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1. Introduction
We develop a new Calculus based on Power Geometry [1–4]. At present,

it allows to compute local and asymptotic expansions of solutions to nonlinear
equations of three classes:

(A) algebraic,

(B) ordinary differential,

(C) partial differential,

as well as to systems of such equations. However, it can also be extended to other
classes of nonlinear equations: functional, integral, integro-differential etc.

Principal ideas and algorithms are common for all classes of equations. Com
putation of asymptotic expansions of solutions consists of 3 following steps (we
describe them for one equation 𝑓 = 0).

1. Calculation of truncated equations 𝑓 (𝑑)𝑗 = 0 by means of generalized faces
of the convex polyhedron Γ(𝑓) which is a generalization of the Newton polyhedron.
The first term of the expansion of a solution to the initial equation 𝑓 = 0 is a
solution to the corresponding truncated equation 𝑓 (𝑑)𝑗 = 0.

2. Finding solutions to a truncated equation 𝑓
(𝑑)
𝑗 = 0, which is quasiho

mogenous. Using power and logarithmic transformations of coordinates we can
reduce the equation 𝑓 (𝑑)𝑗 = 0 to such simple form that can be solved. Among the
solutions found we should select appropriate ones which yield the first terms of
asymptotic expansions.

3. Computation of the tail of the asymptotic expansion. Each term in the
expansion is a solution of a linear equation which can be written down and solved.

Indeed Power Geometry (as a basis of Nonlinear Analysis) can be considered
as the third level of Differential Calculus (after Classical Analysis and Functional
Analysis). Elements of Plane Power Geometry were proposed by Newton for alge
braic equation (1670); and by Briot and Bouquet for ordinary differential equation
of the first order (1856). Space Power Geometry for a nonlinear autonomous sys
tem of ODEs was proposed by the author (1962) [1], and for a linear PDE, by
Mikhailov (1963). Thus, in 2012 we could celebrate 50 years of the first publica
tion on the Newton polyhedron.

Back in the autumn of 1959, I was a third-year student of Department of
Mechanics and Mathematics of the Moscow State University, and invented a poly
hedron to study asymptotic behavior of solutions to an autonomous system of
ODEs near a degenerated stationary point. The polyhedron was described in my
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work, which was presented at a students’ works competition in 1961. In those
years Arnold was a postgraduate student, and he became a referee of my works.
He estimated my works as not very good, for the mere reason that “geometry
of power exponents is useless”. In 1962-1970, Arnold wrote reports on some of
my articles with the same (rather negative) evaluation of Power Geometry. See
details in Section 6 of Chapter 8 of English Edition of my book [3]. However,
in 1973 Arnold re-introduced my polyhedron as “Newton polyhedron” and that
looked as if he was the inventor of the polyhedron. In fact, he invented only the
name. So he behaved as a scientific thief. V.P. Maslov was very surprised when
I told him (in 1990) that the Newton polyhedron was my invention (he thought
that it was Arnold’s).

In this paper we intend to explain basic notions of Power Geometry, present
some of its algorithms, results, and applications. It is clear that this calculus
cannot be mastered using the present paper alone. Power Geometry was the
subject of a one-year lecture course “Nonlinear Analysis”, taught by the author at
Lomonosov Moscow State University.

2. Algebraic Equations [2, 3]
We consider a polynomial depending on three variables near its singular

point where the polynomial vanishes with all the first partial derivatives. We
propose a method of computation of asymptotic expansions of all branches of the
set of roots of the polynomial near the above mentioned singular point. There
are three types of expansions. The method of computation is based on the spatial
Power Geometry. Most of our examples are for polynomials in two variables.

2.1. The Problem Statement. Let 𝑋 = (𝑥, 𝑦, 𝑧) ∈ R3 or C3 and 𝑔(𝑋) be a
polynomial.

Definition 2.1. A point 𝑋0 is called singular for the set G = {𝑋 : 𝑔(𝑋) = 0}
if all the partial derivatives of the first order of the polynomial 𝑔 vanish in the
point 𝑋0 and 𝑔(𝑋0) = 0.

Problem 1. Near the singular point 𝑋0 = 0 for each branch of the set G , find a
parameter expansion of one of the following three types.

Type 1

𝑥 =
∞∑︁

𝑘=1

𝑏𝑘𝑣
𝑘, 𝑦 =

∞∑︁

𝑘=1

𝑐𝑘𝑣
𝑘, 𝑧 =

∞∑︁

𝑘=1

𝑑𝑘𝑣
𝑘,

where 𝑏𝑘, 𝑐𝑘, 𝑑𝑘 are constants.

Type 2
𝑥 =

∑︁
𝑏𝑘𝑙𝑢

𝑘𝑣𝑙, 𝑦 =
∑︁

𝑐𝑘𝑙𝑢
𝑘𝑣𝑙, 𝑧 =

∑︁
𝑑𝑘𝑙𝑢

𝑘𝑣𝑙,
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where 𝑏𝑘𝑙, 𝑐𝑘𝑙, 𝑑𝑘𝑙 are constants and integer points (𝑘, 𝑙) are in a sector with
the angle less than 𝜋 (see Fig. 1).

Type 3

𝑥 =
∞∑︁

𝑘=0

𝛽𝑘(𝑢)𝑣𝑘, 𝑦 =
∞∑︁

𝑘=0

𝛾𝑘(𝑢)𝑣𝑘, 𝑧 =
∞∑︁

𝑘=0

𝛿𝑘(𝑢)𝑣𝑘,

where 𝛽𝑘(𝑢), 𝛾𝑘(𝑢), 𝛿𝑘(𝑢) are rational functions of 𝑢 and
√︀
𝜓(𝑢), and 𝜓(𝑢)

is a polynomial in 𝑢.

l

k
1

0

1

Figure 1

2.2. Objects and algorithms of Power Geometry. Consider a finite sum
(for example, a polynomial)

𝑔(𝑋) =
∑︁

𝑔𝑄𝑋
𝑄 over 𝑄 ∈ S, (2.1)

where 𝑋 = (𝑥, 𝑦, 𝑧) ∈ R3, 𝑄 = (𝑞1, 𝑞2, 𝑞3) ∈ R3 and 𝑋𝑄 = 𝑥𝑞1𝑦𝑞2𝑧𝑞3, 𝑔𝑄 =
const ∈ R. To each of the terms of sum (2.1), we assign its vector power exponent
𝑄, and to the whole sum (2.1), we assign the set of all vector power exponents
of its terms, which is called the support of sum (2.1) or of the polynomial 𝑔(𝑋),
and it is denoted by S(𝑔). The convex hull of the support S(𝑔) is called the
Newton polyhedron of the sum 𝑔(𝑋), and it is denoted by Γ(𝑔). The boundary
𝜕Γ of the polyhedron Γ(𝑔) consists of generalized faces1 Γ

(𝑑)
𝑗 of various dimensions

1in other terms, facets
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𝑑 = 0, 1, 2. Here 𝑗 is the number of a face. To each generalized face Γ
(𝑑)
𝑗 , we assign

the truncated sum 𝑔
(𝑑)
𝑗 (𝑋) =

∑︀
𝑔𝑄𝑋

𝑄 over 𝑄 ∈ Γ
(𝑑)
𝑗 ∩ S(𝑔).

Example 1: support and the Newton polygon. We consider the polynomial
𝑔(𝑥, 𝑦) = 𝑥3 + 𝑦3− 3𝑥𝑦. Support S(𝑔) consists of points 𝑄1 = (3, 0), 𝑄2 = (0, 3),
𝑄3 = (1, 1). The Newton polygon Γ(𝑔) is the triangle 𝑄1𝑄2𝑄3. Edges and
corresponding truncated polynomials are

Γ
(1)
1 : 𝑔

(1)
1 = 𝑥3 − 3𝑥𝑦, Γ

(1)
2 : 𝑔

(1)
2 = 𝑦3 − 3𝑥𝑦, Γ

(1)
3 : 𝑔

(1)
3 = 𝑥3 + 𝑦3. �

Let R3
* be a space dual to the space R3 and 𝑃 = (𝑝1, 𝑝2, 𝑝3) be points of this

dual space. The scalar product

⟨𝑄,𝑃 ⟩ = 𝑞1𝑝1 + 𝑞2𝑝2 + 𝑞3𝑝3 (2.2)

is defined for the points 𝑄 ∈ R3 and 𝑆 ∈ R3
*. In particular, the external normal

𝑁𝑘 to the generalized face Γ
(𝑑)
𝑘 is a point in R3

*.
The scalar product ⟨𝑄,𝑁𝑘⟩ reaches the maximum value at the points 𝑄 ∈

Γ
(𝑑)
𝑘 ∩ S, i. e. at the points of the generalized face Γ

(𝑑)
𝑘 . The set of all points

𝑆 ∈ R3
*, at which the scalar product (2.2) reaches the maximum over 𝑄 ∈ S(𝑔)

exactly at points 𝑄 ∈ Γ
(𝑑)
𝑘 , is called normal cone of the generalized face Γ

(𝑑)
𝑘 and

is denoted by U
(𝑑)
𝑘 .

Example 2: Normal Cones (cont. of Example 1). For faces Γ
(𝑑)
𝑗 of the

Newton polygon Γ(𝑔) of Fig. 2, normal cones are shown in Fig. 3.

Γ
(1)
2

Γ
(1)
1

1

2

3

q2

1 2 3
q1

0
Q1

Q2

Q3

Γ
(1)
3

Figure 2
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p2

p1

U
(0)
2

U
(0)
1U

(0)
3

U
(1)
1

U
(1)
2

U
(1)
3

Figure 3

For edge Γ
(1)
𝑗 , 𝑗 = 1, 2, 3, normal cone U

(1)
𝑗 is the external ray orthogonal to

this edge. For vertex Γ
(0)
𝑗 = 𝑄𝑗, 𝑗 = 1, 2, 3, normal cone is open sector between

external rays orthogonal to edges Γ
(1)
𝑘 adjacent to vertex 𝑄𝑗. �

Theorem 2.2 ( [3, Ch. 2]). If for 𝑡→ ∞ the curve

𝑥 = 𝑏𝑡𝑝1(1 + 𝑜(1)), 𝑦 = 𝑐𝑡𝑝2(1 + 𝑜(1)), 𝑧 = 𝑑𝑡𝑝3(1 + 𝑜(1)), (2.3)

where 𝑏, 𝑐, 𝑑 and 𝑝𝑖 are constants, belongs to the set G = {𝑋 : 𝑔(𝑋) = 0}, and
the vector 𝑃 = (𝑝1, 𝑝2, 𝑝3) belongs to U

(𝑑)
𝑘 , then the first approximation 𝑥 = 𝑏𝑡𝑝1,

𝑦 = 𝑐𝑡𝑝2, 𝑧 = 𝑑𝑡𝑝3 of curve (2.3) satisfies the truncated equation 𝑔
(𝑑)
𝑘 (𝑋) = 0.

The truncated sum 𝑔
(0)
𝑗 corresponding to the vertex Γ

(0)
𝑗 is a monomial.

Such truncations are of no interest and will not be considered. We will consider
truncated sums corresponding to edges Γ

(1)
𝑗 and faces Γ

(2)
𝑗 only.

Power transformations are mappings of the form

log𝑋 = 𝐵 log𝑋1, (2.4)

where log𝑋 = (log 𝑥, log 𝑦, log 𝑧)T, log𝑋1 = (log 𝑥1, log 𝑦1, log 𝑧1)
T, 𝐵 is a

non-degenerate square 3 × 3 matrix (𝑏𝑖𝑗) with rational elements 𝑏𝑖𝑗 (they are
often integer).

The monomial 𝑋𝑄 is transformed to the monomial 𝑋𝑄1

1 by power transfor
mation (2.4), where 𝑄T

1 = 𝐵T𝑄T. Power transformations and multiplications
of polynomial by monomial generate the affine geometry in space R3 of vector
power exponents of polynomial monomials. The matrix 𝐵 with integer elements
and det𝐵 = ±1 is called unimodular.
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Theorem 2.3 ( [3, Ch. 2]). For the face Γ
(𝑑)
𝑗 , there exists a power transfor

mation (2.4) with an unimodular matrix 𝐵 which transforms the truncated sum
𝑔
(𝑑)
𝑗 (𝑋) into the sum in 𝑑 coordinates, i. e. 𝑔(𝑑)𝑗 (𝑋) = 𝑋𝑄

1 ℎ(𝑋1), where ℎ(𝑋1) =

ℎ(𝑥1) if 𝑑 = 1, and ℎ(𝑋1) = ℎ(𝑥1, 𝑦1) if 𝑑 = 2. Here 𝑄 = (𝑞1, 𝑞2, 𝑞3) ∈ R3 and
other coordinates 𝑦1, 𝑧1 for 𝑑 = 1 and 𝑧1 for 𝑑 = 2 are small. If 𝑔(𝑑)𝑗 (𝑋) is a
polynomial, then so is the sum ℎ(𝑋1).

2.3. Cone of the problem. The cone of the problem L is a convex cone of
such vectors

𝑃 = (𝑝1, 𝑝2, 𝑝3) ∈ R3
*

that curves of form (2.3) fill the part of the space (𝑥, 𝑦, 𝑧) which must be studied.
So, our initial Problem 1 corresponds to the cone of the problem

L = {𝑃 = (𝑝1, 𝑝2, 𝑝3) : 𝑃 < 0}

in R3
*, since 𝑥, 𝑦, 𝑧 → 0 (and 𝑥, 𝑦, 𝑧 as in (2.3)).
If 𝑥→ ∞ then 𝑠1 > 0 in the cone of the problem L.

Example 3: Cont. of Example 1 and 2. For variables 𝑥, 𝑦 near origin
𝑥 = 𝑦 = 0 cone of the problem is the quadrant III: L3 = {𝑝1, 𝑝2 < 0}, near
infinity 𝑥 = 𝑦 = ∞ cone of the problem is the quadrant I: L1 = {𝑝1, 𝑝2 > 0}, near
point 𝑥 = 0, 𝑦 = ∞ cone of the problem is the quadrant II: L2 = {𝑝1 < 0, 𝑝2 > 0}
(Fig. 4). In Fig. 3 some cones of the problem L𝑖 intersects several normal cones
U

(2)
𝑗 . E.g. L3 intersects U(1)

1 , U(1)
2 and U

(0)
1 , U(0)

2 , U(0)
3 . L1 intersects U(1)

3 , U(0)
1 ,

U
(0)
2 . �

p2

p1

IVIII

II I

Figure 4
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2.4. Steps for Problem solving.

Step 1. We compute the support S(𝑔), the Newton polyhedron Γ(𝑔), its
two-dimensional faces Γ

(2)
𝑗 and their external normals 𝑁𝑗. Using normals 𝑁𝑗 we

compute the normal cones U(1)
𝑘 to edges Γ

(1)
𝑘 .

Step 2. We find all the edges Γ
(1)
𝑘 and faces Γ

(2)
𝑗 , whose normal cones in

tersect the cone of the problem L. It is enough to select all the faces Γ
(2)
𝑗 , whose

external normals 𝑁𝑗 intersect the cone of the problem L, and then add all the
edges Γ

(1)
𝑘 of these faces.

Step 3.

∙ For each of the selected edges Γ
(1)
𝑘 , we perform a power transformation

𝑋 → 𝑋1 of Theorem 2 and we get the truncated equation in a form ℎ(𝑥1) = 0.

∙ We find the roots of this equation. Let 𝑥01 be one of its roots.

∙ We perform the power transformation 𝑋 → 𝑋1 in the whole polynomial
𝑔(𝑋) and we get the polynomial 𝑔1(𝑋1) = 𝑔(𝑋).

∙ We make the shift of variables 𝑥2 = 𝑥1 − 𝑥01, 𝑦2 = 𝑦1, 𝑧2 = 𝑧1 in the
polynomial 𝑔1(𝑋) and get the polynomial 𝑔2(𝑋2) = 𝑔1(𝑋1).

∙ If 𝑥01 is a simple root of the equation ℎ(𝑥1) = 0 then, according to the
Implicit Function Theorem, it corresponds to an expansion of the form 𝑥2 =∑︀
𝑎𝑘𝑙𝑦

𝑘
1𝑧

𝑙
1, where 𝑎𝑘𝑙 are constants. It gives an expansion of type 2 in coordinates

𝑋.

∙ If 𝑥01 is a multiple root of the equation ℎ(𝑥1) = 0 then we compute the
Newton polyhedron of the polynomial 𝑔2(𝑋2), compute the new cone of the prob
lem L2 as the convex cone generated by vector (−1, 0, 0) and two external normals
of faces adjacent the edge, and we continue as above and as follows.

Step 4.

∙ For each of the selected faces Γ
(2)
𝑗 , we perform a power transformation

𝑋 → 𝑋1 of Theorem 2.3 and we get a truncated equation in the form ℎ(𝑥1, 𝑦1) =
0.

∙ We factorize ℎ(𝑥1, 𝑦1) into prime factors. Let ℎ̃(𝑥1, 𝑦1) be one of such
factors and its algebraic curve has genus 𝜌.

∙ If 𝜌 = 0 then there exists birational uniformization 𝑥1 = 𝜉(𝑦2), 𝑦1 = 𝜂(𝑦2)
of this curve. We change variables 𝑥1 = 𝜉(𝑦2) + 𝑥2, 𝑦 = 𝜂(𝑦2) and then ℎ̃ is
divided by 𝑥2. We change variables in the whole polynomial 𝑔(𝑋) and get the
polynomial 𝑔2(𝑋2)

def
= 𝑔1(𝑋1) = 𝑔(𝑋).
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∙ If ℎ̃(𝑥1, 𝑦1) is simple factor of ℎ(𝑥1, 𝑦1) then roots of the polynomial 𝑔2(𝑋2)
are expanded into series of the form

𝑥2 =
∞∑︁

𝑘=1

𝛼𝑘(𝑦2)𝑧
𝑘
2 , (2.5)

where 𝛼𝑘(𝑦2) are rational functions of 𝑦2. It gives an expansion of type 3 in
original coordinates 𝑋.

∙ If ℎ̃(𝑥1, 𝑦1) is a multiple factor of ℎ(𝑥1, 𝑦1) then we compute the Newton
polyhedron of the polynomial 𝑔2(𝑋2), compute the cone of the problem L2 = {𝑆 :
𝑠2, 𝑠3 < 0} and continue computations.

∙ If 𝜌 = 1 (elliptic curve), there exists the birational change of variables
𝑥1, 𝑦1 → 𝑥2, 𝑦2 transforming ℎ̃(𝑥1, 𝑦1) into the normal form 𝑥22 − 𝜓(𝑦2), where 𝜓
is a polynomial of order 3 or 4.

∙ If 𝜌 > 1, we distinguish hyper-elliptic and non hyper-elliptic curves. The
hyper-elliptic curve is birationally equivalent 𝑥1, 𝑦1 → 𝑥2, 𝑦2 to its normal form
𝑥22 − 𝜓(𝑦2), where 𝜓 is a polynomial of order 2𝜌+ 1 or 2𝜌+ 2.

∙ If 𝜌 > 1 and we have the (hyper)elliptic curve and factor ℎ̃ of ℎ is simple
we get expansions of solutions of equation 𝑔2(𝑋2) = 0 into series (5), where 𝛼𝑘 are
rational functions of 𝑦2 and

√︀
𝜓(𝑦2). We get the expansion of type 3 in original

coordinates 𝑋.

∙ If 𝜌 > 1 and we have the (hyper)elliptic curve and ℎ̃(𝑥1, 𝑦1) is a multiple
factor of ℎ(𝑥1, 𝑦1) then we continue for 𝑔2(𝑋2) as above.

In this procedure we distinguish two cases:

Case 1. Truncated polynomial contains linear part of one of the variables
or 𝑥01 is a simple root of ℎ(𝑥1) or ℎ̃(𝑥1, 𝑦1) is simple factor of ℎ(𝑥1, 𝑦1). Then
a generalization of Implicit Function Theorem is applicable and it is possible to
compute parametric expansion of set of roots of full polynomial.

Case 2. Truncated polynomial does not contain linear part of any variable
and 𝑥01 is a multiple root of ℎ(𝑥1) or ℎ̃(𝑥1, 𝑦1) is a multiple factor of ℎ(𝑥1, 𝑦1). Then
the Newton polyhedron for full polynomial must be built and we must consider
new truncated polynomials taking into account the new cone of the problem L.

Example 4 (cont. of Examples 1–3).

∙ For edge Γ
(1)
1 , we get truncated equation 𝑥2 − 3𝑦 = 0, i. e. 𝑦 = 𝑥2/3. It is

the case 1, and this asymptotic form is continued into power expansion of branch
𝑦 = 𝑥2/3 +

∑︀∞
𝑘=2 𝑏𝑘𝑥

2𝑘 near the origin 𝑥 = 𝑦 = 0.
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∙ For edge Γ
(1)
2 , we get truncated equation 𝑦2 − 3𝑥 = 0, i. e. 𝑦 = ±

√
3𝑥. It

is the case 1, and these asymptotic forms are continued into power expansions of
branches 𝑦 = ±

√
3𝑥+

∑︀∞
𝑘=2 𝑏𝑘𝑥

𝑘/2 near the origin 𝑥 = 𝑦 = 0.

∙ For edge Γ
(1)
3 , we get truncated equation 𝑥3 + 𝑦3 = 0. It has the simple

factor 𝑥 + 𝑦 = 0, i. e. 𝑦 = −𝑥. It is again case 1 of simple root, and the power
expansion at infinity 𝑦 = −𝑥− 1 +

∑︀∞
𝑘=1 𝑏𝑘𝑥

−𝑘 gives the asymptote 𝑥+ 𝑦 = −1
for the curve 𝑔(𝑥, 𝑦) = 0 called folium of Descartes (Fig. 5). �

−1

1

2y

−1 1 2
x

Figure 5. Folium of Descartes

Asymptotic description of a subset of singular points of G can be obtained by
the same procedure, but we have to select only singular points in each truncated
equation. As result we obtain expansions of type 1.

2.5. Results.

Theorem 2.4 ( [4]). The algorithm of Subsection 2.4, in the case when all curves
of roots of corresponding two-dimensional truncated equations with positive genus
are elliptic or hyper-elliptic, yields a local description of all components of the set
G , adjacent to the starting point 𝑋0, in form of expansions of types 1–3.

2.6. Implementation and Application. Implementation of the described al
gorithm see in [5]. Its application to computation of a set of stability of a certain
ODE system depending on several parameters see in [6].
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Example 5 [5].

𝑔(𝑋) = 512𝑧6 − 4352𝑧5𝑦 − 768𝑧5𝑥+ 14848𝑧4𝑦2 + 5376𝑧4𝑦𝑥+ 512𝑧4𝑥2

− 25408𝑧3𝑦3 − 14656𝑧3𝑦2𝑥− 2752𝑧3𝑦𝑥2 − 192𝑧3𝑥3 + 21800𝑧2𝑦4

+ 19168𝑧2𝑦3𝑥+ 5360𝑧2𝑦2𝑥2 + 736𝑧2𝑦𝑥3 + 40𝑧2𝑥4− 7500𝑧𝑦5− 11700𝑧𝑦4𝑥

− 4376𝑧𝑦3𝑥2 − 904𝑧𝑦2𝑥3 − 92𝑧𝑦𝑥4 − 4𝑧𝑥5 + 2500𝑦5𝑥+ 1200𝑦4𝑥2

+ 344𝑦3𝑥3 + 48𝑦2𝑥4 + 4𝑦𝑥5 − 256𝑧5 + 2880𝑧4𝑦 + 1344𝑧4𝑥− 14976𝑧3𝑦2

− 6720𝑧3𝑦𝑥− 1344𝑧3𝑥2 + 37928𝑧2𝑦3 + 13816𝑧2𝑦2𝑥+ 5144𝑧2𝑦𝑥2

+ 456𝑧2𝑥3 − 45120𝑧𝑦4 − 14464𝑧𝑦3𝑥− 6784𝑧𝑦2𝑥2 − 1152𝑧𝑦𝑥3 − 64𝑧𝑥4

+ 20250𝑦5 + 6490𝑦4𝑥+ 3156𝑦3𝑥2 + 740𝑦2𝑥3 + 82𝑦𝑥4 + 2𝑥5 + 1872𝑧4

+ 2016𝑧3𝑦 − 5088𝑧3𝑥− 35496𝑧2𝑦2 + 15888𝑧2𝑦𝑥+ 2200𝑧2𝑥2 + 67608𝑧𝑦3

− 12936𝑧𝑦2𝑥− 5176𝑧𝑦𝑥2 − 344𝑧𝑥3 − 37827𝑦4 + 828𝑦3𝑥+ 2782𝑦2𝑥2

+ 412𝑦𝑥3 + 13𝑥4 − 13824𝑧3 + 62208𝑧2𝑦 + 6912𝑧2𝑥− 93312𝑧𝑦2

− 20736𝑧𝑦𝑥− 1152𝑧𝑥2 + 46656𝑦3 + 15552𝑦2𝑥+ 1728𝑦𝑥2 + 64𝑥3.

Consider the structure of solutions of the algebraic equation 𝑔(𝑋) = 0 near
its singular points (including infinity) were considered. The Newton polyhedron
of this equation is shown on Fig. 6.

Figure 6

Near origin 𝑋 = 0 we obtain

𝑥 =
∞∑︁

𝑘=0

𝛽𝑘(𝑢)𝑣𝑘, 𝑦 =
∞∑︁

𝑘=0

𝛾𝑘(𝑢)𝑣𝑘, 𝑧 =
∞∑︁

𝑘=0

𝛿𝑘(𝑢)𝑣𝑘,
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where 𝛽𝑘(𝑢), 𝛾𝑘(𝑢), 𝛿𝑘(𝑢) are rational functions of 𝑢. More precisely, we have:

𝑥 = Ω1(𝑢)

(︂
12𝑣3 + 18Ω2(𝑢)

27𝑢2 + 10𝑢− 5

𝑢+ 1
𝑣4
)︂

+ 𝑜(𝑣4),

𝑦 = Ω1(𝑢)
(︀
2𝑣2 + 12Ω2(𝑢)(5𝑢− 1)𝑣3

)︀
+ 𝑜(𝑣3),

𝑧 = Ω1(𝑢)

(︂
3𝑣2 + 4Ω2(𝑢)

71𝑢2 + 13𝑢− 4

3𝑢+ 1
𝑣3
)︂

+ 𝑜(𝑣3)

here Ω1(𝑢) =
54(3𝑢+ 1)3

(7𝑢+ 1)(𝑢+ 1)2
, Ω2(𝑢) =

3𝑢+ 1

(7𝑢+ 1)(𝑢+ 1)
. �

3. Ordinary Differential Equations. Algebraic Approach
3.1. Plane Power Geometry [7]. First, consider one differential equation and
power-logarithmic expansions of its solutions (later we consider more complicated
expansions).

Let 𝑥 be independent and 𝑦 be dependent variables, 𝑥, 𝑦 ∈ C. A differential
monomial 𝑎(𝑥, 𝑦) is a product of an ordinary monomial 𝑐𝑥𝑞1𝑦𝑞2, where 𝑐 = const ∈
C, (𝑞1, 𝑞2) ∈ R2, and a finite number of derivatives of the form 𝑑𝑙𝑦/𝑑𝑥𝑙, 𝑙 ∈ N. A
sum of differential monomials

𝑓(𝑥, 𝑦) =
∑︁

𝑎𝑖(𝑥, 𝑦) (3.1)

is called the differential sum.

Problem 2. Let a differential equation be given

𝑓(𝑥, 𝑦) = 0, (3.2)

where 𝑓(𝑥, 𝑦) is a differential sum. As 𝑥→ 0, or as 𝑥→ ∞, for solutions 𝑦 = 𝜙(𝑥)
to equation (3.2), find all expansions of the form

𝑦 = 𝑐𝑟𝑥
𝑟 +

∑︁
𝑐𝑠𝑥

𝑠, 𝑐𝑟 = const ∈ C, 𝑐𝑟 ̸= 0, (3.3)

where 𝑐𝑠 are polynomials in log 𝑥, and power exponents 𝑟, 𝑠 ∈ R, 𝜔𝑟 > 𝜔𝑠, and
𝜔 = −1, if 𝑥→ 0, or 𝜔 = 1, if 𝑥→ ∞.

The procedure to compute expansions (3.3) consists of two steps: compu
tation of the first approximations 𝑦 = 𝑐𝑟𝑥

𝑟, 𝑐𝑟 ̸= 0 and computation of further
expansion terms in (3.3).

To each differential monomial 𝑎(𝑥, 𝑦), we assign its (vector) power exponent
𝑄(𝑎) = (𝑞1, 𝑞2) ∈ R2 by the following rules:

𝑄(𝑐𝑥𝑞1𝑦𝑞2) = (𝑞1, 𝑞2); 𝑄(𝑑𝑙𝑦/𝑑𝑥𝑙) = (−𝑙, 1);
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when differential monomials are multiplied, their power exponents must be added
as vectors 𝑄(𝑎1𝑎2) = 𝑄(𝑎1) + 𝑄(𝑎2). The set S(𝑓) of power exponents 𝑄(𝑎𝑖) of
all differential monomials 𝑎𝑖(𝑥, 𝑦) presented in differential sum (3.1) is called the
support of the sum 𝑓(𝑥, 𝑦).

Obviously, S(𝑓) ∈ R2. The convex hull Γ(𝑓) of the support S(𝑓) is called
the polygon of the sum 𝑓(𝑥, 𝑦). The boundary 𝜕Γ(𝑓) of the polygon Γ(𝑓) consists
of the vertices Γ

(0)
𝑗 and the edges Γ

(1)
𝑗 . They are called (generalized) faces Γ

(𝑑)
𝑗 ,

where the upper index indicates the dimension of the face, and the lower one is
its number. Each face Γ

(𝑑)
𝑗 corresponds to the truncated sum

𝑓
(𝑑)
𝑗 (𝑥, 𝑦) =

∑︁
𝑎𝑖(𝑥, 𝑦) over 𝑖 : 𝑄(𝑎𝑖) ∈ Γ

(𝑑)
𝑗 ∩ S(𝑓) (3.4)

and truncated equation 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 0 of equation (3.2).

Example 6. Consider the third Painlevé equation

𝑓(𝑥, 𝑦)
def
= −𝑥𝑦𝑦′′ + 𝑥𝑦′2 − 𝑦𝑦′ + 𝑎𝑦3 + 𝑏𝑦 + 𝑐𝑥𝑦4 + 𝑑𝑥 = 0, (3.5)

assuming the complex parameters 𝑎, 𝑏, 𝑐, 𝑑 ̸= 0. Here the first three differential
monomials have the same power exponent 𝑄1 = (−1, 2), then 𝑄2 = (0, 3), 𝑄3 =
(0, 1), 𝑄4 = (1, 4), 𝑄5 = (1, 0). They are shown in Fig. 7 in coordinates 𝑞1, 𝑞2.

q2

−1 0 1
q1

Q1

Q2

Q3

Q4

Q5

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Figure 7

Their convex hull Γ(𝑓) is the triangle with three vertices Γ
(0)
1 = 𝑄1, Γ

(0)
2 =

𝑄4, Γ
(0)
3 = 𝑄5, and with three edges Γ

(1)
1 , Γ

(1)
2 , Γ

(1)
3 . The vertex Γ

(0)
1 = 𝑄1

corresponds to the truncation

𝑓
(0)
1 (𝑥, 𝑦) = −𝑥𝑦𝑦′′ + 𝑥𝑦′2 − 𝑦𝑦′,
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and the edge Γ
(1)
1 corresponds to the truncation

𝑓
(1)
1 (𝑥, 𝑦) = 𝑓

(0)
1 (𝑥, 𝑦) + 𝑏𝑦 + 𝑑𝑥. � (3.6)

Let the plane R2
* be dual to the plane R2 such that for 𝑃 = (𝑝1, 𝑝2) ∈ R2

*
and 𝑄 = (𝑞1, 𝑞2) ∈ R2, the scalar product

⟨𝑃,𝑄⟩ def= 𝑝1𝑞1 + 𝑝2𝑞2

is defined. Each face Γ
(𝑑)
𝑗 corresponds to its own normal cone U

(𝑑)
𝑗 ⊂ R2

* formed
by the outward normal vectors 𝑃 to the face Γ

(𝑑)
𝑗 . For the edge Γ

(1)
𝑗 , the normal

cone U(1)
𝑗 is the ray orthogonal to the edge Γ

(1)
𝑗 and directed outward the polygon

Γ(𝑓). For the vertex Γ
(0)
𝑗 , the normal cone U

(0)
𝑗 is the open sector (angle) in the

plane R2
* with the vertex at the origin 𝑃 = 0 and limited by the rays which are

the normal cones of the edges adjacent to the vertex Γ
(0)
𝑗 .

Example 7 (cont. of Example 6). For equation (3.5), the normal cones U(𝑑)
𝑗

of the faces Γ
(𝑑)
𝑗 are shown in Fig. 8. �

p2

p1

U
(0)
2

U
(0)
3

U
(0)
1

U
(1)
1

U
(1)
2

U
(1)
3

Figure 8

Thus, each face Γ
(𝑑)
𝑗 corresponds to the normal cone U

(𝑑)
𝑗 in the plane R2

*
and to the truncated equation 𝑓 (𝑑)𝑗 (𝑥, 𝑦) = 0.

Theorem 3.1. If expansion (3.3) satisfies equation (3.2), and 𝜔 · (1, 𝑟) ∈ U
(𝑑)
𝑗 ,

then the truncation 𝑦 = 𝑐𝑟𝑥
𝑟 of solution (3.3) is the solution to truncated equa

tion (3.4).
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As truncated equation is quasi–homogeneous it is not difficult to find its
power solutions. Hence, to find all truncated solutions 𝑦 = 𝑐𝑟𝑥

𝑟 to equation (3.2),
we need to compute: the support S(𝑓), the polygon Γ(𝑓), all its faces Γ

(𝑑)
𝑗 , and

their normal cones U
(𝑑)
𝑗 . Then for each truncated equation 𝑓

(𝑑)
𝑗 (𝑥, 𝑦) = 0, we

need to find all its solutions 𝑦 = 𝑐𝑟𝑥
𝑟 which have one of the vectors ±(1, 𝑟) lying

in the normal cone U
(𝑑)
𝑗 .

For each power solution 𝑦 = 𝑐𝑟𝑥
𝑟 of the truncated equation 𝑓 (𝑑)𝑗 = 0, we can

compute its characteristic polynomial 𝜈(𝑘). Roots 𝑘𝑗 of 𝜈(𝑘) with 𝜔𝑘𝑗 < 𝜔𝑟 are
critical numbers of the solution 𝑐𝑟𝑥𝑟.

Example 8 (cont. of Examples 6, 7). For the truncated equation 𝑓
(0)
1 = 0

with 𝜔 = −1, we have solutions 𝑦 = 𝑐𝑟𝑥
𝑟 with arbitrary constants 𝑟 and 𝑐𝑟. But

according to Theorem 3.1, 𝑦 = 𝑐𝑟𝑥
𝑟 can be an asymptotic form of a solution to full

equation (3.2) if 𝜔 · (1, 𝑟) ⊂ U
(0)
1 , i. e. −1 < 𝑟 < 1. Corresponding characteristic

polynomial 𝜈(𝑘) = −(𝑘 − 𝑟)2. Hence, here we have no critical numbers.
For the truncated equation 𝑓 (1)1 = 0, we have power solution 𝑦 = −𝑑𝑥/𝑏. Its

characteristic polynomial is 𝜈(𝑘) = (𝑘 − 1)2 + 𝑏2/𝑑. �.
Using support S(𝑓) of the equation (3.2) and critical numbers 𝑘1, . . . , 𝑘κ

with 𝜔𝑟 > 𝜔𝑘𝑖, we can find the set K(𝑘1, . . . , 𝑘κ) ⊂ R. Its elements 𝑠 satisfy the
inequality 𝜔𝑟 > 𝜔𝑠.

Theorem 3.2. If 𝑦 = 𝑐𝑟𝑥
𝑟, 𝑐 = const, 𝜔 · (1, 𝑟) ∈ U

(𝑑)
𝑗 , is a power solution to

truncated equation (3.4), then equation (3.2) has an expansion of solutions of the
form

𝑧 = 𝑐𝑟𝑥
𝑟 +

∑︁
𝑐𝑠𝑥

𝑠 over 𝑠 ∈ K(𝑘1, . . . , 𝑘κ), (3.7)

where 𝑘1, . . . , 𝑘κ are critical numbers of the truncated solution 𝑦 = 𝑐𝑟𝑥
𝑟; 𝑐𝑠 are

polynomials in log 𝑥, which are uniquely determined for 𝑠 ̸= 𝑘𝑖. If all criti
cal numbers 𝑘1, . . . , 𝑘κ are simple roots, and each 𝑘𝑖 does not lie in the set
K(𝑘1, . . . , 𝑘𝑖−1, 𝑘𝑖+1, . . . , 𝑘κ), then all coefficients 𝑐𝑠 are constant; for 𝑠 ̸= 𝑘𝑖,
they are uniquely determined; and for 𝑠 = 𝑘𝑖, they are arbitrary.

Example 9 (cont. of Examples 6–8). For the truncated solution 𝑦 = 𝑐𝑥𝑟 to
𝑓
(0)
1 = 0, arbitrary 𝑐 ̸= 0, 𝑟 ∈ (−1, 1)

K = {𝑠 = 𝑟 + 𝑙(1 − 𝑟) +𝑚(1 + 𝑟), 𝑙,𝑚 ∈ N ∪ {0}, 𝑙 +𝑚 > 0}. (3.8)

Since there are no critical numbers, then all 𝑐𝑠 are constant and uniquely deter
mined in expansion (3.7).

For the truncated solution 𝑦 = −𝑑𝑥/𝑏 to 𝑓
(1)
1 = 0, we have K = {𝑠 =

1 + 2𝑙, int. 𝑙 > 0}. If Im(𝑏/
√
−𝑑) ̸= 0, then there are no real critical numbers,
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and all power exponents 𝑠 are odd integers greater than 1 in expansion (3.7), and
coefficients 𝑐𝑠 are constant and uniquely determined. If Im(𝑏/

√
−𝑑) = 0, then

there is a unique real critical number 𝑘1 = 1+ | 𝑏/
√
−𝑑 |, and

K(𝑘1) = {𝑠 = 1 + 2𝑙 +𝑚(𝑘1 − 1), 𝑙,𝑚 ∈ N ∪ {0}, 𝑙 +𝑚 > 0}. (3.9)

Consequently, if the number 𝑘1 is not odd, then all 𝑐𝑠 are constant and uniquely
determined in expansion (3.7) for 𝑠 ̸= 𝑘1, and 𝑐𝑘1 is arbitrary. Finally, if 𝑘1 is odd,
then K(𝑘1) = K, and in expansion (3.7) 𝑐𝑠 is a uniquely determined constant if
𝑠 < 𝑘1; 𝑐𝑘1 is a linear function of log 𝑥 with an arbitrary constant term; 𝑐𝑠 is a
uniquely determined polynomial in log 𝑥 if 𝑠 > 𝑘1. �

The truncated equation 𝑓
(𝑑)
𝑗 (𝑥, 𝑦) = 0 can have non-power solutions 𝑦 =

𝜙(𝑥) which are the asymptotic forms for solutions to the original equation 𝑓(𝑥, 𝑦) =
0. These non-power solutions 𝑦 = 𝜙(𝑥) may be found using power and logarith
mic transformations. Power transformation is linear in logarithms and defined
by

log 𝑥 = 𝑏11 log 𝑢+ 𝑏12 log 𝑣,

log 𝑦 = 𝑏21 log 𝑢+ 𝑏22 log 𝑣,

𝐵 =

(︂
𝑏11 𝑏12
𝑏21 𝑏22

)︂
, 𝑏𝑖𝑗 ∈ R, det𝐵 ̸= 0.

It induces linear dual transformations in spaces R2 and R2
*. Logarithmic transfor

mation has the forms
𝜉 = log 𝑢 or 𝜂 = log 𝑣.

Example 10 (cont. of Examples 6–9). For the truncated equation (3.6)
corresponding to the edge Γ

(1)
1 with the normal vector −(1, 1), we make power

transformation
log 𝑥 = log 𝑢,

log 𝑦 = log 𝑢+ log 𝑣,

𝐵 =

(︂
1 0
1 1

)︂
,

i. e. 𝑥 = 𝑢, 𝑦 = 𝑢𝑣. Since 𝑦′ = 𝑥𝑣′ + 𝑣, 𝑦′′ = 𝑥𝑣′′ + 2𝑣′, then, canceling 𝑥 and
collecting similar terms, the equation (3.6), becomes

− 𝑥2𝑣𝑣′′ + 𝑥2𝑣′2 − 𝑥𝑣𝑣′ + 𝑏𝑣 + 𝑑 = 0. (3.10)

Its support consists of three points ̃︀𝑄1 = (0, 2), ̃︀𝑄2 = (0, 1), ̃︀𝑄3 = 0 on the axis
𝑞1 = 0 (see Fig. 9).
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1

Figure 10

Now we make the logarithmic transformation 𝜉 = log 𝑥. Since 𝑣′ = �̇�/𝑥,
𝑣′′ = (𝑣 − �̇�)/𝑥2, where ˙ = 𝑑/𝑑𝜉, then, collecting similar terms, the equa
tion (3.10) takes the form −𝑣𝑣 + �̇�2 + 𝑏𝑣 + 𝑑 = 0. Its support and polygon
are shown in Fig. 10. Applying the technique described before to this equa
tion, we obtain the expansion of its solutions 𝑣 = −(𝑏/2)𝜉2 + 𝑐𝜉 +

∑︀∞
𝑘=0 𝑐𝑘𝜉

−𝑘,
where 𝑐 is an arbitrary constant, and the constants 𝑐𝑘 are uniquely determined.
In original variables, we obtain the family of non-power asymptotic forms 𝑦 ∼
𝑥

[︂
−(𝑏/2)(log 𝑥)2 + 𝑐 log 𝑥+

∞∑︀
𝑘=0

𝑐𝑘(log 𝑥)−𝑘

]︂
of solutions to the original equa

tion (3.5), when 𝑥→ 0. �

3.2. Complex power exponents [7]. Indeed, the described method allows to
calculate solutions with complex power exponents as well.

Thus, by the algebraic approach, expansions of solutions

𝑦 = 𝑐𝑟𝑥
𝑟 +

∑︁

𝑠

𝑐𝑠𝑥
𝑠, (3.11)

with complex power exponents 𝑟 and 𝑠, where 𝜔Re 𝑟 > 𝜔Re 𝑠, and coefficients
𝑐𝑟 and 𝑐𝑠 are power series in log 𝑥, log log 𝑥 and so on, are found in a similar way.

In classical analysis, we encounter expansions in fractional powers and with
constant coefficients, but here we obtain more complicated expansions of solutions.

3.3. Algorithms of Power Geometry.

1) Computation of truncated equations and accompanying objects.
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2) Solution of truncated equations.

3) Power transformations.

4) Logarithmic transformations.

5) Introducing independent variable 𝑥𝑖 instead of 𝑥.

6) Computation of the first variation of a sum.

7) Computation of expansions of solutions to the initial equation, beginning
by solutions to a truncated equation.

All these algorithms, except for 4) and 5), can be applied to solve algebraic equa
tions.

Similar technique is used for equations having small or big parameters. The
power exponents of these parameters are accounted in the same way as power
exponents of variables tending to zero or infinity.

3.4. The sixth Painlevé equation [8]. It has the form

𝑦′′ =
(𝑦′)2

2

(︂
1

𝑦
+

1

𝑦 − 1
+

1

𝑦 − 𝑥

)︂
− 𝑦′

(︂
1

𝑥
+

1

𝑥− 1
+

1

𝑦 − 𝑥

)︂
+

+
𝑦(𝑦 − 1)(𝑦 − 𝑥)

𝑥2(𝑥− 1)2

[︂
𝑎+ 𝑏

𝑥

𝑦2
+ 𝑐

𝑥− 1

(𝑦 − 1)2
+ 𝑑

𝑥(𝑥− 1)

(𝑦 − 𝑥)2

]︂
,

(3.12)

where 𝑎, 𝑏, 𝑐, 𝑑 are complex parameters, 𝑥 and 𝑦 are complex variables, 𝑦′ =
𝑑𝑦/𝑑𝑥. Equation (3.12) has three singular points 𝑥 = 0, 𝑥 = 1, and 𝑥 = ∞. After
multiplying by the common denominator, we obtain the equation as a differential
sum. Its support and its polygon, in the case 𝑎 ̸= 0, 𝑏 ̸= 0, are shown in Fig. 11.

We found all asymptotic expansions (16) of solutions to equation (3.12) near
its three singular points. They comprise 108 families. In particular, for 𝑎 = 1 and
𝑐 = 0, there is an expansion of the form

𝑦 = − 1

cos[log(𝐶1𝑥)]
+

∑︁

Re 𝑠>1

𝑐𝑠𝑥
𝑠, (3.13)

where 𝐶1 is an arbitrary constant, the coefficients 𝑐𝑠 are uniquely determined
constants. Here

1/cos[log(𝑥)] = 1/(𝑥𝑖 + 𝑥−𝑖) = 𝑥𝑖
∞∑︁

𝑘=0

(︀
−𝑥2𝑖

)︀𝑘
= 𝑥−𝑖

∞∑︁

𝑘=0

(︀
−𝑥−2𝑖

)︀𝑘
.
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q2

q10 1

1

Figure 11

For 𝐶1 = 1 and real 𝑥 > 0, solution (3.13) has infinitely many poles accumulating
at the point 𝑥 = 0. We also found all expansions of solutions to equation (3.12)
near its nonsingular points. They comprise 17 families [9].

That approach was applied to ODE systems [10–13].

3.5. Applications.

1. Asymptotic forms and expansions of solutions to the Painlevé equations [8,
14,15].

2. Periodic motions of satellite around its mass center moving along an el
liptic orbit [16].

3. New properties of motion of a top (rigid body with a fixed point) [17].

4. Families of periodic solutions of the restricted three-body problem and
distribution of asteroids [18,19].

5. Integrability of ODE systems [20].

6. Surface waves on water [3, Ch. 5].

4. Ordinary Differential Equations. Differential Approach
4.1. Orders of solutions and their derivatives. All solutions of the form (3.2)
have the following property:

𝑝𝜔

(︁
𝑦(𝑘)

)︁
= 𝑝𝜔(𝑦) − 𝑘, 𝑘 = 1, 2, . . . , 𝑛,
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where 𝑛 is the maximal order of derivative in the initial ODE, and

𝑝𝜔(𝜙) = 𝜔 lim sup
𝑥𝜔→∞

log|𝜙(𝑥)|
𝜔 log|𝑥|

along fixed arg 𝑥 ∈ [0, 2𝜋) is the order of the function 𝜙(𝑥) as well.

4.2. Differential Approach [21–26]. To each differential monomial 𝑎(𝑥, 𝑦) we
put in correspondence the 3D point Q = (𝑞1, 𝑞2, 𝑞3), where 𝑞1 and 𝑞2 as before, but
𝑞3 is the total order of derivatives in the monomial. We obtain the 3D support
̃︀S(𝑓) of the initial ODE 𝑓 = 0 and polyhedron Γ(𝑓) as convex hull of S̃(𝑓).
Using truncated equations, corresponding to its faces and edges, we can find their
solutions in the form of elliptic or hyperelliptic functions 𝜙0(𝑥) and continue them
into (hyper)elliptic expansion

𝑦 = 𝜙0(𝑥) +
∞∑︁

𝑙=1

𝜙𝑙(𝑥)𝑥−𝜔𝑙, (4.1)

where all 𝜙𝑙(𝑥) are elliptic or hyperelliptic functions. This differential approach
allows to find expansions (4.1) for solutions with property 𝑝𝜔

(︀
𝑦(𝑘)

)︀
= 𝑝𝜔(𝑦)−𝛾𝜔𝑘,

𝑘 = 1, 2, . . . , 𝑛, where 𝛾𝜔 ̸= 1.

Example 11 (cont. of Examples 6–10) [23]. The 3D support S̃ of the third
Painleve equation (3.5) consists of 6 points:

Q1 = (−1, 2, 2),Q2 = (−1, 2, 1),Q3 = (0, 3, 0),

Q4 = (0, 1, 0),Q5 = (1, 4, 0),Q6 = (1, 0, 0).

Their convex hull Γ is a pentahedron (Fig. 12). It has 2D upper face Γ
(2)
1 with

external normal 𝑁1 = (1, 0, 1) containing 3 points of the support S̃: Q1, Q5, Q6.
Corresponding truncated equation is

𝑓
(2)
1

def
= −𝑥𝑦𝑦′′ + 𝑥𝑦′2 + 𝑐𝑥𝑦4 + 𝑑𝑥 = 0.

It has the first integral

𝑦′2 = 𝑐𝑦4 + 𝐶0𝑦
2 − 𝑑

def
= 𝑃 (𝑦), (4.2)

where 𝐶0 ∈ C is an arbitrary constant. Discriminant of the polynomial 𝑃 (𝑦)
is ∆(𝑃 ) = −𝑐𝑑(𝑐𝑑 + 𝐶2

0/4)2. If ∆(𝑃 ) ̸= 0, then solutions 𝑦 = 𝜙0(𝑥) of the
equation (4.2) are elliptic functions. So we can look for expansions (19), where
all 𝜙𝑙(𝑥) are regular functions of 𝜙0(𝑥). Here 𝜔 = 1 and 𝛾 = 0. �
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Figure 12. 3D support ̃︀S(𝑓) and polyhedron Γ(𝑓) of equation 𝑃3 (3.5) with all
𝑎, 𝑏, 𝑐, 𝑑 ̸= 0. The grey face is Γ

(2)
1 . All dotted lines are in the plane 𝑞1, 𝑞2, they

show projections of Γ(𝑓) on the plane (𝑞1, 𝑞2).

5. Partial Differential Equations. Algebraic Approach
5.1. Theory [3]. Let 𝑋 = (𝑥1, . . . , 𝑥𝑚) ∈ C𝑚 be independent and 𝑌 =
(𝑦1, . . . , 𝑦𝑛) ∈ C𝑛 be dependent variables. Suppose 𝑍 = (𝑋, 𝑌 ) ∈ C𝑚+𝑛.
A differential monomial 𝑎(𝑍) is the product of an ordinary monomial 𝑐𝑍𝑅 =
𝑐𝑧𝑞11 · · · 𝑧𝑟𝑚+𝑛

𝑚+𝑛 , where 𝑐 = const ∈ C, 𝑅 = (𝑞1, . . . , 𝑟𝑚+𝑛) ∈ R𝑚+𝑛, and a finite
number of derivatives of the form

𝜕𝑙𝑦𝑗

𝜕𝑥𝑙11 · · · 𝜕𝑥𝑙𝑚𝑚
def
=
𝜕𝑙𝑦𝑗
𝜕𝑋𝐿

, 𝑙𝑗 > 0,
𝑚∑︁

𝑗=1

𝑙𝑗 = 𝑙, 𝐿 = (𝑙1, . . . , 𝑙𝑚).

A differential monomial 𝑎(𝑍) corresponds to its vector power exponent 𝑄(𝑎) ∈
R𝑚+𝑛 formed by the following rules

𝑄(𝑐𝑍𝑅) = 𝑅, 𝑄(𝜕𝑙𝑦𝑗/𝜕𝑋
𝐿) = (−𝐿,𝐸𝑗),

where 𝐸𝑗 is unit vector. A product of monomials 𝑎 · 𝑏 corresponds to the sum of
their vector power exponents: 𝑄(𝑎𝑏) = 𝑄(𝑎) +𝑄(𝑏).

A differential sum is a sum of differential monomials 𝑓(𝑍) =
∑︀
𝑎𝑘(𝑍). A

set S(𝑓) of vector power exponents 𝑄(𝑎𝑘) is called the support of the sum 𝑓(𝑍).
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The closure of the convex hull Γ(𝑓) of the support S(𝑓) is called the polyhedron
of the sum 𝑓(𝑍).

Consider a system of equations

𝑓𝑖(𝑋, 𝑌 ) = 0, 𝑖 = 1, . . . , 𝑛, (5.1)

where 𝑓𝑖 are differential sums. Each equation 𝑓𝑖 = 0 corresponds to: its support
S(𝑓𝑖), its polyhedron Γ(𝑓𝑖) with the set of faces Γ

(𝑑𝑖)
𝑖𝑗 in the main space R𝑚+𝑛, the

set of their normal cones U
(𝑑𝑖)
𝑖𝑗 in the dual space R𝑚+𝑛

* , and the set of truncated
equations

𝑓
(𝑑𝑖)
𝑖𝑗 (𝑋, 𝑌 ) = 0.

The set of truncated equations

𝑓
(𝑑𝑖)
𝑖𝑗𝑖

(𝑋, 𝑌 ) = 0, 𝑖 = 1, . . . , 𝑛 (5.2)

is the truncated system if the intersection

U
(𝑑1)
1𝑗1

∩ · · · ∩U
(𝑑𝑛)
𝑛𝑗𝑛

(5.3)

is not empty. A solution 𝑦𝑖 = 𝜙𝑖(𝑋), 𝑖 = 1, . . . , 𝑛 to system (5.1) is associated to
its normal cone u ⊂ R𝑚+𝑛. If the normal cone u intersects with cone (5.3), then
the asymptotic form 𝑦𝑖 = 𝜙𝑖(𝑋), 𝑖 = 1, . . . , 𝑛 of this solution satisfies truncated
system (5.2), which is quasi-homogeneous.

5.2. Applications. Boundary layer on a needle [27]. The theory of the
boundary layer on a plate for a stream of viscous incompressible fluid was de
veloped by Prandtl (1904) and Blasius (1908). However a similar theory for the
boundary layer on a needle was not known until recently, since no-slip conditions
on the needle correspond to a more strong singularity as for the plate. This theory
was developed with the help of Power Geometry (2004).

Let 𝑥 be an axis in three-dimensional space, 𝑟 be the distance from the axis,
and semi-infinite needle be placed on the half-axis 𝑥 > 0, 𝑟 = 0. We studied
stationary axisymmetric flows of viscous fluid which had constant velocity at
𝑥 = −∞ parallel to the axis 𝑥, and which satisfied no-slip conditions on the needle
(Fig. 13). We considered two cases: (1) incompressible fluid and (2) compressible
heat-conducting gas.

First case: incompressible fluid. For it, the Navier-Stokes equations in
independent variables 𝑥, 𝑟 are equivalent to the system of two equations for the
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Figure 13

stream function 𝜓 and the pressure 𝑝

𝑔1
def
= −1

𝑟

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕𝜓

𝜕𝑟

)︂
+

1

𝑟

𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑥

(︂
1

𝑟

𝜕𝜓

𝜕𝑟

)︂
+

1

𝜌

𝜕𝑝

𝜕𝑥
−

− 𝜈

(︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕𝜓

𝜕𝑟

)︂)︂
+

𝜕2

𝜕𝑥2

(︂
1

𝑟

𝜕𝜓

𝜕𝑟

)︂)︂
= 0,

𝑔2
def
=

1

𝑟

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕𝜓

𝜕𝑥

)︂
− 1

𝑟

𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑥

(︂
1

𝑟

𝜕𝜓

𝜕𝑥

)︂
+

1

𝜌

𝜕𝑝

𝜕𝑟
+

+ 𝜈

(︂
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕2𝜓

𝜕𝑥𝜕𝑟

)︂
+

𝜕2

𝜕𝑥2

(︂
1

𝑟

𝜕𝜓

𝜕𝑥

)︂)︂
= 0,

(5.4)

where 𝜌, 𝜈 = const, with the boundary conditions

𝜓 = 𝜓0𝑟
2 for 𝑥 = −∞, 𝜓0 = const; (5.5)

𝜕𝜓/𝜕𝑥 = 𝜕𝜓/𝜕𝑟 = 𝜕2𝜓/𝜕𝑥𝜕𝑟 = 𝜕2𝜓/𝜕𝑟2 = 0 for 𝑥 > 0, 𝑟 = 0. (5.6)

Here 𝑚 = 𝑛 = 2 and 𝑚+ 𝑛 = 4.
Hence the supports of equations (5.4) must be considered in R4. It turned out

that polyhedra Γ(𝑔1) and Γ(𝑔2) of equations (5.4) are three-dimensional tetrahe
dra, which can be moved by translation in one linear three-dimensional subspace,
that simplified the isolation of the truncated systems. An analysis of truncated
systems and of the results of their matching revealed that system (5.4) had no
solution with 𝑝 > 0 satisfying both boundary conditions (5.5), (5.6).

Second case: compressible heat-conducting gas. For this case, the
Navier-Stokes equations in independent variables 𝑥, 𝑟 are equivalent to the system
of three equations for the stream function 𝜓, the density 𝜌, and the enthalpy ℎ
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ℎ (an analog of the temperature)

𝑓1
def
=−1

𝑟

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂
+

1

𝑟

𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂
− 𝐴

𝜕

𝜕𝑟
(𝜌ℎ)

+
2

3
𝐶𝑁 𝜕

𝜕𝑟

(︂
ℎ𝑁

𝑟

𝜕

𝜕𝑟

(︂
1

𝜌

𝜕𝜓

𝜕𝑥

)︂)︂
− 2

3
𝐶𝑁 𝜕

𝜕𝑟

(︂
ℎ𝑁

𝑟

𝜕

𝜕𝑥

(︂
1

𝜌

𝜕𝜓

𝜕𝑟

)︂)︂

− 2𝐶𝑁

𝑟

𝜕

𝜕𝑟

(︂
ℎ𝑁𝑟

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂)︂
+ 𝐶𝑁 𝜕

𝜕𝑥

(︂
ℎ𝑁

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂

− 𝐶𝑁 𝜕

𝜕𝑥

(︂
ℎ𝑁

𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂)︂
+

2𝐶𝑁ℎ𝑁

𝜌𝑟3
𝜕𝜓

𝜕𝑥
= 0,

𝑓2
def
=

1

𝑟

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂
− 1

𝑟

𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂

− 𝐴
𝜕

𝜕𝑥
(𝜌ℎ) +

2

3
𝐶𝑁 𝜕

𝜕𝑥

(︂
ℎ𝑁

𝑟

𝜕

𝜕𝑟

(︂
1

𝜌

𝜕𝜓

𝜕𝑥

)︂)︂

− 2

3
𝐶𝑁 𝜕

𝜕𝑥

(︂
ℎ𝑁

𝑟

𝜕

𝜕𝑥

(︂
1

𝜌

𝜕𝜓

𝜕𝑟

)︂)︂
+
𝐶𝑁

𝑟

𝜕

𝜕𝑟

(︂
ℎ𝑁𝑟

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂

− 𝐶𝑁

𝑟

𝜕

𝜕𝑟

(︂
ℎ𝑁𝑟

𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂)︂
+ 2𝐶𝑁 𝜕

𝜕𝑥

(︂
ℎ𝑁

𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂
= 0,

(5.7)

𝑓3
def
=

1

𝑟

𝜕𝜓

𝜕𝑥

𝜕ℎ

𝜕𝑟
− 1

𝑟

𝜕𝜓

𝜕𝑟

𝜕ℎ

𝜕𝑥
− 𝐴

𝜌𝑟

𝜕𝜓

𝜕𝑥

𝜕(𝜌ℎ)

𝜕𝑟
+
𝐴

𝜌𝑟

𝜕𝜓

𝜕𝑟

𝜕(𝜌ℎ)

𝜕𝑥

+ 2𝐶𝑁ℎ𝑁
(︂
𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂)︂2

+ 2𝐶𝑁ℎ𝑁
(︂

1

𝑟2𝜌

𝜕𝜓

𝜕𝑥

)︂2

+ 2𝐶𝑁ℎ𝑁
(︂
𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂2

+ 𝐶𝑁ℎ𝑁
(︂
𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂)︂2

− 𝐶𝑁ℎ𝑁
𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑥

)︂
𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂

+ 𝐶𝑁ℎ𝑁
(︂
𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂2

− 2

3
𝐶𝑁ℎ𝑁

(︂
1

𝑟

𝜕

𝜕𝑟

(︂
1

𝜌

𝜕𝜓

𝜕𝑥

)︂)︂2

+
4𝐶𝑁ℎ𝑁

3𝑟

𝜕

𝜕𝑟

(︂
1

𝜌

𝜕𝜓

𝜕𝑥

)︂
𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂
− 2

3
𝐶𝑁ℎ𝑁

(︂
𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂2

+
𝐶𝑁

𝜎𝑟

𝜕

𝜕𝑟

(︂
𝑟ℎ𝑁

𝜕ℎ

𝜕𝑟

)︂
+
𝐶𝑁

𝜎

𝜕

𝜕𝑥

(︂
ℎ𝑁

𝜕ℎ

𝜕𝑥

)︂
= 0,
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where parameters 𝐴, 𝐶, 𝜎 > 0 and 𝑁 ∈ [0, 1], with the boundary conditions

𝜓 = 𝜓0𝑟
2, 𝜌 = 𝜌0, ℎ = ℎ0 for 𝑥 = −∞, 𝜓0, 𝜌0, ℎ0 = const (5.8)

and (5.6). Here 𝑚 = 2, 𝑛 = 3, and 𝑚 + 𝑛 = 5. In the space R5, all polyhedrons
Γ(𝑓1), Γ(𝑓2), Γ(𝑓3) of equations (5.7) are three-dimensional, and they can be
translated into one linear 3D subspace. In coordinates �̃�′ = (𝑞′1, 𝑞

′
2, 𝑞

′
3) of this

three-dimensional space, the supports, polyhedra are shown in Figures 14–16.
The supports of sums 𝑓1, 𝑓2 and 𝑓3 are following:

S(𝑓1) = {�̃�′
0 = 0, �̃�′

1 = (1, 0, 0), �̃�′
2 = (0, 1, 0), �̃�′

3 = (0, 0, 1)},
S(𝑓2) = {�̃�′

0 = 0, �̃�′
1 = (1,−1, 1), �̃�′

2 = (0, 1, 0), �̃�′
3 = (0, 0, 1)},

S(𝑓3) = {�̃�′
0 = 0, �̃�′

1 = (0, 1, 0), �̃�′
2 = (−1, 2,−1), �̃�′

3 = (0, 0, 1),

�̃�′
4 = (−1, 0, 1), �̃�′

5 = (−1, 1, 0)}.

The truncated system corresponding to the boundary layer on the needle
corresponds to the vertex �̃�′

1, faces [�̃�′
0, �̃�

′
1, �̃�

′
2] and [�̃�′

0, �̃�
′
1, �̃�

′
2] of polynomials

Γ(𝑓1), Γ(𝑓2) and Γ(𝑓3) respectively. In Figs. 14–16 they are distinguished.

Figure 14
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Figure 15

Thus, the truncated system is

𝑓
(0)
12

def
= −𝐴𝜕(𝜌ℎ)/𝜕𝑟 = 0,

𝑓
(2)
22

def
=

1

𝑟

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂
− 1

𝑟

𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑥

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂
− 𝐴

𝜕

𝜕𝑥
(𝜌ℎ)+

+
𝐶𝑁

𝑟

𝜕

𝜕𝑟

(︂
ℎ𝑁𝑟

𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂
= 0,

𝑓
(2)
32

def
=

1

𝑟

𝜕𝜓

𝜕𝑥

𝜕ℎ

𝜕𝑟
− 1

𝑟

𝜕𝜓

𝜕𝑟

𝜕ℎ

𝜕𝑥
− 𝐴

𝜌𝑟

𝜕𝜓

𝜕𝑥

𝜕(𝜌ℎ)

𝜕𝑟
+
𝐴

𝜌𝑟

𝜕𝜓

𝜕𝑟

𝜕(𝜌ℎ)

𝜕𝑥
+

+ 𝐶𝑁ℎ𝑁
(︂
𝜕

𝜕𝑟

(︂
1

𝜌𝑟

𝜕𝜓

𝜕𝑟

)︂)︂2

+
𝐶𝑁

𝜎𝑟

𝜕

𝜕𝑟

(︂
𝑟ℎ𝑁

𝜕ℎ

𝜕𝑟

)︂
= 0,

with the boundary conditions 𝜓 = 𝜓0𝑟
2, 𝜌 = 𝜌0, ℎ = ℎ0; 𝜓0, 𝜌0, ℎ0 = const, for

𝑟 → ∞.
An analysis of solutions to the latter problem by methods of Power Geometry

revealed that for 𝑁 ∈ (0, 1) it has solutions of the form

𝜓 ∼ 𝑐1𝑟
2|log 𝜉|−1/𝑁 , 𝜌 ∼ 𝑐2|log 𝜉|−1/𝑁 , ℎ ∼ 𝑐3|log 𝜉|1/𝑁 , (5.9)

where 𝜉 = 𝑟2/𝑥 → 0 and 𝑐1–𝑐3 are arbitrary constants. Thus, for 𝑁 ∈ (0, 1), in
the boundary layer 𝑟2/𝑥 < const, as 𝑥 → +∞ and 𝜉 = 𝑟2/𝑥 → 0, we obtained
the asymptotic form of the flow (5.9), i.e. near the needle, the density 𝜌 tends to
zero, and the temperature ℎ increases to infinity as the distance 𝑥 to the initial
point of the needle tends to +∞.
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Figure 16

5.3. Other applications of Power Geometry. Evolution of the turbulent
flow [28,29] and Thermodynamics [30].

6. Connection with Idempotent Mathematics
For polynomial 𝑓(𝑋), let us define the function

𝑓(𝑆) = lim
ℎ→+0

ℎ log|𝑓(exp(𝑆/ℎ))|

and its subdifferential

𝜕𝑓 = {𝑄 ∈ R𝑛 : ⟨𝑄,𝑆⟩ 6 𝑓(𝑆) for all 𝑆 ∈ R𝑛
*}.

Theorem 6.1 ( [31]). If 𝑓(𝑋) is a polynomial, then the subdifferential 𝜕𝑓 of
𝑓(𝑋) at the origin coincides with the Newton polyhedron Γ(𝑓).

V. P. Maslov and his colleagues developed Idempotent Analysis [31,32]. How
ever, as a method of finding leading terms in nonlinear problems, it is too compli
cated. Theorem 6.1 shows that in algebraic problems Idempotent Analysis gives
the Newton polyhedron. This observation can be generalized to other classes
of problems, but if we just begin with appropriate generalization of the Newton
polyhedron (or Power Geometry), then we do not really need Idempotent Analy
sis (see Sections 4 and 5). Indeed, Idempotent Analysis [32] is useful in problems
with “bad” solutions (for instance, discontinuous or non-smooth).
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