2 \frac{\partial hu_1}{\partial x} - \frac{\partial}{\partial x} h B_2 u_1 + \frac{\partial}{\partial x} h B_1 u_2 \right) \right) + \\
+ \frac{\partial}{\partial x} \left(\tau u_2 B_1 \frac{\partial hu_1}{\partial x} \right).$$
(56)

Уравнение (6) переопределяет систему.

Параметр сглаживания τ определяется как

$$\tau = \alpha \frac{h_x}{|u_1(x)| + \sqrt{B_1(x)^2 + g h(x)}},\tag{57}$$

потоки по оси х выписываются как

$$j_{1} = h(u - w_{1}),$$

$$w_{1} = \frac{\tau}{h} \left[gh \frac{\partial b}{\partial x} + \frac{\partial hu_{1}^{2}}{\partial x} - \frac{\partial hB_{1}^{2}}{\partial x} + \frac{\partial}{\partial x} \frac{gh^{2}}{2} \right],$$
(58)

потоки по оси у выписываются как

$$j_{2} = h(u - w_{2}),$$

$$w_{2} = -\frac{\tau}{h} \frac{\partial}{\partial x} \left(hB_{1}B_{2} - hu_{1}u_{2} \right).$$
(59)

Шаг по времени соответствует условию Куранта

$$\Delta t = \beta \frac{h_x}{|u_1(x)| + \sqrt{B_1(x)^2 + g h(x)}},\tag{60}$$

где $0 \leq \beta \leq 1$ подбирается экспериментально и, как правило, выбирается в интервале $0.1 \div 0.3$. Ускорение свободного падения в численных расчетах берется g = 1. Следует заметить, что если положить $\tau = 0$, то полученная система МКГД уравнений превратится в исходную классическую систему уравнений мелкой воды (1)-(6).

3 Численный алгоритм

Введем равномерную сетку по координате x с шагом h_x , координатами узлов x_i , а также сетку по времени с шагом Δt . Для решения системы уравнений (44)-(56) используем явную по времени схему с центральными разностями. Значения газодинамических величин определяются в узлах сетки. Значения потоков определяются в полуцелых узлах. Знак ^ определяет значения переменных на следующем временном слое. Разностная аппроксимация для системы уравнений (44)-(56) при гладкой подстилающей поверхности (b = 0) имеет вид

$$\hat{h}_i = h_i - \Delta t \frac{j_{m,i+1/2} - j_{m,i-1/2}}{h_x},\tag{61}$$

$$j_{m,i+1/2} = h_{i+1/2} \left(u_{m,i+1/2} - w_{m,i+1/2} \right), \quad m = 1, 2.$$
(62)

$$w_{1,i+1/2} = \frac{\tau_{i+1/2}}{h_{i+1/2}} \left(\frac{(hu_1^2)_{i+1} - (hu_1^2)_i}{h_x} - \frac{(hB_1^2)_{i+1} - (hB_1^2)_i}{h_x} + \frac{gh_{i+1}^2 - gh_i^2}{2h_x} \right),$$
(63)

Компонента скорости по ос
и \boldsymbol{x} вычисляется как

$$\hat{u}_{1} = \frac{1}{\hat{h}_{i}} \left(h_{i} u_{1,i} - \frac{\Delta t}{h_{x}} \left(T_{11,i+1/2} - T_{11,i-1/2} \right) + \frac{\Delta t}{h_{x}} \left(\Pi_{11,i+1/2} - \Pi_{11,i-1/2} \right) \right),$$
(64)

$$T_{11,i+1/2} = j_{1,i+1/2}u_{1,i+1/2} + g\frac{h_{i+1/2}^2}{2} - h_{i+1/2}B_{1,i+1/2}^2,$$

$$\Pi_{11,i+1/2} = -h_{i+1/2}u_{1,i+1/2}\Delta u_{1,i+1/2} + B_{1,i+1/2}^2\Delta h_{i+1/2} + (65)$$

$$+2h_{i+1/2}B_{1,i+1/2}\Delta B_{1,i+1/2} - gh_{i+1/2}\Delta h_{i+1/2} + \frac{4}{3}\mu_{i+1/2}\frac{u_{1,i+1} - u_{1,i}}{h_x},$$

где

$$\Delta h_{i+1/2} = -\tau_{i+1/2} \frac{h_{i+1}u_{1,i+1} - h_i u_{1,i}}{h_x},$$

$$\Delta u_{1,i+1/2} = \frac{\tau_{i+1/2}}{h_{i+1/2}} \left(u_{1,i+1/2} \left(\frac{h_{i+1}u_{1,i+1} - h_i u_{1,i}}{h_x} \right) - \left(\frac{h_{i+1}u_{1,i+1}^2 - h_i u_{1,i}^2}{h_x} \right) + \left(\frac{h_{i+1}B_{1,i+1}^2 - h_i B_{1,i}^2}{h_x} \right) - \left(\frac{gh_{i+1}^2 - gh_i^2}{2h_x} \right) \right).$$

$$(66)$$

Компонента скорости по ос
и \boldsymbol{y} вычисляется как

$$\hat{u}_{2} = \frac{1}{\hat{h}_{i}} \left(h_{i} u_{2,i} - \frac{\Delta t}{h_{x}} \left(T_{21,i+1/2} - T_{21,i-1/2} \right) + \frac{\Delta t}{h_{x}} \left(h_{i+1/2} B_{1,i+1/2} \Delta B_{2,i+1/2} - h_{i-1/2} B_{1,i-1/2} \Delta B_{2,i-1/2} \right) - \frac{\Delta t}{h_{x}} \left(h_{i+1/2} u_{2,i+1/2} \Delta u_{1,i+1/2} - h_{i-1/2} u_{2,i-1/2} \Delta u_{1,i-1/2} \right) + \frac{\Delta t}{h_{x}} \left(\Pi_{21,i+1/2} - \Pi_{21,i-1/2} \right) \right),$$
(67)

где

$$T_{21,i+1/2} = j_{2,i+1/2}u_{1,i+1/2} - h_{i+1/2}B_{1,i+1/2}B_{2,i+1/2},$$

$$\Delta B_{2,i+1/2} = \frac{\tau_{i+1/2}}{h_{i+1/2}} \left(B_{2,i+1/2} \frac{(hu_1)_{i+1} - (hu_1)_i}{h_x} - \frac{(hB_2u_1)_{i+1} - (hB_2u_1)_i}{h_x} + \frac{(hB_1u_2)_{i+1} - (hB_1u_2)_i}{h_x} \right),$$

$$i_{2} = h_{1+1/2} \left(u_{2} = w_{2} + 1/2 \right)$$

$$(68)$$

$$j_{2,i+1/2} = h_{i+1/2} \left(u_{2,i+1/2} - w_{2,i+1/2} \right),$$

$$w_{2,i+1/2} = -\frac{\tau_{i+1/2}}{h_{i+1/2}} \frac{(hB_1B_2 - hu_1u_2)_{i+1} - (hB_1B_2 - hu_1u_2)_i}{h_x}.$$

$$\hat{B}_{1i} = \frac{h_i B_{1,i}}{\hat{h}_i},\tag{69}$$

$$\hat{B}_{2i} = \frac{1}{\hat{h}_{i}} \left(h_{i}B_{2,i} - \frac{\Delta t}{h_{x}} (j_{1,i+1/2}B_{2,i+1/2} - j_{1,i-1/2}B_{2,i-1/2}) + \frac{\Delta t}{h_{x}} (j_{2,i+1/2}B_{1,i+1/2} - j_{2,i-1/2}B_{1,i-1/2}) - \frac{\Delta t}{h_{x}} (h_{i+1/2}u_{1,i+1/2}\Delta B_{2,i+1/2} - h_{i-1/2}u_{1,i-1/2}\Delta B_{2,i-1/2}) + \frac{\Delta t}{h_{x}} (h_{i+1/2}u_{2,i+1/2}\Delta B_{1,i+1/2} - h_{i-1/2}u_{2,i-1/2}\Delta B_{1,i-1/2}) \right).$$

$$(70)$$

Все переменные в полуцелых узлах определются как средние значения по соответствующим ячейкам

$$h_{i+1/2} = \frac{h_i + h_{i+1}}{2}, \ h_{i-1/2} = \frac{h_i + h_{i-1}}{2}.$$
 (71)

4 Тесты

В качестве первого теста решается задача, рассмотренная в [20]. Начальные условия имеют вид

$$\mathbf{U}_{L}^{T} = 1, \, 0, \, 0, \, 1, \, 0, \quad \mathbf{U}_{R}^{T} = 2, \, 0, \, 0, \, 0.5, \, 1, \tag{72}$$

где $U = (h, u_1, u_2, B_1, B_2)^T$. Эта задача соответствует распаду сильного разрыва. Время расчета соответствует t = 0.4 с. В [19] аналогичный тест решается для $t \sim 0.5$ с. На рис. 1 – 3 приведены расчеты на сгущающихся сетках при параметрах счета $\alpha = 0.5$, $\beta = 0.1$, где β определяет шаг по времени.

В качестве второго теста решается weak-test из [19], соответствующий распаду слабого разрыва. Начальные условия имеют вид

$$\mathbf{U}_{L}^{T} = 1, \, 0, \, 1, \, 1, \, 1, \, \mathbf{U}_{R}^{T} = \mathbf{U}_{L}^{T} + 10^{-4} \left(-1, \, 0, \, 0, \, (1 - 10^{-4})^{-1}, \, 2\right).$$
(73)

Время расчета t = 0.5 с. В данном тесте соответствие с результатами из [19], которые были посчитаны с помощью явных схем Лакса-Фридрихса второго порядка по пространству, было достигнуто при $\alpha = 0.3$ и $\beta = 0.1$. Алгоритм устойчив при $\alpha = 0.1 \div 0.5$, $\beta = 0.1 \div 0.25$. Результаты расчетов приведены на рис. 4, 5. Результаты, эквивалентные результатам из [19], [20], получаются при увеличении количества точек сетки относительно [19] в 2 ÷ 4 раза. Условие $hB_1 = const$ выполняется в обоих случаях автоматически с точностью порядка 10^{-15} .

Рис. 1. Тест 1. Высота h(x) и скорость $u_1(x)$ на сгущающихся сетках.

Рис. 2. Тест 1. Скорость $u_2(x)$ и магнитная индукция $B_1(x)$ на сгущающихся сетках.

Рис. 3. Тест 1. Магнитная индукция $B_2(x)$ на сгущающихся сетках.

Рис. 4. Тест 2. Высота h(x) и $h(x)u_1(x)$ на сгущающихся сетках.

Рис. 5. Тест 2. $h(x)u_2(x)$ и $h(x)B_2(x)$ на сгущающихся сетках.

5 Выводы

Регуляризация уравнений позволяет построить разностный алгоритм, который очень прост для численной реализации и представляет собой схемы с центральными разностями для всех пространственных производных, включая члены с конвективными слагаемыми. Тесты о распаде сильного и слабого разрывов демонстрируют сходимость численного решения к эталонным результатам, приведенным в работах [19] – [20]. При этом аналог условия соленоидальности – уравнение (6) – выполняется автоматически с машинной точностью. Аналогично можно построить двумерный алгоритм регуляризованных уравнений.

Изложенные выше результаты были получены в результате совместной работы с Сергеем Дмитриевичем Устюговым, безвременная кончина которого не позволила ему принять участие в окончательном оформлении работы.

Работа выполнена при финансовой поддержке РФФИ (грант 10-01-00136).

Список литературы

- [1] *Т.Г. Елизарова* Квазигазодинамические уравнения и методы расчета вязких течений. – Москва: Научный мир, 2007 г.
- [2] Б.Н. Четверушкин Кинетические схемы и квазигазодинамическая система уравнений. Москва: МаксПресс, 2004 г.
- [3] Ю.В. Шеретов Математическое моделирование течений жидкости и газа на основе квазигидродинамических и квазигазодинамических уравнений. – Тверь: Тверской гос. ун-т, 2000 г.
- [4] Ю.В. Шеретов Динамика сплошных сред при пространственновременном осреднении. – Москва – Ижевск: НИЦ "Регулярная и хаотическая динамика", 2009 г.
- [5] T.G. Elizarova, O.V. Bulatov Regularized shallow water equations and a new method of simulation of the open channel flows. Comp. Fluids, 2011, № 46, p.206-211.
- [6] Т.Г. Елизарова, А.А. Злотник, О.В. Никитина Моделирование одномерных течений мелкой воды на основе регуляризованных уравнений. Препринт ИПМ им. М.В.Келдыша, 2011 г., № 33, с. 36, www.keldysh.ru/papers/2011/source/prep2011_33.pdf.
- [7] Т.Г. Елизарова, С.Д. Устюгов Квазигазодинамический алгоритм решения уравнений магнитной гидродинамики. Одномерный случай. Препринт ИПМ им. М.В. Келдыша №1, 2011 г., www.keldysh.ru/papers/2011/source/prep2011_01.pdf.
- [8] Т.Г. Елизарова, С.Д. Устюгов Квазигазодинамичкский алгоритм решения уравнений магнитной гидродинамики. Многомерный

случай. Препринт ИПМ им. М.В. Келдыша №30, 2011 г., http://www.keldysh.ru/papers/2011/source/prep2011_30.pdf.

- [9] Matthias Rempel, Mausumi Dikpati Storage and equilibrium of toroidal magnetic fields in the solar tachocline: a comparison between MHD shallow-water and full MHD approaches. The Astroph. Journal, 584:524-527, 10 Feb 2003.
- [10] Thierry Goglizzo, Frederic Masset, Jerome Guilet, Gilles Durand Shallow water analogue of the standing accretion shock instability: experimental demonstration and a two-dimensional model. Physical review letters 108, 051103, 3 Feb 2012.
- [11] Peter A. Gilman, Mausumi Dikpati Analysis of instability of latitudinal differential rotation and toroidal field in the solar tachocline using a magnetohydrodynamic shallow-water model. I. Instability for broad toroidal field profiles. The Astroph. Journal, 576:1031-1047, 10 Sep 2002.
- [12] Peter A. Gilman Magnetohydrogynamic "shallow-water" equation for the solar tachocline. The Astroph. Journal, 544:L79-L82, 20 Nov 2000.
- [13] Mausumi Dikpati, Peter A. Gilman, Matthias Rempel Stability analysis of tachocline latitudinal differential rotation and coexisting toroidal band using a shallow-water model. The Astroph. Journal, 596:680-697, 10 Oct 2003.
- [14] Mausumi Dikpati, Peter A. Gilman Analysis of hydrodynamic stability of solar tachocline latitudinal differential rotation using a shallow-water model. The Astroph. Journal, 551:536-564, 10 April 2001.

- [15] Mausumi Dikpati Nonlinear evolution of global hydrodynamic shallowwater instability in the solar tachocline. The Astroph. Journal, 745:128(20pp), 1 Feb 2012.
- [16] Mausumi Dikpati, Peter A. Gilman A shallow-water theory for the sun's active longitudes. The Astroph. Journal, 635:L193-L196, 20 Dec 2005.
- [17] O.M. Umurhan Potential vorticity dynamics in the frame work of disk shallow-water theory: I. The Rossby wave instability. ArXiv:1008.2073v1
 [astro-ph.SR] 12 Aug 2010.
- [18] O.M. Umurhan A shallow-water theory for annular sections of Keplerian Disks. ArXiv:0802.3486v5 [astro-ph] 22 Sep 2008.
- [19] H. De Sterck Hyperbolic theory of the "shallow water" magnetohydrodynamics equations. Physics of plasmas, 2001, vol. 8, № 7, c. 3293-3304.
- [20] James A. Rossmanith A wave propagation method with constrained transport for ideal and shallow water magnetohydrodynamics. Ph.D. Dissertation, 2002.
- [21] Т.Г. Елизарова Осреднение по времени как приближенный способ построения квазигазодинамических и квазигидродинамических уравнений. ЖВМиМФ, 2011 г., т. 51, № 11, с. 2096-2105.
- [22] Т.Г. Елизарова, М.А. Истомина, Н.К. Шелковников Формирование уединенной волны в кольцевом аэрогидроканале. Математическое моделирование, 2012 г., т. 24, №4, с. 107-116.
- [23] М.А. Истомина Численный алгоритм для решения уравнений магнитной гидродинамики в приближении мелкой воды. Доклад на конференции-школе "Современные проблемы прикладной математики и информатики", г. Дубна, 2012 г., 22-27 августа.