

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 88 за 2012 г.</u>

Зайцев Н.А.

Усеченные условия полной прозрачности на открытых границах в изотропных средах

Рекомендуемая форма библиографической ссылки: Зайцев Н.А. Усеченные условия полной прозрачности на открытых границах в изотропных средах // Препринты ИПМ им. М.В.Келдыша. 2012. № 88. 16 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2012-88</u>

РОССИЙСКАЯ АКАДЕМИЯ НАУК ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ ИМ. М. В. КЕЛДЫША

Н. А. Зайцев

УСЕЧЕННЫЕ УСЛОВИЯ ПОЛНОЙ ПРОЗРАЧНОСТИ НА ОТКРЫТЫХ ГРАНИЦАХ В ИЗОТРОПНЫХ СРЕДАХ

Москва — 2012

Н. А. Зайцев. Усеченные условия полной прозрачности на открытых границах в изотропных средах.

Аннотация. В препринте приведены формулы Усеченных Условий Полной Прозрачности (УУПП) для изотропной упругой среды для всех границ трехмерной области, предложена методика модификации УУПП на ребрах и в вершинах расчетной области, предложена разностная схема для расчета УУПП, проведено сравнение УУПП с характеристическими граничными условиями, исследована зависимость амплитуды отраженной волны от размера расчетной области.

Ключевые слова: искусственные граничные условия, прозрачные граничные условия, изотропная упругая среда.

N. A. Zaitsev. Truncated Transparent Boundary Conditions on Open Boundaries for Isotropic Elastic Media

Abstract. Formulas for Truncated Transparent Boundary Conditions (TTBC) for isotropic media are presented for all boundaries of 3D computational domain. A method for modification of the TTBC at edges and vertexes of computational domains and the corresponding finite-difference scheme are suggested. The TTBC are compared to known characteristic boundary condition. Dependency of amplitude of the reflected wave on size of the computational domain is investigated.

Key words: far-field boundary conditions, transparent boundary conditions, isotropic elastic media.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проекты № 11-01-00114 и № 10-01-00567.

Оглавление

1. Вводные замечания	3
2. УУПП для изотропной упругой среды	3
3. Общая идея разностной схемы	5
4. Разностная схема для УУПП на правой границе $x_1 = const$	7
5. Разностная схема для УУПП на ребре	9
6. Разностная схема для УУПП в углах расчётной области	11
7. Сравнение УУПП с характеристическим ГУ	12
8. Зависимость отражения от размера расчетной области	14
Список литературы	16

1. Вводные замечания

Постановка условий полной прозрачности (УПП) на гладких внешних границах теоретически расчётной области разработана достаточно хорошо И технологически [1 – 4]. Для линейных задач с постоянными коэффициентами и простыми границами (сфера, окружность, прямая) коэффициенты оператора УПП могут зачастую быть вычислены аналитически [5 – 7]. Для задач с переменными коэффициентами или границами более сложной формы для вычисления коэффициентов оператора УПП необходимо решить численно определённое количество вспомогательных задач с очень высокой точностью (порядка 10**(-12) и выше). В результате полученный оператор УПП является полностью эквивалентным решению задачи во внешней отброшенной области. Эффективные методы решения таких задач разработаны в работах [1 – 4].

Тем не менее, такие расчёты являются весьма трудоёмкими. Основные усилия при построении УПП тратятся на отыскание нелокальной части оператора. В то же время, как показано в [8], для широкого класса гиперболических систем дифференциальная, т.е. локальная, часть оператора находится аналитически. В работе [8] предложено также рассматривать получаемые дифференциальные уравнения на границе В качестве приближенных УПП, что позволяет называть их усеченными условиями полной прозрачности (УУПП), которые получаются ИЗ УПП отбрасыванием нелокальной части оператора.

В настоящей работе разработан численный алгоритм реализации УУПП в трехмерных задачах для уравнений Навье, описывающих линейную упругую среду, и исследованы его свойства. Исследована зависимость величины отраженного сигнала от границ с УУПП, проведено сравнение с более простыми характеристическими граничными условиями.

2. УУПП для изотропной упругой среды

Предполагается, что в окрестности открытой границы расчетной области и всюду вне её распространение волн описывается уравнениями Ламе

$$\rho \frac{\partial^2 \vec{u}}{\partial t^2} = (\lambda + \mu) \operatorname{grad} \operatorname{div} \vec{u} + \mu \Delta \vec{u} \tag{1}$$

с постоянными коэффициентами Ламе λ и μ , где $\vec{u} = (u_1, u_2, u_3)^T$ — вектор перемещений. Тогда в точке границы $x_1 = x_{max} = const$ (расчетная область расположена слева от границы) УУПП имеет вид:

$$\begin{split} \frac{\partial u_1}{\partial t} + c_P \frac{\partial u_1}{\partial x_1} + \left(c_P - c_S\right) \frac{\partial u_2}{\partial x_2} + \left(c_P - c_S\right) \frac{\partial u_3}{\partial x_3} &= 0, \\ \frac{\partial u_2}{\partial t} + \left(c_P - c_S\right) \frac{\partial u_1}{\partial x_2} + c_S \frac{\partial u_2}{\partial x_1} &= 0, \\ \frac{\partial u_3}{\partial t} + \left(c_P - c_S\right) \frac{\partial u_1}{\partial x_3} + c_S \frac{\partial u_3}{\partial x_1} &= 0, \end{split}$$

где

$$c_P = \sqrt{\frac{\lambda + 2\mu}{\rho}}, \quad c_S = \sqrt{\frac{\mu}{\rho}},$$

 (x_1, x_2, x_3) — Декартовы координаты.

В матричной форме УУПП для границы $x_n = const$ можно записать в следующем виде:

$$\frac{\partial \vec{u}}{\partial t} + B_{n1} \frac{\partial \vec{u}}{\partial x_1} + B_{n2} \frac{\partial \vec{u}}{\partial x_2} + B_{n3} \frac{\partial \vec{u}}{\partial x_3} = 0.$$

Матрицы граничного оператора УУПП для правых границ, т.е. для случая, когда граница проходит через точки расчетной области с максимальным значением x_n , имеют вид:

$$B_{11} = \begin{pmatrix} c_P & 0 & 0 \\ 0 & c_S & 0 \\ 0 & 0 & c_S \end{pmatrix}, \quad B_{12} = \begin{pmatrix} 0 & c_P - c_S & 0 \\ c_P - c_S & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_{13} = \begin{pmatrix} 0 & 0 & c_P - c_S \\ 0 & 0 & 0 \\ c_P - c_S & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$B_{21} = \begin{pmatrix} 0 & c_P - c_S & 0 \\ c_P - c_S & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_{22} = \begin{pmatrix} c_S & 0 & 0 \\ 0 & c_P & 0 \\ 0 & 0 & c_S \end{pmatrix}, \quad B_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c_P - c_S \\ 0 & c_P - c_S & 0 \end{pmatrix}$$
$$B_{31} = \begin{pmatrix} 0 & 0 & c_P - c_S \\ 0 & 0 & 0 \\ c_P - c_S & 0 & 0 \end{pmatrix}, \quad B_{32} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c_P - c_S \\ 0 & 0 & c_P - c_S \\ 0 & 0 & c_P - c_S \end{pmatrix}, \quad B_{33} = \begin{pmatrix} c_S & 0 & 0 \\ 0 & c_S & 0 \\ 0 & 0 & c_P \end{pmatrix}$$

Для левых границ эти матрицы умножаются на -1.

3. Общая идея разностной схемы

Пусть v — та координата x_n , которая перпендикулярна искусственной границе, а τ_1 и τ_2 — касательные к границе координаты. Тогда около границы v = const УУПП могут быть записаны следующим образом:

$$\frac{\partial u}{\partial t} + B_{\nu} \frac{\partial u}{\partial \nu} = R_{\nu} = -B_{\tau 1} \frac{\partial u}{\partial \tau_1} - B_{\tau 2} \frac{\partial u}{\partial \tau_2}$$
(2)

— слагаемые с касательными производными перенесены в правую часть (здесь и далее стрелки над векторами опущены).

В плоскости (v,t) УУПП аппроксимируются в полуцелой по времени и нормали точке (красная точка на рис 1, граница обозначена двойной штриховой линией, M — номер расчетной точки по направлению v, лежащей за искусственной границей, на рисунках искусственная граница расположена «справа» от расчетной области). Предполагается, что в синих, голубых и желтых точках решение на «новом», n+1ом временном слое уже известны, нужно найти решение в зелёной точке. Производные по времени и нормали (v)вычисляются по четырём точкам (по квадрату).

Рис.1. Шаблон разностной схемы в плоскости (v, t)

Касательные производные аппроксимируются центральными разностями внизу справа (желтые точки, относятся к старому слою по времени) и вверху слева (голубые точки) и взвешиваются с весом w_n для слоя $t = t^n$ (в приведенных в этой работе расчетах использовалось значение $w_n = 0.5$). В плоскости (τ , ν) шаблон показан на рис. 2.

Рис. 2. Шаблон разностной схемы в плоскости (au, u)

Вблизи ребра расчетной области аппроксимировать касательные производные центральными разностями нет возможности, т.к. в точках границы на новом временном слое решение еще неизвестно. В этом случае касательная производная на новом временном слое вычисляется по двум точкам, в которых решение известно, а на старом временном слое — по двум примыкающем к границе точкам, и эти значения взвешиваются с весом w_n . На рис. 3 показан шаблон разностной схемы при аппроксимации УУПП на границе $v_1 = const$ в соседней с границей $v_2 = const$ точке.

Рис. 3. Шаблон разностной схемы в плоскости (ν_1, ν_2)

Решение в точке на ребре вычисляется после того, как посчитаны все точки вне рёбер. Это позволяет аппроксимировать производные в полуцелой точке по обоим нормальным направлениям, оставаясь в рамках явного алгоритма.

На ребре расчетной области требуют изменения и сами УУПП. Нельзя не делать различий между матрицами при производных по нормали и по касательным: матрицами B_{ν} и B_{τ} имеют разные свойства. Разница между ними существенная: матрица при производной по нормали B_{ν} устроена так, что обеспечивает распространение возмущений вдоль нормали к грани в одном направлении, из расчётной области наружу, и задача поставлена корректно. Матрица B_{τ} при производной по касательной соответствует распространению возмущений вдоль направления τ в обоих направлениях. Поэтому приписывание точки на ребре к одной из границ и использование касательных матриц неправильно, т.к. нарушает принцип причинности: решение на новом слое рассчитывается без использования направлений распространения информации с той стороны, которые подразумеваются решаемой системой дифференциальных уравнений. На ребре, где оба направления являются нормальными, нужно матрицу B_{τ} заменить на соответствующую матрицу при производных по нормали к второй из образующих ребро грани.

Таким образом, в УУПП на ребре используются две матрицы при производной по нормали от УУПП на двух гранях расчетной области. Матрица при производной вдоль ребра видимого смысла не имеет, т.к. уравнения УУПП в [8] выводились фактически в предположении бесконечной плоской или бесконечной цилиндрической границы, что в окрестности ребра категорически не выполнено. Поэтому матрица при производной вдоль ребра считается равной нулю.

Вершины расчетной области, соответственно, рассчитываются после расчёта всех точек на рёбрах с использованием трех матриц при нормальных производных от трех УУПП на трёх гранях расчетной области.

4. Разностная схема для УУПП на правой границе $x_1 = const$

Пусть численное решение $u_{i,j,k}^n$ ищется в узлах равномерной сетки с пространственными шагами

$$h_1 = (x_1)_{i+1} - (x_1)_i, \quad h_2 = (x_2)_{j+1} - (x_2)_j, \quad h_3 = (x_3)_{k+1} - (x_3)_k,$$

шагом по времени $\tau = t^{n+1} - t^n$, разностная сетка равномерна по каждому направлению и следующими границами изменения индексов:

 $i = i_{\min}, \dots, i_{\max}; \quad j = j_{\min}, \dots, j_{\max}; \quad k = k_{\min}, \dots, k_{\max}.$

Тогда на границе $v \equiv x_1 = x_{\max} = const$ значение индекса расчетной точки на ней $i = I = i_{\max}$. Разностные формулы для аппроксимации производных в УУПП в точке $(t^{n+1/2}, (x_1)_{I-1/2}, (x_2)_j, (x_3)_k)$ выглядят следующим образом:

$$\left(\frac{\partial u}{\partial t}\right)_{I-1/2,j,k}^{n+1/2} = \frac{u_{I,j,k}^{n+1} + u_{I-1,j,k}^{n+1} - u_{I,j,k}^n - u_{I-1,j,k}^n}{2\tau}, \\ \left(\frac{\partial u}{\partial x_1}\right)_{I-1/2,j,k}^{n+1/2} = \frac{u_{I,j,k}^{n+1} - u_{I-1,j,k}^{n+1} + u_{I,j,k}^n - u_{I-1,j,k}^n}{2h_1}$$

при $j = j_{\min} + 1, ..., j_{\max} - 1, k = k_{\min} + 1, ..., k_{\max} - 1,$ $\left(\frac{\partial u}{\partial x_2}\right)_{I-1/2, j, k}^{n+1/2} = \frac{(1 - w_n) \left(u_{I-1, j+1, k}^{n+1} - u_{I-1, j-1, k}^{n+1}\right) + w_n \left(u_{I, j+1, k}^n - u_{I, j-1, k}^n\right)}{2h_2}$ при $i = i_{I-1/2, j, k}$

при
$$j = j_{\min} + 2, ..., j_{\max} - 2, k = k_{\min} + 1, ..., k_{\max} - 1,$$

 $\left(\frac{\partial u}{\partial x_2}\right)_{I-1/2, j, k}^{n+1/2} = \frac{(1 - w_n)(u_{I-1, j, k}^{n+1} - u_{I-1, j-1, k}^{n+1}) + w_n(u_{I, j+1, k}^n - u_{I, j, k}^n)}{h_2}$

при
$$j = j_{\text{max}} - 1, \ k = k_{\text{min}} + 1, \dots, k_{\text{max}} - 1,$$

$$\left(\frac{\partial u}{\partial x_2}\right)_{I-1/2, j, k}^{n+1/2} = \frac{(1 - w_n)(u_{I-1, j+1, k}^{n+1} - u_{I-1, j, k}^{n+1}) + w_n(u_{I, j, k}^n - u_{I, j-1, k}^n)}{h_2}$$

при
$$j = j_{\min} + 1$$
, $k = k_{\min} + 1, \dots, k_{\max} - 1$,
 $\left(\frac{\partial u}{\partial x_3}\right)_{I-1/2,j,k}^{n+1/2} = \frac{(1 - w_n)\left(u_{I-1,j,k}^{n+1} - u_{I-1,j,k-1}^{n+1}\right) + w_n\left(u_{I,j,k+1}^n - u_{I,j,k}^n\right)}{h_3}$

при
$$j = j_{\min} + 1, ..., j_{\max} - 1, k = k_{\min} + 2, ..., k_{\max} - 2,$$

 $\left(\frac{\partial u}{\partial x_3}\right)_{I-1/2,j,k}^{n+1/2} = \frac{(1 - w_n)(u_{I-1,j,k}^{n+1} - u_{I-1,j,k-1}^{n+1}) + w_n(u_{I,j,k+1}^n - u_{I,j,k}^n)}{h_3}$

при $j = j_{\min} + 1, \dots, j_{\max} - 1, k = k_{\max} - 1,$ $\left(\frac{\partial u}{\partial x_3}\right)_{I-1/2,j,k}^{n+1/2} = \frac{(1 - w_n)\left(u_{I-1,j,k+1}^{n+1} - u_{I-1,j,k}^{n+1}\right) + w_n\left(u_{I,j,k}^n - u_{I,j,k-1}^n\right)}{h_3}$

при $j = j_{\min} + 1, ..., j_{\max} - 1, k = k_{\min} + 1.$

Подстановка разностных производных в УУПП (2) даёт:

$$\frac{u_{I,j,k}^{n+1} + u_{I-1,j,k}^{n+1} - u_{I,j,k}^{n} - u_{I-1,j,k}^{n}}{2\tau} + B_{\nu} \frac{u_{I,j,k}^{n+1} - u_{I-1,j,k}^{n+1} + u_{I,j,k}^{n} - u_{I-1,j,k}^{n}}{2h_{1}} = \left(R_{1}\right)_{I-\frac{1}{2},j,k}^{n+1/2},$$

где

$$\left(R_{1}\right)_{I-\frac{1}{2},j,k}^{n+1/2} = -B_{1,2}\left(\frac{\partial u}{\partial x_{2}}\right)_{I-\frac{1}{2},j,k}^{n+1/2} - B_{1,3}\left(\frac{\partial u}{\partial x_{3}}\right)_{I-\frac{1}{2},j,k}^{n+1/2}.$$

Тогда

$$u_{I,j,k}^{n+1} = \left(\frac{1}{2\tau}E + \frac{1}{2h_{1}}B_{1,1}\right)^{-1}Q_{1}, \quad j = j_{\min} + 1, \dots, j_{\max} - 1; \quad k = k_{\min} + 1, \dots, k_{\max} - 1;$$
$$Q_{1} = \left[\left(R_{1}\right)_{I-1/2,j,k}^{n+1/2} - \frac{u_{I-1,j,k}^{n+1} - u_{I,j,k}^{n} - u_{I-1,j,k}^{n}}{2\tau} - B_{1,1}\frac{-u_{I-1,j,k}^{n+1} + u_{I,j,k}^{n} - u_{I-1,j,k}^{n}}{2h_{1}}\right].$$

Разностные формулы на остальных гранях расчетной области имеют аналогичный вид.

5. Разностная схема для УУПП на ребре

На всех гранях расчетной области УУПП имеют вид:

$$\frac{\partial u}{\partial t} + B_{n,1}\frac{\partial u}{\partial x_1} + B_{n,2}\frac{\partial u}{\partial x_2} + B_{n,3}\frac{\partial u}{\partial x_3} = 0,$$

где *n* — номер координаты, которая пересекает границу. На грани *i* = *I* УУПП имеют вид:

$$\frac{\partial u}{\partial t} + B_{1,1}\frac{\partial u}{\partial x_1} + B_{1,2}\frac{\partial u}{\partial x_2} + B_{1,3}\frac{\partial u}{\partial x_3} = 0,$$

на грани j = J уравнения имеют вид:

$$\frac{\partial u}{\partial t} + B_{2,1}\frac{\partial u}{\partial x_1} + B_{2,2}\frac{\partial u}{\partial x_2} + B_{2,3}\frac{\partial u}{\partial x_3} = 0.$$

Поэтому на ребре i = I, j = J УУПП имеют вид:

$$\frac{\partial u}{\partial t} + B_{1,1}\frac{\partial u}{\partial x_1} + B_{2,2}\frac{\partial u}{\partial x_2} = 0.$$
(3)

Производные для $k = k_{\min} + 1, ..., k_{\max} - 1$ аппроксимируются следующим образом:

$$\left(\frac{\partial u}{\partial t}\right)_{I-\frac{1}{2},J-\frac{1}{2},k}^{n+1/2} = \frac{u_{I,J,k}^{n+1} + u_{I-1,J,k}^{n+1} + u_{I,J-1,k}^{n+1} + u_{I-1,J-1,k}^{n+1}}{4\tau} ,$$

$$\frac{u_{I,J,k}^{n} + u_{I-1,J,k}^{n} + u_{I,J-1,k}^{n} + u_{I-1,J-1,k}^{n} + u_{I,J-1,k}^{n}}{4\tau} ,$$

$$\left(\frac{\partial u}{\partial x_{1}}\right)_{I-\frac{1}{2},J-\frac{1}{2},k}^{n+1/2} = \frac{u_{I,J,k}^{n+1} + u_{I,J-1,k}^{n+1} + u_{I,J,k}^{n} + u_{I,J-1,k}^{n}}{4h_{1}} ,$$

$$\frac{u_{I-\frac{1}{2},J-\frac{1}{2},k}^{n+1/2} = \frac{u_{I,J,k}^{n+1} + u_{I-1,J-1,k}^{n+1} + u_{I-1,J,k}^{n} + u_{I-1,J-1,k}^{n}}{4h_{1}} ,$$

$$\left(\frac{\partial u}{\partial x_{2}}\right)_{I-\frac{1}{2},J-\frac{1}{2},k}^{n+1/2} = \frac{u_{I,J,k}^{n+1} + u_{I-1,J,k}^{n+1} + u_{I,J,k}^{n} + u_{I-1,J,k}^{n}}{4h_{2}} .$$

$$\frac{u_{I,J-1,k}^{n+1} + u_{I-1,J-1,k}^{n+1} + u_{I,J-1,k}^{n} + u_{I-1,J-1,k}^{n}}{4h_{2}} .$$

Подстановка разностных производных в УУПП (3) даёт:

$$u_{I,J,k}^{n+1} = \left(\frac{1}{\tau}E + \frac{1}{h_1}B_{1,1} + \frac{1}{h_2}B_{2,2}\right)^{-1}Q_{1,2},$$

где
$$k = k_{\min} + 1, \dots, k_{\max} - 1,$$

$$Q_{1,2} = -\frac{u_{I-1,J,k}^{n+1} + u_{I,J-1,k}^{n+1} + u_{I-1,J-1,k}^{n+1} - u_{I,J,k}^{n} - u_{I-1,J,k}^{n} - u_{I,J-1,k}^{n} - u_{I-1,J-1,k}^{n}}{\tau}$$

$$-B_{1,1} \frac{u_{I,J-1,k}^{n+1} + u_{I,J,k}^{n} + u_{I,J-1,k}^{n} - u_{I-1,J,k}^{n+1} - u_{I-1,J-1,k}^{n+1} - u_{I-1,J,k}^{n} - u_{I-1,J-1,k}^{n}}{h_{1}}$$

$$-B_{2,2} \frac{u_{I-1,J,k}^{n+1} + u_{I,J,k}^{n} + u_{I-1,J,k}^{n} - u_{I,J-1,k}^{n+1} - u_{I-1,J-1,k}^{n+1} - u_{I-1,J-1,k}^{n} - u_{I-1,J-1,k}^{n} - u_{I-1,J-1,k}^{n}}{h_{2}}.$$

Решение на остальных рёбрах расчётной области вычисляется аналогично.

6. Разностная схема для УУПП в углах расчётной области

В углах (вершинах) расчетной области используются три матрицы при нормальных производных от УУПП на трёх гранях расчетной области. В вершине (i = I, j = J, k = K) УУПП имеют вид:

$$\frac{\partial u}{\partial t} + B_{1,1} \frac{\partial u}{\partial x_1} + B_{2,2} \frac{\partial u}{\partial x_2} + B_{3,3} \frac{\partial u}{\partial x_3} = 0.$$
(4)

Производные в уравнении (4) для вершины (i = I, j = J, k = K) аппроксимируются следующим образом:

$$\left(\frac{\partial u}{\partial t}\right)_{i-\frac{1}{2},j-\frac{1}{2},k-\frac{1}{2}}^{n+1/2} = \frac{u_{i,j,k}^{n+1} + u_{i-1,j,k}^{n+1} + u_{i,j-1,k}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i-1,j,k-1}^{n+1} + u_{i-1,j-1,k}^{n+1} + u_{i-1,j-1,k-1}^{n+1}}{8\tau} - \frac{u_{i,j,k}^{n} + u_{i-1,j,k}^{n} + u_{i,j-1,k}^{n} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i-1,j,k-1}^{n} + u_{i-1,j-1,k}^{n} + u_{i-1,j-1,k-1}^{n}}{8\tau},$$

$$\left(\frac{\partial u}{\partial x_{1}}\right)_{i-\frac{1}{2},j-\frac{1}{2},k-\frac{1}{2}}^{n+1/2} = \frac{u_{i,j,k}^{n+1} + u_{i,j-1,k}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k$$

$$\left(\frac{\partial u}{\partial x_{2}}\right)_{i-\frac{1}{2},j-\frac{1}{2},k-\frac{1}{2}}^{n+1/2} = \frac{u_{i,j,k}^{n+1} + u_{i-1,j,k}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j,k-1}^{n} + u_{i,j,k-1}^{n} + u_{i,j,k-1}^{n} + u_{i,j,k-1}^{n} + u_{i,j,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1$$

$$\left(\frac{\partial u}{\partial x_{3}}\right)_{i-\frac{1}{2},j-\frac{1}{2},k-\frac{1}{2}}^{n+1/2} = \frac{u_{i,j,k}^{n+1} + u_{i-1,j,k}^{n+1} + u_{i,j-1,k}^{n+1} + u_{i-1,j-1,k}^{n+1} + u_{i,j,k}^{n} + u_{i,j,k}^{n} + u_{i,j-1,k}^{n} + u_{i,j-1,k}^{n} + u_{i-1,j-1,k}^{n}}{8h_{3}} - \frac{u_{i,j,k-1}^{n+1} + u_{i-1,j,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i-1,j-1,k-1}^{n}}{8h_{3}}.$$

Решение в вершине (i = I, j = J, k = K) рассчитывается по следующей формуле:

$$u_{i,j,k}^{n+1} = \left(\frac{1}{\tau}E + \frac{B_{1,1}}{h_1} + \frac{B_{2,2}}{h_2} + \frac{B_{3,3}}{h_3}\right)^{-1} \left(\frac{1}{\tau}d_{0,0} - \frac{B_{1,1}}{h_1}d_{1,1} - \frac{B_{2,2}}{h_2}d_{2,2} - \frac{B_{3,3}}{h_3}d_{3,3}\right),$$

где

$$\begin{aligned} d_{0,0} &= u_{i,j,k}^{n} + u_{i-1,j,k}^{n} + u_{i,j-1,k}^{n} + u_{i,j,k-1}^{n} + u_{i,j-1,k-1}^{n} + u_{i-1,j,k-1}^{n} + u_{i-1,j-1,k}^{n} + u_{i-1,j-1,k-1}^{n} \\ &- u_{i-1,j,k}^{n+1} - u_{i,j-1,k}^{n+1} - u_{i,j,k-1}^{n+1} - u_{i,j-1,k-1}^{n+1} - u_{i-1,j,k-1}^{n+1} - u_{i-1,j-1,k}^{n+1} - u_{i-1,j-1,k-1}^{n+1} \\ d_{1,1} &= u_{i,j-1,k}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i,j-1,k-1}^{n+1} + u_{i,j,k}^{n} + u_{i,j-1,k}^{n} + u_{i,j,k-1}^{n} + u_{i,j-1,k-1}^{n-1} - u_{i-1,j,k}^{n+1} \\ &- u_{i-1,j-1,k}^{n+1} - u_{i-1,j,k-1}^{n+1} - u_{i-1,j-1,k-1}^{n} - u_{i-1,j,k}^{n} - u_{i-1,j-1,k}^{n} - u_{i-1,j-1,k-1}^{n+1} - u_{i-1,j-1,k-1}^{n+1} \\ d_{2,2} &= u_{i-1,j,k}^{n+1} + u_{i,j,k-1}^{n+1} + u_{i-1,j,k-1}^{n+1} + u_{i,j,k}^{n} + u_{i-1,j,k}^{n} + u_{i,j,k-1}^{n} + u_{i-1,j,k-1}^{n} - u_{i-1,j-1,k-1}^{n+1} \\ &- u_{i-1,j-1,k}^{n+1} - u_{i,j-1,k-1}^{n+1} - u_{i-1,j-1,k-1}^{n} - u_{i,j-1,k}^{n} - u_{i-1,j-1,k}^{n} - u_{i,j-1,k-1}^{n} - u_{i-1,j-1,k-1}^{n} - u_{i-1,j$$

$$d_{3,3} = u_{i-1,j,k}^{n+1} + u_{i,j-1,k}^{n+1} + u_{i-1,j-1,k}^{n+1} + u_{i,j,k}^{n} + u_{i-1,j,k}^{n} + u_{i,j-1,k}^{n} + u_{i-1,j-1,k}^{n} - u_{i,j,k-1}^{n+1} - u_{i,j-1,k-1}^{n+1} - u_{i,j-1,k-1}^{n} - u_{i,j,k-1}^{n} - u_{i,j-1,k-1}^{n} -$$

Решение в остальных вершинах вычисляется аналогично.

7. Сравнение УУПП с характеристическим ГУ

Для выяснения качества УУПП было проведено сравнение граничного условия (2) с граничным условием

$$\frac{\partial u}{\partial t} + B_{\nu} \frac{\partial u}{\partial \nu} = 0, \qquad (5)$$

которое отличается от условия (2) отбрасыванием слагаемых с касательными к границе производными. Это граничное условие известно в литературе как условие Клейтона-Энквиста первого рода (см., например, [9]).

Решалась следующая задача: упругая среда с параметрами $\lambda = 14$, $\mu = 2$, $\rho = 2$, $c_P = 3$, $c_S = 1$, заполняющая куб со стороной ребра 2, в начальный момент времени находилась в покое. В начальный момент времени включается источник в правой части уравнения Ламе (1) следующего вида:

$$S = \frac{10^5}{2} \nabla \exp\left(-\left(\vec{r} - \vec{r}_0\right)^2 / 0.32 - \left(t - t_0\right)^2 / 0.0032\right),$$

где $\vec{r} = (x, y, z)$, $\vec{r}_0 = (1, 1, 1)/2$, $t_0 = 0.05$. Всюду на границах расчетной области ставились УУПП за исключением границы $x \equiv x_1 = x_{\text{max}}$, на которой ставилось условие (5).

Рис. 4. Поле модуля вектора u в срединном сечении расчетной области в различные моменты времени: t = 0.1, t = 0.4, t = 0.6, t = 0.8, t = 1.0, t = 1.2

13

На рис. 4 показано поле модуля вектора u в срединном сечении расчетной области в различные моменты времени: t = 0.1, t = 0.4, t = 0.6, t = 0.8, t = 1.0, t = 1.2. Видно, что решение, которое в начальные моменты времени было симметричным, после взаимодействия с границей $x = x_{max}$, на котором поставлено условие (5), теряет свою симметрию, разбегающаяся от центра расчетной области сферическая волна отражается от правой границы видимым образом. Отражение от границ с УУПП тоже есть (должно быть), но оно практически незаметно В сравнении С отражением ОТ границы с характеристическим граничным условием.

8. Зависимость отражения от размера расчетной области

Для выяснения зависимости амплитуды отраженной волны от границы с УУПП, приходящей в фиксированную точку расчетной области, от размеров расчетной области была проведена серия расчетов с фиксированным шагом расчетной сетки в областях различного размера.

Расчеты проводились на сетке с постоянным шагом $h_x = h_y = h_z = 10$, центр источника находился в центре расчётной области, ресивер (приёмник) находился в самом сложном для искусственных ГУ направлении, на диагонали расчётной области: $x_R = y_R = z_R = 500$. Расчеты проводились в кубических областях с расстоянием от центра до грани куба 1000, 2000 и 4000.

Рис. 5. Зависимость решения в ресивере от времени для различных областей: 100, 200 и 400 ячеек от центра до границы расчетной области.

На рис. 5 показана зависимость $u_1(t)$ в ресивере для различных областей. Т.к. сетки в расчетных областях совпадают, то отличие решений может быть обусловлено только различием отражения от границы. Вычитание из решения в меньшей области решение в большей области дает ошибку вызванную отражением от границы (пока в решении в большей области тоже не скажется отражение, но оно приходит позже). Графики из рис. 5 показаны в увеличенном масштабе на рис. 6, где отчетливо видна амплитуда отраженного сигнала.

Рис. 6. Зависимость решения в ресивере от времени для различных областей: 100, 200 и 400 ячеек от центра до границы расчетной области (в увеличенном масштабе)

Полученные таким образом амплитуды отражения от границ приведены в Таблице 1. Из полученных результатов следует, что при увеличении области в 2 раза, амплитуда отраженной от границы с УУПП волны убывает примерно в 10 раз.

Таблица 1		
	Максимальная	
Расстояние от центра до границы расчетной области	относительная	
	величина u_1 в	
	отраженной волне	
1000	1.1e-01	
2000	9.3e-03	
4000	9.8e-04	

Список литературы

- 1. Sofronov, I. L., N. A. Zaitsev, Non-reflecting boundary conditions for 2D anisotropic elastodynamics, PAMM, v. 6, Iss. 1, 611 612 (2007)
- 2. Зайцев Н. А., Софронов И. Л., Применение прозрачных граничных условий для решения двумерных задач упругости с азимутальной анизотропией, Матем. моделирование, т. 19, №8, 49 54 (2007)
- 3. Sofronov I.L., Zaitsev N.A., Transparent boundary conditions for the elastic waves in anisotropic media, Hyperbolic Problems: Theory, Numerics, Applications. Eds. Benzoni-Gavage, Serre. Springer Verlag, pp. 997–1004 (2008)
- Sofronov I.L., Zaitsev N.A., Numerical generation of transparent boundary conditions on the side surface of a vertical transverse isotropic layer, Journal of Computational and Applied Mathematics, Online publication: 21-AUG-2009; V. 234, Issue 6 ,1732 – 1738 (2010)
- 5. Софронов И.Л., Условия полной прозрачности на сфере для трехмерного волнового уравнения, ДАН, 1992, т. 326, № 6, стр. 453 457
- 6. Sofronov, I. L. Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation, J. Math. Anal. Appl., V. 221, (1998) 92 115.
- Sofronov, I. L. Artificial boundary conditions of absolute transparency for twoand three-dimensional external time-dependent scattering problems, Euro. J. Appl. Math., V.9, No.6 (1998) 561 – 588.
- 8. Софронов И.Л. Дифференциальная часть прозрачных граничных условий для некоторых гиперболических систем уравнений второго порядка. ДАН, 2009, том 426, № 5, с. 602 604.
- Higdon R. L. Absorbing boundary conditions for elastic waves, Geophysics, vol. 56, № 2, c. 231 241.