

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 38 за 2013 г.</u>

Луцкий А.Е., Северин А.В.

Простейшая реализация метода пристеночных функций

Рекомендуемая форма библиографической ссылки: Луцкий А.Е., Северин А.В. Простейшая реализация метода пристеночных функций // Препринты ИПМ им. М.В.Келдыша. 2013. № 38. 22 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2013-38</u>

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской академии наук

А.Е. Луцкий, А.В. Северин

Простейшая реализация метода пристеночных функций

Луцкий А.Е, Северин А.В.

Простейшая реализация метода пристеночных функций

Метод пристеночных функций — это специальное граничное условие, позволяющее повысить точность моделирования турбулентного пограничного слоя на сравнительно грубой сетке. В работе описана его минимальная реализация, которую легко использовать в любой программе вычислительной газодинамики.

Ключевые слова: пограничный слой, турбулентность

Alexander Evgenjevich Lutsky, Alexander Vladimirovich Severin

The minimal realization of the wall functions method

The wall function method is a special boundary condition, which increases the accuracy of the turbulent boundary layer modeling on the coarse grid. The minimal realization of the method, which may be used in any CFD-solver, is presented.

Key words: boundary layer, turbulence

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект 11-08-00269-а.

Оглавление

1. Введение	3
2. Приведение логарифмического профиля к размерному виду	3
3. Применение в численном методе	6
4. Примеры расчетов	6
5. Выводы	21
6. Литература	22
Приложение: исходный текст подпрограммы	23

1. Введение

Моделирование пограничного слоя требует применения мелкой сетки вблизи поверхности тела. Из-за малого размера ячеек приходится выбирать малый шаг по времени, большое количество ячеек также замедляет счет. С целью добиться приемлемой точности при сравнительно грубой сетке разработаны методы пристеночных функций (wall functions) [1]. Идея состоит в использовать универсальность логарифмического чтобы профиля TOM. скорости. В общем случае из счетной области выделяется часть, прилегающая к телу, и в этой новой области решаются специальные уравнения. Но возможна и экономная реализация метода пристеночных функций, которая сводится к тому, чтобы в ячейках, граничащих с поверхностью тела, аппроксимировать скорость прямой или полиномом, а специальной функцией, имеющей вид не логарифмического профиля. В минимальном варианте этот особый способ аппроксимации используется только для вычисления поверхностного трения и зависящего от него потока импульса через поверхность тела, в то время как потоки вещества, импульса и энергии между ячейками вычисляются обычным способом. Таким образом, все сводится к специальному алгоритму вычисления поверхностного трения, что сильно упрощает применение метода. Но, несмотря на простоту, этот метод может быть очень эффективен и существенно повышать точность расчетов по сравнению с обычным условием прилипания.

Метод пристеночных функций имеет смысл применять на сравнительно грубых сетках, когда ближайшая к поверхности тела ячейка больше вязкого подслоя, но существует и верхний предел огрубления сетки, при котором даже этот метод не даст правильных результатов – когда ячейка выходит за пределы той части пограничного слоя, где реальный профиль скорости близок к логарифмическому.

2. Приведение логарифмического профиля к размерному виду

Будем считать известной среднюю скорость в прилегающей к телу ячейке.

$$U=\frac{1}{y_1}\int_0^{y_1}u(y)dy,$$

где *у*₁ — координата верхнего края ячейки.

Согласно формуле логарифмического слоя ([3], стр. 247):

$$u = u_{\tau}u^{+}(y^{+}), y^{+}=yu_{\tau}/v$$

где u_{τ} — параметр, который требуется найти, u^+ — универсальная функция, v — молекулярная вязкость.

$$\int_{0}^{y_{1}} u(y) dy = u_{\tau} \int_{0}^{y_{1}} u^{+}(y^{+}) dy = u_{\tau} \frac{dy}{dy^{+}} \int_{0}^{y_{1}^{+}} u^{+}(y^{+}) dy^{+} = v \int_{0}^{y_{1}^{+}} u^{+}(y^{+}) dy^{+}$$

$$Uy_{1} = v \int_{0}^{y_{1}^{+}} u^{+}(y^{+}) dy^{+} \qquad (1)$$

Интегральное уравнение (1) — и есть задача, которую мы должны решить, чтобы установить связь между безразмерным и размерным профилями скоростей. Нам удалось исключить из него параметр u_{τ} , и теперь в нем остается только одна неизвестная переменная — предел интегрирования y_1^+ . Поскольку функция $u^+(y^+)$ нам известна, задача легко решается. А зная y_1^+ , получим:

$$u_{\tau} = \frac{y_1^+}{y_1} v$$

Функция u^+ состоит из трех участков – вязкого подслоя, в котором зависимость u^+ от y^+ линейна, основного логарифмического участка и соединяющей их табличной функции, обеспечивающей плавный переход от первого участка к последнему ([3], стр. 248). Иногда табличный участок исключают, тогда в точке пересечения линейного и логарифмического участков функция получается негладкой. Существуют также приближенные формулы, аппроксимирующие всю функцию u^+ , например формула Рейхардта, но здесь мы будем использовать следующую аппроксимацию из трех участков:

 $u^{+} = \begin{cases} y^{+} & npu \quad y^{+} < 2 \\ ma \delta nu + u a g \\ py + \kappa u u g \\ 2.5 \ln \left(\frac{y^{+}}{0.13} \right) & npu \quad y^{+} > 60 \end{cases}$ (2)

При значениях $y^+ < 2$ решение находится аналитически, при значениях, соответствующих табличному участку, — интерполяцией при помощи табличных значений (в данном случае используется кубический сплайн), а на логарифмическом участке — методом Ньютона. Аргументом является интеграл от u^+ равный:

$$F(y_1^+) = \int_0^{y_1^+} u^+ dy^+ = \frac{Uy_1}{v}$$

Численное интегрирование u^+ показывает, что трем интервалам значений y^+ из формулы (2) соответствуют следующие три интервала значений F:

 $y^{+} < 2 \qquad F < 2$ $2 < y^{+} < 60 \qquad 2 < F < 696.68$ $y^{+} > 60 \qquad F > 696.68$

2.1 Вязкий подслой (F < 2)

$$Uy_{1} = \int_{0}^{y_{1}} u(y) dy = v \int_{0}^{y_{1}^{+}} u^{+}(y^{+}) dy^{+} = v \int_{0}^{y_{1}^{+}} y^{+} dy^{+} = v \frac{y_{1}^{+}}{2}$$
$$y_{1}^{+} = \sqrt{\frac{2Uy_{1}}{v}} = \sqrt{2F}$$

2.2 Табличный участок (2 < F < 696.68)

Для построения y^+ как функции F нам потребуются значения функции и аргумента в табличных точках, кроме того полезно знать производную, которая равна:

$$\frac{dy^+}{dF} = \frac{1}{u^+}$$

Численное интегрирование универсальной функции *u*⁺ дает следующие значения:

							7	Габлица 1
F	2.	7.89	17.183	29.276	43.97	142.7	401.79	696.68
y^+	2.	4.	6.	8.	10.	20.	40.	60.
dy^+/dF	0.5	0.256	0.185	0.149	0.125	0.0851	0.0706	0.0652

2.3 Логарифмический участок (*F* > 696.68)

$$u^{+} = 2.5 \ln\left(\frac{y^{+}}{0.13}\right)$$
$$F = \int u^{+} dy^{+} = 2.5 y^{+} \left(\ln\left(\frac{y^{+}}{0.13}\right) - 1\right) + C$$

Из условия стыковки с табличной функцией на предыдущем интервале можно определить константу *C*, которая оказывается равна -73.50481.

Далее берем в качестве начального значения $y^+ = 60$. и применяем метод касательных Ньютона:

$$y_{i+1}^{+} = y_{i}^{+} + \frac{F - F_{i}}{u_{i}^{+}}$$

Опыт показывает, что 5 итераций практически всегда достаточно.

3. Применение в численном методе

Зная параметр u_{τ} , мы можем найти касательное напряжение трения на поверхности тела.

$$\tau = u_{\tau}^2 \rho$$

В простейшем случае к этому сводится все применение пристеночных функций. То есть, пристеночные функции используются только как особый метод вычисления поверхностного трения и зависящего от него потока импульса через поверхность тела. Все остальные расчеты, включая моделирование турбулентности, производятся так же, как и без пристеночных функций. Пристеночные функции можно сочетать с любыми способами моделирования турбулентности, включая модель Спаларта-Аллмараса, модель k-є и метод крупных вихрей (LES).

4. Примеры расчетов

С целью проверки метода произведена серия тестовых расчетов. Во всех случаях использовался алгоритм, описанный в статье [3], модифицированный под рассматриваемые задачи.

4.1 Сравнение модели Спаларта-Аллмараса с пристеночными функциями и без них

Решалась классическая задача об обтекании плоской пластины, которая служит стандартным тестом для модели турбулентности Спаларта-Аллмараса. Число Маха M = 0.2 Число Рейнольдса $Re = 5.*10^6$ относительно единицы длины.

Длина пластины *L*=2, размер счетной области в направлении, перпендикулярном пластине *H*=1, расстояние между передней границей области и началом пластины *B*=0.33

Использовались четыре сетки, отличающиеся толщиной ближайшей к пластине ячейки. В таблице приведены размеры ячеек и соответствующие им значения y^+ , вычисленные с применением метода пристеночных функций на расстоянии *x*=1 от начала пластины.

	Размер ячейки	y^+
Сетка 1	8.32003*10 ⁻⁶	1.5
Сетка 2	$2.49257*10^{-4}$	45
Сетка 3	$4.06325*10^{-4}$	72
Сетка 4	0.00107868	203

Таблица 2

На каждой сетке расчеты были произведены с использованием модели Спаларта-Аллмараса с пристеночными функциями, и модели Спаларта-Аллмараса в чистом виде.

На сетке 1 результаты расчетов двумя методами практически полностью совпали. На сетках 2, 3 и 4 "чистая" модель Спаларта-Аллмараса давала все большее отклонение от сетки 1 по мере огрубления, а метод пристеночных функций оставался вблизи результатов, полученных на сетке 1, отклоняясь от них в точке x=1 не более, чем на 10%.

На рис. 1 приведены графики коэффициента трения, полученные в этих расчетах.

Рис. 1. Сравнение расчетов обтекания плоской пластины.

4.2 Обтекание плоской пластины — сравнение с экспериментом

Произведено сравнение с классическими экспериментами, выполненными в Германии в 1944 г. и известными по английскому переводу [2].

Из работы [2] выбрано два эксперимента. В одном из них скорость набегающего потока u = 17.8 м/с (M=0.059, $Re=1.079*10^6$). В другом u = 33. м/с

 $(M=0.1, Re=2.*10^6)$. Числа Рейнольдса относительно единицы длины. Длина пластины L = 5 м.

В основном расчете использовалась сетка с минимальным размером ячеек 0.003 по *y* и 0.229 по *x*. Расчеты, использующие модель Спаларта-Аллмараса с применением пристеночных функций показали хорошее совпадение с экспериментом как по коэффициенту трения (рис. 2 и 3), так и по профилю скоростей (рис. 4). Значения y^+ лежат от 170 в контрольной точке *x*=5 до 270 в начале пластины. Пунктирной линией с ромбами на графике для *u* = 33. м/с показан расчет с "чистой" моделью Спаларта-Аллмараса без пристеночных функций, который на данной сетке не дает совпадения с экспериментом.

Рис. 2. Сравнение с экспериментом — коэффициент трения, М=0.059

Рис. 3. Сравнение с экспериментом — коэффициент трения, М=0.1

Рис. 4. Сравнение с экспериментом — профиль скоростей, М=0.1

Вместе с тем необходимо отметить, что измельчение сетки по x может приводить к неожиданному эффекту: на начальном участке $C_{\rm f}$ появляется немонотонность. Однако, в дальнейшем кривая выходит к правильным значениям.

Это связано с тем, что в области формирования пограничного слоя его толщина оказывается меньше или сравнима с размером ячейки. Влияние неправильного решения распространяется вниз по потоку и приводит к ошибкам даже там, где погранслой уже достаточно толстый.

В дальнейшем кривая возвращается к правильным значениям, но для этого может потребоваться довольно большое расстояние.

Огрубление сетки по x позволяет избежать такого эффекта, поскольку в этом случае большая часть первой ячейки лежит в области достаточно толстого погранслоя. На рис. 5 показаны в сравнении два расчета: тот же, что и на рис. 3 и 4 (сетка 1) и с измельченной по x сеткой (минимальный размер ячейки 0.00285, сетка 2).

Рис. 5. Эффект немонотонности при измельчении сетки по *х*.

4.3 Обратный уступ

Выполнен расчет обтекания обратного уступа, которое ранее было рассчитано по модели Спаларта-Аллмараса. Число Маха M=1.1, число Рейнольдса относительно единицы длины $Re=5.*10^6$, высота уступа h=0.0892, протяженность стенки перед уступом L=1.

Сравнение результатов с "чистой" моделью Спаларта-Аллмараса показывает, что качественно структура течения не изменилась и осталась вполне правдоподобной, но применение пристеночных функций приводит к существенным количественным различиям: сильно уменьшается трение перед уступом, уменьшается размер зоны циркуляционного течения.

На рис. 6 приведены значения коэффициента трения, вычисленные двумя методами, на рис. 7 — распределение относительной скорости для метода пристеночных функций.

Рис. 6. Уступ — коэффициенты трения.

Рис. 7. Уступ — относительная скорость U/U_∞.

4.4 Обратный уступ — формула Смагоринского

Для сравнения разных методов моделирования турбулентности произведен расчет того же обратного уступа, что и в разделе 4.3 с моделированием крупных вихрей по формуле Смагоринского ([5], стр. 55). Выполнено два варианта расчета — с пристеночными функциями и без них.

Для вычисления турбулентной вязкости применялась формула:

$$\mu_{\tau}=\rho l_m^2 \left|\overline{S}\right|,\,$$

где *S* — тензор скоростей деформаций,

$$l_m = \min(C_{LES}\Delta, \kappa y),$$

где $C_{LES} = 0.17$, Δ — характерный размер ячейки, к — константа Кармана, у — расстояние до поверхности.

Для того, чтобы исключить попадание вихрей на заднюю границу, размеры области увеличены с 4×3 до 17×8.5

На рис. 8 и 9 приведены относительная скорость и давление для "чистого" LES, на рис. 11 и 12 — для LES с пристеночными функциями.

В обоих случаях зона циркуляции за уступом сильно увеличилась и течение стало нестационарным. Но несколько крупных вихрей вблизи уступа остаются стабильными, причем один из них имеет сильно вытянутую форму, что выглядит неправдоподобно. (Рис. 10) Эта проблема имеет место как в "чистом" LES, так и в LES с пристеночными функциями.

Рис. 8. Уступ, метод LES — относительная скорость U/U_{∞} .

Рис. 9. Уступ, метод LES с пристеночными функциями — относительная скорость U/U_∞.

Рис. 10. Уступ, метод LES с пристеночными функциями, линии тока.

4.5 Обратный уступ — метод DES

Выполнен расчет обратного уступа из разделов 5.3 и 5.4 методом DES, полученным из модели Спаларта-Аллмараса путем замены расстояния до поверхности на гибридный линейный масштаб l_m , вычисляемый так же, как и в предыдущей задаче, для метода LES. ([6], стр. 64) Константа модели выбрана $C_{DES}=0.2$

В расчете использовались пристеночные функции, расчет методом DES без пристеночных функций не проводился.

Вихри стали более сильными. Это можно видеть хотя бы из того, что минимум скорости теперь -0.5 вместо -0.2. Продольный размер вихрей уменьшился (рис. 12), появилась характерная цепочка вихрей, срывающаяся с уступа.

Но совпадение с экспериментом по-прежнему остается плохим. Хотя это можно объяснить трехмерными эффектами, нельзя сделать однозначный вывод о преимуществе какого-либо из методов.

На рис. 13 и 14 приведены сводные графики коэффициентов трения и давления для расчетов из разделов 4.3 – 4.5. Данные методов LES и DES усреднены по времени. На рис. 14, кроме того, нанесены данные эксперимента.

Рис. 11. Уступ, метод DES с пристеночными функциями — относительная скорость U/U_∞.

Рис. 12. Уступ, метод LES с пристеночными функциями, линии тока.

Рис. 13. Уступ, коэффициент трения, сравнение методов.

Рис. 14. Уступ, коэффициент давления, сравнение методов.

4.6 Обратный уступ в канале

Для сравнения с экспериментом выполнен расчет обратного уступа в канале. Условия задачи и экспериментальные данные взяты с сайта NASA [7]. Расчет выполнялся по модели Спаларта-Аллмараса с применением пристеночных функций.

Число Маха М=0.128, число Рейнольдса (относительно единицы длины) Re=36000, высота уступа H=1, ширина канала перед уступом А=8, длина канала перед уступом B=110.

На рис. 15 показано общее распределение скорости, на рис. 16 дано то же поле вблизи уступа. На рис. 17 дано сравнение вычисленного коэффициента поверхностного трения с экспериментом.

Удалось добиться лишь приблизительного совпадения с экспериментом. Даже перед уступом вычисленное трение существенно отличается от экспериментального, хотя в предыдущих задачах пограничный слой на плоской поверхности моделировался с хорошей точностью. По-видимому, это связано с тем, что в этой дозвуковой задаче требуются специальные граничные условия. Во всей области, даже при x<-110, то есть еще до входа в канал, давление оказалось выше, чем давление набегающего потока $P_{\infty}=1$.

На сайте NASA рекомендуется зафиксировать давление на задней границе на уровне P=1.011. Приведенные результаты получены с учетом этой рекомендации. Но если слегка изменить это значение, начинает перестраиваться решение во всей области. Детальное исследование влияния этого граничного условия должно стать предметом отдельного исследования.

Рис. 15. Уступ в канале, относительная скорость U/U_∞, общий вид.

Рис. 16. Уступ в канале, относительная скорость U/U_∞, вблизи уступа.

Рис. 17. Уступ в канале, коэффициент трения, сравнение с экспериментом.

4.7 Обтекание профиля

Выполнен расчет обтекания профиля RAE 2822 с использованием модели турбулентности Спаларта-Аллмараса без пристеночных функций и с ними.

Число Маха M = 0.729, угол атаки $\alpha = 2.31^{\circ}$, статическое давление P = 28263.73 Па, статическая температура T = 226 K.

На на рис. 18 показано распределение давления. На рис. 19 можно видеть сравнение коэффициентов С_р определенных экспериментально [8], рассчитанных с использованием модели Спаларта-Аллмараса без пристеночных функций и с пристеночными функциями. Видно, что положение замыкающего скачка уточнить не удалось, но значения коэффициентов давления перед скачком значительно ближе к эксперименту.

Рис. 18. Профиль RAE 2822, давление.

Рис. 19. Профиль RAE 2822, коэффициент давления С_р.

5. Выводы

1. В ряде случаев применение пристеночных функций позволяет существенно увеличить точность расчетов.

2. Необходимы дальнейшие исследования для течений с развитым отрывом.

6. Литература

- 1. Knopp T. On grid-independence of RANS predictions for aerodynamic flows using model-consistent universal wall-functions // European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006.
- 2. Wieghardt K., Tillmann W. On the turbulent friction layer for rising pressure // National Advisory Committee for Aeronautics, Technical memorandum 1314, Washington, October 1951.
- 3. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика // Учебное пособие. В 10 т. Т. VI. Гидродинамика. М. Наука. 1986.
- 4. Кудряшов И. Ю., Луцкий А. Е., "Адаптация кода для расчета течений вязких жидкостей под гибридные вычислительные системы на базе технологий CUDA-MPI" // Матем. моделирование, **24**:7 (2012), 33–44.
- 5. Снегирев А.Ю. Высокопроизводительные вычисления в технической физике. Численное моделирование турбулентных течений // Учеб. пособие. СПб.: Изд-во Политехн. ун-та, 2009.
- 6. Гарбарук А.В., Стрелец М.Х., Шур М.Л. Моделирование турбулентности в расчетах сложных течений // Учеб. пособие. СПб: Изд-во Политехн. ун-та, 2012.
- 7. URL: <u>http://turbmodels.larc.nasa.gov/backstep_val.html</u>
- 8. Cook P.H., McDonald M.A., Firmin M.C.P. Aerofoil RAE 2822 Pressure Distributions, and Boundary Layer and Wake Measurements // Experimental Data Base for Computer Program Assessment, AGARD Report AR 138, 1979.

Приложение: исходный текст подпрограммы

Данный вариант метода пристеночных функций можно реализовать в виде короткой подпрограммы-функции, требующей всего четыре входных параметра. Это скорость и, то есть касательная к поверхности составляющая скорости, плотность го, молекулярная вязкость пи и расстояние от центра ячейки до поверхности тела у. Функция возвращает касательное напряжение поверхностного трения, которое должно быть направлено в сторону, противоположную вектору скорости. Ниже приводится исходный текст функции на языке Fortran.

```
C Wall-function
C u - velocity, ro - density, nu - moleculal viscosity,
C y - distance to the surface
C Return the friction force.
     function twf(u,ro,nu,y)
     real *8 twf, u, ro, nu, y, q
     real *8 a, ksi, dksi, tqm, lgksi
     real *8 tksi(8), tq(8), der(8)
     real *8 d0, d1, dq
     integer sign
     data tksi /2., 4., 6., 8., 10., 20., 40., 60./
              /2., 7.89, 17.183, 29.276, 43.97, 142.7,
     data tq
    * 401.79, 696.68/
     data der /0.5, 0.256, 0.185, 0.149, 0.125, 0.0851,
    * 0.0706, 0.0652/
     q=2.*u*y/nu
     tqm=-73.50481
     sign=1
     if (q.lt.0.) then
     a=-a
     sign=-1
     endif
     if (q.le.tq(1)) then
     ksi=dsqrt(2.*q)
     else
     if (q.le.tq(8)) then
     i=1
```

```
1
     i=i+1
     if (q.gt.tq(i)) go to 1
     i0=i-1
     d0=q-tq(i0)
     d1=tq(i)-q
     d0=d0*d0
     d1=d1*d1
     dq=d0+d1
     ksi=((tksi(i0)+d0*der(i0))*d1+(tksi(i)-
    * d1*der(i))*d0)/dq
     else
     ksi=tksi(8)
     do i=1, 5
     lgksi=dlog(ksi/0.13)
     a=2.5*ksi*(lgksi-1.)+tqm
     dksi=(q-a)/2.5/lgksi
     ksi=ksi+dksi
     enddo
     endif
     endif
     vs=ksi*nu/y/2.
     twf=vs*vs*ro*sign
     return
     end
```