
Keldysh Institute  •  Publication search

Keldysh Institute preprints  •  Preprint No. 70, 2013

Grechanik S.A., Klyuchnikov I.G.,
Romanenko S.A.

Staged multi-result
supercompilation: filtering

before producing

Recommended form of bibliographic references:  Grechanik S.A., Klyuchnikov I.G., Romanenko
S.A. Staged multi-result supercompilation: filtering before producing. Keldysh Institute preprints, 2013,
No. 70, 28 p.  URL: http://library.keldysh.ru/preprint.asp?id=2013-70&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2013-70&lg=e
http://library.keldysh.ru/author_page.asp?aid=3634&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/author_page.asp?aid=1291&lg=e
http://library.keldysh.ru/preprint.asp?id=2013-70&lg=e


KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko

Staged multi-result supercompilation:
filtering before producing

Moscow
2013



Sergei A. Grechanik, Ilya G. Klyuchnikov, Sergei A. Romanenko. Staged
multi-result supercompilation: filtering before producing

When applying supercompilation to problem-solving, multi-result supercompila-
tion enables us to find the best solutions by generating a set of possible residual
graphs of configurations that are then filtered according to some criteria. Un-
fortunately, the search space may be rather large. However, we show that the
search can be drastically reduced by decomposing multi-result supercompilation
into two stages. The first stage produces a compact representation for the set of
residual graphs by delaying some graph-building operation. These operations are
performed at the second stage, when the representation is interpreted, to actually
produce the set of graphs. The main idea of our approach is that, instead of filter-
ing a collection of graphs, we can analyze and clean its compact representation.
In some cases of practical importance (such as selecting graphs of minimal size
and removing graphs containing unsafe configurations) cleaning can be performed
in linear time.

Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a
and RF President grant for leading scientific schools No. NSh-4307.2012.9.

С.А. Гречаник, И.Г. Ключников, С.А. Романенко. Стадированная
многорезультатная суперкомпиляция: фильтрация результатов до
их порождения

В случае применения суперкомпиляции в области решения задач, многоре-
зультатная суперкомпиляция позволяет обнаруживать наилучшие решения
благодаря тому, что порождается некоторое множество возможных остаточ-
ных графов конфигураций, которое затем фильтруется в соответствии с неко-
торыми критериями. К сожалению, пространство поиска при этом может по-
лучаться весьма обширным. Однако, мы показываем, что можно значительно
уменьшить объем поиска разложив процесс многорезультатной суперкомпи-
ляции в композицию из двух стадий. На первой стадии порождается компакт-
ное представление множества остаточных графов, которое получается в ре-
зультате задержки некоторых операций по построению графов. Эти операции
выполняются на второй стадии, когда компактное представление интерпре-
тируется, в результате чего и генерируется множество графов. Основная идея
предлагаемого подхода состоит в том, что вместо фильтрации множества гра-
фов можно выполнять анализ и чистку его компактного представления. Во
многих случаях, представляющих практический интерес (таких, как отбор
графов минимального размера или отбрасывание графов, содержащих нена-
дежные конфигурации) чистка может быть выполнена за линейное время.

Работа выполнена при поддержке гранта РФФИ № 12-01-00972-a и гранта
Президента РФ для ведущих научных школ № НШ-4307.2012.9.



3

1 Introduction
When applying supercompilation [41, 42, 45, 43, 44, 37, 38, 35, 33, 9, 21, 19]
to problem-solving [30, 31, 32, 29, 28, 10, 12, 15, 14, 22], multi-result super-
compilation enables us to find the best solutions by generating a set of possible
residual graphs of configurations that are then filtered according to some criteria
[13, 25, 23, 24].

Unfortunately, the search space may be rather large [16, 17]. However, we show
that the search can be drastically reduced by decomposing multi-result supercom-
pilation into two stages [39, 40]. The first stage produces a compact representation
for the set of residual graphs by delaying some graph-building operation. These
operations are performed at the second stage, when the representation is inter-
preted, to actually produce the set of graphs. The main idea of our approach
is that, instead of filtering a collection of graphs, we can analyze and clean its
compact representation. In some cases of practical importance (such as select-
ing graphs of minimal size and removing graphs containing unsafe configurations)
cleaning can be performed in linear time.

2 Filtering before producing. . . How?

2.1 Multi-result supercompilation and filtering
A popular approach to problem solving is trial and error : (1) generate alterna-
tives, (2) evaluate alternatives, (3) select the best alternatives.

Thus, when trying to apply supercompilation to problem solving we naturally
come to the idea of multi-result supercompilation: instead of trying to guess,
which residual graph of configurations is “the best” one, a multi-result supercom-
piler produces a collection of residual graphs.

Suppose we have a multi-result supercompiler mrsc and a filter filter. Com-
bining them, we get a problem-solver

solver = filter ∘ mrsc

where mrsc is a general-purpose tool (at least to some extent), while filter
incorporates some knowledge about the problem domain. A good feature of this
design is its modularity and the clear separation of concerns: in ideal case, mrsc
knows nothing about the problem domain, while filter knows nothing about
supercompilation.

2.2 Fusion of supercompilation and filtering
However, the main problem with multi-result supercompilation is that it can
produce millions of residual graphs! Hence, it seems to be a good idea to suppress
the generation of the majority residual graphs “on the fly”, in the process of
supercompilation. This can be achieved if the criteria filter is based upon are



4

“monotonic”: if some parts of a partially constructed residual graph are “bad”,
then the completed residual graph is also certain to be a “bad” one.

We can exploit monotonicity by fusing filter and mrsc into a monolithic
program

solver′ = fuse filter mrsc

where fuse is an automatic tool (based, for example, on supercompilation), or
just a postgraduate who has been taught (by his scientific adviser) to perform
fusion by hand. :-)

An evident drawback of this approach is its non-modularity. Every time
filter is modified, the fusion of mrsc and filter has to be repeated.

2.3 Staged supercompilation: multiple results seen as
a residual program

Here we put forward an alternative approach which:

1. Completely separates supercompilation from filtering.

2. Enables filtering of partially constructed residual graphs.

Thus the technique is modular, and yet reduces the search space and consumed
computational resources.

Our “recipe” is as follows. (1) Replace small-step supercompilation with big-
step supercompilation. (2) Decompose supercompilation into two stages. (3)
Consider the result of the first stage as a “program” to be interpreted by the
second stage. (4) Transform the “program” to reduce the number of graphs to be
produced.

2.3.1 Small-step ⇒ big-step

Supercompilation can be formulated either in “small-step” or in “big-step” style.
Small-step supercompilation proceeds by rewriting a graph of configurations. Big-
step supercompilation is specified/implemented in compositional style: the con-
struction of a graph amounts to constructing its subgraphs, followed by syn-
thesizing the whole graph from its previously constructed parts. Multi-result
supercompilation was formulated in small-step style [23, 24]. First of all, given
a small-step multi-result supercompiler mrsc, we can refactor it, to produce a
big-step supercompiler naive-mrsc.

2.3.2 Identifying Cartesian products

Now it turns out that, at some places, naive-mrsc calculates “Cartesian prod-
ucts”: if a graph 𝑔 is to be constructed from 𝑘 subgraphs 𝑔1, . . . , 𝑔𝑘, naive-mrsc
computes 𝑘 sets of graphs 𝑔𝑠1, . . . , 𝑔𝑠𝑘 and then considers all possible 𝑔𝑖 ∈ 𝑔𝑠𝑖
for 𝑖 = 1, . . . , 𝑘 and constructs corresponding versions of the graph 𝑔.



5

2.3.3 Staging: delaying Cartesian products

At this point the process of supercompilation can be decomposed into two stages

naive-mrsc $ ⟨⟨_⟩⟩ ∘ lazy-mrsc

where ⟨⟨_⟩⟩ is a unary function, and 𝑓 $ 𝑔 means that 𝑓 𝑥 = 𝑓 𝑥 for all 𝑥.
At the first stage, lazy-mrsc generates a “lazy graph”, which, essentially, is

a “program” to be “executed” by ⟨⟨_⟩⟩. Unlike naive-mrsc, lazy-mrsc does not
calculate Cartesian products immediately: instead, it outputs requests for ⟨⟨_⟩⟩ to
calculate them at the second stage.

2.3.4 Fusing filtering with the generation of graphs

Suppose, l is a lazy graph produced by lazy-mrsc. By evaluating ⟨⟨ l ⟩⟩, we can
generate the same bag of graphs, as would have been produced by the original
naive-mrsc.

However, usually, we are not interested in the whole bag ⟨⟨ l ⟩⟩. The goal is
to find “the best” or “most interesting” graphs. Hence, there should be developed
some techniques of extracting useful information from a lazy graph 𝑙 without
evaluating ⟨⟨ l ⟩⟩ directly.

This can be formulated in the following form. Suppose that a function filter
filters bags of graphs, removing “bad” graphs, so that

filter ⟨⟨ l ⟩⟩

generates the bag of “good” graphs. Let clean be a transformer of lazy graphs
such that

filter ∘ ⟨⟨_⟩⟩ $ ⟨⟨_⟩⟩ ∘ clean

which means that filter ⟨⟨ l ⟩⟩ and ⟨⟨ clean l ⟩⟩ always return the same col-
lection of graphs.

In general, a lazy graph transformer clean is said to be a cleaner if for any
lazy graph l

⟨⟨ clean l ⟩⟩ ⊆ ⟨⟨ l ⟩⟩

The nice property of cleaners is that they are composable: given clean1 and
clean2, clean2 ∘ clean1 is also a cleaner.

2.4 Typical cleaners
Typical tasks are finding graphs of minimal size and removing graphs that contain
“bad” configurations. It is easy to implement corresponding cleaners in a such a
way that the lazy graph is traversed only once, in a linear time.



6

2.5 What are the advantages?
We get the following scheme:

filter ∘ naive-mrsc $
filter ∘ ⟨⟨_⟩⟩ ∘ lazy-mrsc $ ⟨⟨_⟩⟩ ∘ clean ∘ lazy-mrsc

We can see that:

∙ The construction is modular: lazy-mrsc and ⟨⟨_⟩⟩ do not have to know
anything about filtering, while clean does not have to know anything about
lazy-mrsc and ⟨⟨_⟩⟩.

∙ Cleaners are composable: we can decompose a sophisticated cleaner into a
composition of simpler cleaners.

∙ In many cases (of practical importance) cleaners can be implemented in such
a way that the best graphs can be extracted from a lazy graph in linear time.

2.6 Codata and corecursion: decomposing lazy-mrsc

By using codata and corecursion, we can decompose lazy-mrsc into two stages

lazy-mrsc $ prune-cograph ∘ build-cograph

where build-cograph constructs a (potentially) infinite tree, while prune-cograph
traverses this tree and turns it into a lazy graph (which is finite).

The point is that build-cograph performs driving and rebuilding configura-
tions, while prune-cograph uses whistle to turn an infinite tree to a finite graph.
Thus build-cograph knows nothing about the whistle, while prune-cograph
knows nothing about driving and rebuilding. This further improves the modular-
ity of multi-result supercompilation.

2.7 Cleaning before whistling
Now it turnes out that some cleaners can be pushed over prune-cograph!

Suppose clean is a lazy graph cleaner and clean∞ a cograph cleaner, such
that

clean ∘ prune-cograph $ prune-cograph ∘ clean∞

then

clean ∘ lazy-mrsc $
clean ∘ prune-cograph ∘ build-cograph $
prune-cograph ∘ clean∞ ∘ build-cograph

The good thing is that build-cograph and clean∞ work in a lazy way, generating
subtrees by demand. Hence, evaluating



7

⟨⟨ prune-cograph ∘ (clean∞ (build-cograph c)) ⟩⟩

is likely to be less time and space consuming than directly evaluating

⟨⟨ clean (lazy-mrsc c) ⟩⟩

3 A model of big-step multi-result
supercompilation

We have formulated and implemented in Agda [2] an idealized model of big-step
multi-result supercompilation [1]. This model is rather abstract, and yet it can
be instantiated to produce runnable supercompilers. By the way of testing, the
abstract model has been instantiated to produce a multi-result supercompiler for
counter systems [16].

3.1 Graphs of configurations
Given an initial configuration 𝑐, a supercompiler produces a list of “residual”
graphs of configurations: 𝑔1, . . . , 𝑔𝑘.

Graphs of configurations are supposed to represent “residual programs” and
are defined in Agda (see Graphs.agda) [2] in the following way:

data Graph (C : Set) : Set where
back : ∀ (c : C) → Graph C
forth : ∀ (c : C) (gs : List (Graph C)) → Graph C

Technically, a Graph C is a tree, with back nodes being references to parent
nodes.

A graph’s nodes contain configurations. Here we abstract away from the con-
crete structure of configurations. In this model the arrows in the graph carry
no information, because, this information can be kept in nodes. (Hence, this
information is supposed to be encoded inside “configurations”.)

To simplify the machinery, back-nodes in this model of supercompilation do
not contain explicit references to parent nodes. Hence, back c means that c is
foldable to a parent configuration (perhaps, to several ones).

∙ Back-nodes are produced by folding a configuration to another configuration
in the history.

∙ Forth-nodes are produced by

– decomposing a configuration into a number of other configurations (e.g.
by driving or taking apart a let-expression), or

– by rewriting a configuration by another one (e.g. by generalization,
introducing a let-expression or applying a lemma during two-level su-
percompilation).



8

3.2 “Worlds” of supercompilation
The knowledge about the input language a supercompiler deals with is represented
by a “world of supercompilation”, which is a record that specifies the following.

∙ Conf is the type of “configurations”. Note that configurations are not re-
quired to be just expressions with free variables! In general, they may
represent sets of states in any form/language and as well may contain any
additional information.

∙ _⊑_ is a “foldability relation”. c ⊑ c′ means that c is foldable to c′. (In
such cases c′ is usually said to be “more general” than c.)

∙ _⊑?_ is a decision procedure for _⊑_. This procedure is necessary for im-
plementing supercompilation in functional form.

∙ _⇒ is a function that gives a number of possible decompositions of a con-
figuration. Let c be a configuration and cs a list of configurations such that
cs ∈ c ⇒. Then c can be “reduced to” (or “decomposed into”) configura-
tions cs.

Suppose that driving is deterministic and, given a configuration c, produces
a list of configurations c �. Suppose that rebuilding (generalization, appli-
cation of lemmas) is non-deterministic and c y is the list of configurations
that can be produced by rebuilding. Then (in this special case) _⇒ can be
implemented as follows:

c ⇒ = [ c � ] ++ map [_] (c y)

∙ whistle is a “bar whistle” [6] (see BarWhistle.agda) that is used to ensure
termination of functional supercompilation.

Thus we have the following definition in Agda:

record ScWorld : Set1 where

field
Conf : Set
_⊑_ : (c c′ : Conf) → Set
_⊑?_ : (c c′ : Conf) → Dec (c ⊑ c′)
_⇒ : (c : Conf) → List (List Conf)
whistle : BarWhistle Conf

open BarWhistle whistle public

History : Set
History = List Conf



9

Foldable : ∀ (h : History) (c : Conf) → Set
Foldable h c = Any (_⊑_ c) h

foldable? : ∀ (h : History) (c : Conf) → Dec (Foldable h c)
foldable? h c = Any.any (_⊑?_ c) h

Note that, in addition to (abstract) fields, there are a few concrete type and
function definitions.

∙ History is a list of configuration that have been produced in order to reach
the current configuration.

∙ Foldable h c means that c is foldable to a configuration in the history h.

∙ foldable? h c decides whether Foldable h c.

If we need labeled edges in the graph of configurations, the labels can be
hidden inside configurations. (Recall that “configurations” do not have to be just
symbolic expressions, as they can contain any additional information.)

3.3 A relational specification of big-step non-deterministic
supercompilation

In BigStepSc.agda there is given a relational definition of non-deterministic su-
percompilation in terms of two relations

infix 4 _⊢NDSC_→˓_ _⊢NDSC*_→˓_

data _⊢NDSC_→˓_ : ∀ (h : History) (c : Conf)
(g : Graph Conf) → Set

_⊢NDSC*_→˓_ : ∀ (h : History) (cs : List Conf)
(gs : List (Graph Conf)) → Set

which are defined with respect to a world of supercompilation.
Let h be a history, c a configuration and g a graph. Then h ⊢NDSC c →˓ g

means that g can be produced from h and c by non-deterministic supercompila-
tion.

Let h be a history, cs a list of configurations, gs a list of graphs, and
length cs = length gs. Then h ⊢NDSC* cs →˓ gs means that each g ∈ gs
can be produced from the history h and the corresponding c ∈ cs by non-
deterministic supercompilation. Or, in Agda:

h ⊢NDSC* cs →˓ gs = Pointwise.Rel (_⊢NDSC_→˓_ h) cs gs

⊢NDSC_→˓_ is defined by two rules



10

data _⊢NDSC_→˓_ where
ndsc-fold : ∀ {h : History} {c}

(f : Foldable h c) →
h ⊢NDSC c →˓ back c

ndsc-build : ∀ {h : History} {c}
{cs : List (Conf)} {gs : List (Graph Conf)}
(¬f : ¬ Foldable h c)
(i : cs ∈ c ⇒)
(s : (c :: h) ⊢NDSC* cs →˓ gs) →
h ⊢NDSC c →˓ forth c gs

The rule ndsc-fold says that if c is foldable to a configuration in h there can
be produced the graph back c (consisting of a single back-node).

The rule ndsc-build says that there can be produced a node forth c gs if
the following conditions are satisfied.

∙ c is not foldable to a configuration in the history h.

∙ c ⇒ contains a list of configurations cs, such that
(c :: h) ⊢NDSC* cs →˓ gs.

Speaking more operationally, the supercompiler first decides how to decompose
c into a list of configurations cs by selecting a cs ∈ c. Then, for each c ∈ cs
the supercompiler produces a graph g, to obtain a list of graphs gs, and builds
the graph c →˓ forth c gs.

3.4 A relational specification of big-step multi-result
supercompilation

The main difference between multi-result and non-deterministic supercompilation
is that multi-result uses a whistle (see Whistles.agda) in order to ensure the
finiteness of the collection of residual graphs.

In BigStepSc.agda there is given a relational definition of multi-result super-
compilation in terms of two relations

infix 4 _⊢MRSC_→˓_ _⊢MRSC*_→˓_

data _⊢MRSC_→˓_ : ∀ (h : History) (c : Conf)
(g : Graph Conf) → Set

_⊢MRSC*_→˓_ : ∀ (h : History) (cs : List Conf)
(gs : List (Graph Conf)) → Set

Again, _⊢MRSC*_→˓_ is a “point-wise” version of _⊢MRSC_→˓_:

h ⊢MRSC* cs →˓ gs = Pointwise.Rel (_⊢MRSC_→˓_ h) cs gs

_⊢MRSC_→˓_ is defined by two rules



11

data _⊢MRSC_→˓_ where
mrsc-fold : ∀ {h : History} {c}

(f : Foldable h c) →
h ⊢MRSC c →˓ back c

mrsc-build : ∀ {h : History} {c}
{cs : List Conf} {gs : List (Graph Conf)}
(¬f : ¬ Foldable h c)
(¬w : ¬ � h) →
(i : cs ∈ c ⇒)
(s : (c :: h) ⊢MRSC* cs →˓ gs) →
h ⊢MRSC c →˓ forth c gs

We can see that _⊢NDSC_→˓_ and _⊢MRSC_→˓_ differ only in that there is an
additional condition ¬ � h in the rule mrsc-build.

The predicate � is provided by the whistle, � h meaning that the history h is
“dangerous”. Unlike the rule ndsc-build, the rule mrsc-build is only applicable
when ¬ � h, i.e. the history h is not dangerous.

Multi-result supercompilation is a special case of non-deterministic supercom-
pilation, in the sense that any graph produced by multi-result supercompilation
can also be produced by non-deterministic supercompilation:

MRSC→NDSC : ∀ {h : History} {c g} →
h ⊢MRSC c →˓ g → h ⊢NDSC c →˓ g

A proof of this theorem can be found in BigStepScTheorems.agda.

3.5 Bar whistles
Now we are going to give an alternative definition of multi-result supercompila-
tion in form of a total function naive-mrsc. The termination of naive-mrsc is
guaranteed by a “whistle”.

In our model of big-step supercompilation whistles are assumed to be “induc-
tive bars” [6] and are defined in Agda in the following way.

First of all, BarWhistles.agda contains the following declaration of Bar D h:

data Bar {A : Set} (D : List A → Set) :
(h : List A) → Set where

now : {h : List A} (bz : D h) → Bar D h
later : {h : List A} (bs : ∀ c → Bar D (c :: h)) → Bar D h

At the first glance, this declaration looks as a puzzle. But, actually, it is not
as mysterious as it may seem.

We consider sequences of elements (of some type A), and a predicate D. If D h
holds for a sequence h, h is said to be “dangerous”.

Bar D h means that either (1) h is dangerous, i.e. D h is valid right now
(the rule now), or (2) Bar D (c :: h) is valid for all possible c :: h (the rule



12

later). Hence, for any continuation c :: h the sequence will eventually become
dangerous.

The subtle point is that if Bar D [] is valid, it implies that any sequence will
eventually become dangerous.

A bar whistle is a record (see BarWhistles.agda)

record BarWhistle (A : Set) : Set1 where
field

� : (h : List A) → Set
�:: : (c : A) (h : List A) → � h → � (c :: h)
�? : (h : List A) → Dec (� h)

bar[] : Bar � []

where

∙ � is a predicate on sequences, � h meaning that the sequence h is dangerous.

∙ �:: postulates that if � h then � (c :: h) for all possible c :: h. In other
words, if h is dangerous, so are all continuations of h.

∙ �? says that � is decidable.

∙ bar[] says that any sequence eventually becomes dangerous. (In Coquand’s
terms, Bar � is required to be “an inductive bar”.)

3.6 A function for computing Cartesian products
The functional specification of big-step multi-result supercompilation considered
in the following section is based on the function cartesian:

cartesian : ∀ {A : Set} (xss : List (List A)) → List (List A)

cartesian takes as input a list of lists xss (see Util.agda). Each list xs ∈ xss
represents the set of possible values of the correspondent component.

Namely, suppose that xss has the form 𝑥𝑠1, 𝑥𝑠2, . . . , 𝑥𝑠𝑘 Then cartesian
returns a list containing all possible lists of the form 𝑥1 :: 𝑥2 :: . . . :: 𝑥𝑘 :: [] where
𝑥𝑖 ∈ 𝑥𝑠𝑖. In Agda, this property of cartesian is formulated as follows:

∈*↔∈cartesian :
∀ {A : Set} {xs : List A} {yss : List (List A)} →

Pointwise.Rel _∈_ xs yss ↔ xs ∈ cartesian yss

A proof of the theorem ∈*↔∈cartesian can be found in Util.agda.



13

3.7 A functional specification of big-step multi-result
supercompilation

A functional specification of big-step multi-result supercompilation is given in the
form of a total function (in BigStepSc.agda) that takes the initial configuration
c and returns a list of residual graphs:

naive-mrsc : (c : Conf) → List (Graph Conf)
naive-mrsc′ : ∀ (h : History) (b : Bar � h) (c : Conf) →

List (Graph Conf)

naive-mrsc c = naive-mrsc′ [] bar[] c

naive-mrsc is defined in terms of a more general function naive-mrsc′, which
takes more arguments: a history h, a proof b of the fact Bar � h, and a configu-
ration c.

Note that naive-mrsc calls naive-mrsc′ with the empty history and has to
supply a proof of the fact Bar � []. But this proof is supplied by the whistle!

naive-mrsc′ h b c with foldable? h c
... | yes f = [ back c ]
... | no ¬f with �? h
... | yes w = []
... | no ¬w with b
... | now bz with ¬w bz
... | ()
naive-mrsc′ h b c | no ¬f | no ¬w | later bs =

map (forth c)
(concat (map (cartesian ∘ map

(naive-mrsc′ (c :: h) (bs c))) (c ⇒)))

The definition of naive-mrsc′ is straightforward.

∙ If c is foldable to the history h, a back-node is generated and the function
terminates.

∙ Otherwise, if � h (i.e. the history h is dangerous), the function terminates
producing no graphs.

∙ Otherwise, h is not dangerous, and the configuration c can be decomposed.
(Also there are some manipulations with the parameter b that will be ex-
plained later.)

∙ Thus c ⇒ returns a list of lists of configurations. The function considers
each each cs ∈ c ⇒, and, for each c′ ∈ cs recursively calls itself in the
following way: naive-mrsc′ (c :: h) (bs c) c′ producing a list of resid-
ual graphs gs′. So, cs is transformed into gss, a list of lists of graphs. Note
that length cs = length gss.



14

∙ Then the function computes cartesian product cartesian gss, to produce
a list of lists of graphs. Then the results corresponding to each cs ∈ c ⇒
are concatenated by concat.

∙ At this moment the function has obtained a list of lists of graphs, and calls
map (forth c) to turn each graph list into a forth-node.

The function naive-mrsc is correct (sound and complete) with respect to the
relation _⊢MRSC_→˓_:

⊢MRSC→˓⇔naive-mrsc :
{c : Conf} {g : Graph Conf} →
[] ⊢MRSC c →˓ g ⇔ g ∈ naive-mrsc c

A proof of this theorem can be found in BigStepScTheorems.agda.

3.8 Why naive-mrsc′ always terminates?
The problem with naive-mrsc′ is that in the recursive call

naive-mrsc′ (c :: h) (bs c) c′

the history grows (h becomes c :: h), and the configuration is replaced with
another configuration of unknown size (c becomes c′). Hence, these parameters
do not become “structurally smaller”.

But Agda’s termination checker still accepts this recursive call, because the
second parameter does become smaller (later bs becomes bs c). Note that the
termination checker considers bs and bs c to be of the same “size”. Since bs is
smaller than later bs (a constructor is removed), and bs and bs c are of the
same size, bs c is “smaller” than later bs.

Thus purpose of the parameter b is to persuade the termination checker that
the function terminates. If lazy-mrsc is reimplemented in a language in which
the totality of functions is not checked, the parameter b is not required and can
be removed.

4 Staging big-step multi-result supercompilation
We can decompose the process of supercompilation into two stages

naive-mrsc $ ⟨⟨_⟩⟩ ∘ lazy-mrsc

where ⟨⟨_⟩⟩ is a unary function, and 𝑓 $ 𝑔 means that 𝑓 𝑥 = 𝑔 𝑥 for all 𝑥.
At the first stage, lazy-mrsc generates a “lazy graph”, which, essentially, is a

“program” to be “executed” by ⟨⟨_⟩⟩.



15

4.1 Lazy graphs of configurations
A LazyGraph C represents a finite set of graphs of configurations (whose type is
Graph C).

data LazyGraph (C : Set) : Set where
Ø : LazyGraph C
stop : (c : C) → LazyGraph C
build : (c : C) (lss : List (List (LazyGraph C))) → LazyGraph C

A lazy graph is a tree whose nodes are “commands” to be executed by the inter-
preter ⟨⟨_⟩⟩.

The exact semantics of lazy graphs is given by the function ⟨⟨_⟩⟩, which calls
auxiliary functions ⟨⟨_⟩⟩* and ⟨⟨_⟩⟩ (see Graphs.agda).

⟨⟨_⟩⟩ : {C : Set} (l : LazyGraph C) → List (Graph C)
⟨⟨_⟩⟩* : {C : Set} (ls : List (LazyGraph C)) → List (List (Graph C))
⟨⟨_⟩⟩⇒ : {C : Set} (lss : List (List (LazyGraph C))) →

List (List (Graph C))

Here is the definition of the main function ⟨⟨_⟩⟩:

⟨⟨ Ø ⟩⟩ = []
⟨⟨ stop c ⟩⟩ = [ back c ]
⟨⟨ build c lss ⟩⟩ = map (forth c) ⟨⟨ lss ⟩⟩⇒

It can be seen that Ø means “generate no graphs”, stop means “generate a back-
node and stop”.

The most interesting case is a build-node build c lss, where c is a configu-
ration and lss a list of lists of lazy graphs. Recall that, in general, a configuration
can be decomposed into a list of configurations in several different ways. Thus,
each ls ∈ lss corresponds to a decomposition of c into a number of configura-
tions 𝑐1, . . . 𝑐𝑘. By supercompiling each 𝑐𝑖 we get a collection of graphs that can
be represnted by a lazy graph 𝑙𝑠𝑖.

The function ⟨⟨_⟩⟩* considers each lazy graph in a list of lazy graphs ls, and
turns it into a list of graphs:

⟨⟨ [] ⟩⟩* = []
⟨⟨ l :: ls ⟩⟩* = ⟨⟨ l ⟩⟩ :: ⟨⟨ ls ⟩⟩*

The function ⟨⟨_⟩⟩⇒ considers all possible decompositions of a configuration, and
for each decomposition computes all possible combinations of subgraphs:

⟨⟨ [] ⟩⟩⇒ = []
⟨⟨ ls :: lss ⟩⟩⇒ = cartesian ⟨⟨ ls ⟩⟩* ++ ⟨⟨ lss ⟩⟩⇒



16

There arises a natural question: why ⟨⟨_⟩⟩* is defined by explicit recursion, while
it does exactly the same job as would do map ⟨⟨_⟩⟩? The answer is that Agda’s
termination checker does not accept map ⟨⟨_⟩⟩, because it cannot see that the
argument in the recursive calls to ⟨⟨_⟩⟩ becomes structurally smaller. For the
same reason ⟨⟨_⟩⟩⇒ is also defined by explicit recursion.

4.2 A functional specification of lazy multi-result
supercompilation

Given a configuration c, the function lazy-mrsc produces a lazy graph.

lazy-mrsc : (c : Conf) → LazyGraph Conf

lazy-mrsc is defined in terms of a more general function lazy-mrsc′

lazy-mrsc′ : ∀ (h : History) (b : Bar � h)
(c : Conf) → LazyGraph Conf

lazy-mrsc c = lazy-mrsc′ [] bar[] c

The general structure of lazy-mrsc′ is very similar (see Section 3) to that of
naive-mrsc′, but, unlike naive-mrsc, it does not build Cartesian products im-
mediately.

lazy-mrsc′ h b c with foldable? h c
... | yes f = stop c
... | no ¬f with �? h
... | yes w = Ø
... | no ¬w with b
... | now bz with ¬w bz
... | ()
lazy-mrsc′ h b c | no ¬f | no ¬w | later bs =

build c (map (map (lazy-mrsc′ (c :: h) (bs c))) (c ⇒))

Let us compare the most interesting parts of naive-mrsc and lazy-mrsc:

map (forth c)
(concat (map (cartesian ∘

map (naive-mrsc′ (c :: h) (bs c))) (c ⇒)))
...
build c (map (map (lazy-mrsc′ (c :: h) (bs c))) (c ⇒))

Note that cartesian disappears from lazy-mrsc.

4.3 Correctness of lazy-mrsc and ⟨⟨_⟩⟩
lazy-mrsc and ⟨⟨_⟩⟩ are correct with respect to naive-mrsc. In Agda this is
formulated as follows:



17

naive≡lazy : (c : Conf) → naive-mrsc c ≡ ⟨⟨ lazy-mrsc c ⟩⟩

In other words, for any initial configuraion c, ⟨⟨ lazy-mrsc c ⟩⟩ returns the same
list of graphs (the same configurations in the same order!) as would return
naive-mrsc c.

A formal proof of naive≡lazy can be found in BigStepScTheorems.agda.

5 Cleaning lazy graphs
A function clean is said to be a “cleaner” if for any lazy graph l

⟨⟨ clean l ⟩⟩ ⊆ ⟨⟨ l ⟩⟩

Suppose that a function filter filters bags of graphs, removing “bad” graphs, so
that

filter ⟨⟨ l ⟩⟩

generates the bag of “good” graphs. Let clean be a cleaner such that

filter ∘ ⟨⟨_⟩⟩ $ ⟨⟨_⟩⟩ ∘ clean

Then we can replace filtering of graphs with cleaning of lazy graphs

filter ∘ naive-mrsc $ ⟨⟨_⟩⟩ ∘ clean ∘ lazy-mrsc

In Graphs.agda there are defined a number of filters and corresponding cleaners.

5.1 Filter fl-bad-conf and cleaner cl-bad-conf

fl-bad-conf : {C : Set} (bad : C → Bool) (gs : List (Graph C)) →
List (Graph C)

cl-bad-conf : {C : Set} (bad : C → Bool) (l : LazyGraph C) →
LazyGraph C

Configurations represent states of a computation process. Some of these states
may be “bad” with respect to the problem that is to be solved by means of super-
compilation.

Given a predicate bad that returns true for “bad” configurations,
fl-bad-conf bad gs removes from gs the graphs that contain at least one “bad”
configuration.

The cleaner cl-bad-conf corresponds to the filter fl-bad-conf.
cl-bad-conf exploits the fact that “badness” is monotonic, in the sense
that a single “bad” configuration spoils the whole graph.

cl-bad-conf is correct with respect to fl-bad-conf:



18

cl-bad-conf-correct : {C : Set} (bad : C → Bool) →
⟨⟨_⟩⟩ ∘ cl-bad-conf bad $ fl-bad-conf bad ∘ ⟨⟨_⟩⟩

A formal proof of this theorem is given in GraphsTheorems.agda.
It is instructive to take a look at the implementation of cl-bad-conf in

Graphs.agda, to get the general idea of how cleaners are really implemented:

cl-bad-conf : {C : Set} (bad : C → Bool) (l : LazyGraph C) →
LazyGraph C

cl-bad-conf⇒ : {C : Set} (bad : C → Bool)
(lss : List (List (LazyGraph C))) → List (List (LazyGraph C))

cl-bad-conf* : {C : Set} (bad : C → Bool)
(ls : List (LazyGraph C)) → List (LazyGraph C)

cl-bad-conf bad Ø = Ø
cl-bad-conf bad (stop c) =

if bad c then Ø else (stop c)
cl-bad-conf bad (build c lss) =

if bad c then Ø else (build c (cl-bad-conf⇒ bad lss))

cl-bad-conf⇒ bad [] = []
cl-bad-conf⇒ bad (ls :: lss) =

cl-bad-conf* bad ls :: (cl-bad-conf⇒ bad lss)

cl-bad-conf* bad [] = []
cl-bad-conf* bad (l :: ls) =

cl-bad-conf bad l :: cl-bad-conf* bad ls

5.2 Cleaner cl-empty

cl-empty is a cleaner that removes subtrees of a lazy graph that represent empty
sets of graphs.

cl-empty : {C : Set} (l : LazyGraph C) → LazyGraph C

cl-bad-conf is correct with respect to ⟨⟨_⟩⟩:

cl-empty-correct : ∀ {C : Set} (l : LazyGraph C) →
⟨⟨ cl-empty l ⟩⟩ ≡ ⟨⟨ l ⟩⟩

A formal proof of this theorem is given in GraphsTheorems.agda.

5.3 Cleaner cl-min-size

The function cl-min-size



19

cl-min-size : ∀ {C : Set} (l : LazyGraph C) → N × LazyGraph C

takes as input a lazy graph l and returns either (0 , Ø), if l contains no graphs,
or a pair (k , l′), where l′ is a lazy graph, representing a single graph g′ of
minimal size k.

The details of how cl-min-size is implemented can be found in Graphs.agda.
A good thing about cl-min-size is it cleans any lazy graph l in linear time

with respect to the size of l.

6 Codata and corecursion: cleaning before
whistling

By using codata and corecursion, we can decompose lazy-mrsc into two stages

lazy-mrsc $ prune-cograph ∘ build-cograph

where build-cograph constructs a (potentially) infinite tree, while prune-cograph
traverses this tree and turns it into a lazy graph (which is finite).

6.1 Lazy cographs of configurations
A LazyCograph C represents a (potentially) infinite set of graphs of configurations
whose type is Graph C (see Cographs.agda).

data LazyCograph (C : Set) : Set where
Ø : LazyCograph C
stop : (c : C) → LazyCograph C
build : (c : C)

(lss : ∞(List (List (LazyCograph C)))) → LazyCograph C

Note that LazyCograph C differs from LazyGraph C the evaluation of lss in build-
nodes is delayed.

6.2 Building lazy cographs
Lazy cographs are produced by the function build-cograph

build-cograph : (c : Conf) → LazyCograph Conf

which can be derived from the function lazy-mrsc by removing the machinery
related to whistles.

build-cograph is defined in terms of a more general function build-cographs′.

build-cograph′ : (h : History) (c : Conf) → LazyCograph Conf
build-cograph c = build-cograph′ [] c



20

The definition of build-cograph′ uses auxiliary functions build-cograph⇒ and
build-cograph*, while the definition of lazy-mrsc just calls map at corresponding
places. This is necessary in order for build-cograph′ to pass Agda’s “productiv-
ity” check.

build-cograph⇒ : (h : History) (c : Conf)
(css : List (List Conf)) → List (List (LazyCograph Conf))

build-cograph* : (h : History)
(cs : List Conf) → List (LazyCograph Conf)

build-cograph′ h c with foldable? h c
... | yes f = stop c
... | no ¬f =

build c (♯ build-cograph⇒ h c (c ⇒))

build-cograph⇒ h c [] = []
build-cograph⇒ h c (cs :: css) =

build-cograph* (c :: h) cs :: build-cograph⇒ h c css

build-cograph* h [] = []
build-cograph* h (c :: cs) =

build-cograph′ h c :: build-cograph* h cs

6.3 Pruning lazy cographs
A lazy cograph can be pruned by means of the function prune-cograph to obtain
a finite lazy graph.

prune-cograph : (l : LazyCograph Conf) → LazyGraph Conf

which can be derived from the function lazy-mrsc by removing the machinery
related to generation of nodes (since it only consumes nodes that have been gen-
erated by build-cograph).

prune-cograph is defined in terms of a more general function prune-cograph′:

prune-cograph l = prune-cograph′ [] bar[] l

The definition of prune-cograph′ uses the auxiliary function prune-cograph*.

prune-cograph* : (h : History) (b : Bar � h)
(ls : List (LazyCograph Conf)) → List (LazyGraph Conf)

prune-cograph′ h b Ø = Ø
prune-cograph′ h b (stop c) = stop c
prune-cograph′ h b (build c lss) with �? h



21

... | yes w = Ø

... | no ¬w with b

... | now bz with ¬w bz

... | ()
prune-cograph′ h b (build c lss) | no ¬w | later bs =

build c (map (prune-cograph* (c :: h) (bs c)) (♭ lss))

prune-cograph* h b [] = []
prune-cograph* h b (l :: ls) =

prune-cograph′ h b l :: (prune-cograph* h b ls)

Note that, when processing a node build c lss, the evaluation of lss has to be
explicitly forced by ♭.

prune-cograph and build-cograph are correct with respect to lazy-mrsc:

prune∘build-correct :
prune-cograph ∘ build-cograph $ lazy-mrsc

A proof of this theorem can be found in Cographs.agda.

6.4 Promoting some cleaners over the whistle
Suppose clean∞ is a cograph cleaner such that

clean ∘ prune-cograph $ prune-cograph ∘ clean∞

then

clean ∘ lazy-mrsc $
clean ∘ prune-cograph ∘ build-cograph $
prune-cograph ∘ clean∞ ∘ build-cograph

The good thing about build-cograph and clean∞ is that they work in a lazy
way, generating subtrees by demand. Hence, evaluating

⟨⟨ prune-cograph ∘ (clean∞ (build-cograph c)) ⟩⟩

may be less time and space consuming than evaluating

⟨⟨ clean (lazy-mrsc c) ⟩⟩

In Cographs.agda there is defined a cograph cleaner cl-bad-conf∞ that takes a
lazy cograph and prunes subrees containing bad configurations, returning a lazy
subgraph (which can be infinite):

cl-bad-conf∞ : {C : Set} (bad : C → Bool) (l : LazyCograph C) →
LazyCograph C

cl-bad-conf∞ is correct with respect to cl-bad-conf:



22

cl-bad-conf∞-correct : (bad : Conf → Bool) →
cl-bad-conf bad ∘ prune-cograph $

prune-cograph ∘ cl-bad-conf∞ bad

A proof of this theorem can be found in Cographs.agda.

7 Related work
The idea that supercompilation can produce a compact representation of a collec-
tion of residual graphs is due to Grechanik [7, 8]. In particular, the data structure
‘LazyGraph C‘ we use for representing the results of the first phase of the staged
multi-result supercompiler can be considered as a representation of "overtrees",
which was informally described in [7].

Big-step supercompilation was studied and implemented by Bolingbroke and
Peyton Jones [4]. Our approach differs in that we are interested in applying
supercompilation to problem solving. Thus

∙ We consider multi-result supercompilation, rather than single-result super-
compilation.

∙ Our big-step supercompilation constructs graphs of configurations in an
explicit way, because the graphs are going to be filtered and/or analyzed at
a later stage.

∙ Bolingbroke and Peyton Jones considered big-step supercompilation in func-
tional form, while we have studied both a relational specification of big-step
supercompilation and the functional one and have proved the correctness of
the functional specification with respect to the relational one.

A relational specification of single-result supercompilation was suggested by
Klimov [11], who argued that supercompilation relations can be used for sim-
plifying proofs of correctness of supercompilers. Later, Klyuchnikov [20] used a
supercompilation relation for proving the correctness of a small-step single-result
supercompiler for a higher-order functional language. In the present work we
consider a supercompilation relation for a big-step multi-result supercompilation.

We have developed an abstract model of big-step multi-result supercompilation
in the language Agda and have proved a number of properties of this model. This
model, in some respects, differs from the other models of supercompilation.

The MRSC Toolkit by Klyuchnikov and Romanenko [23] abstracts away some
aspects of supercompilation, such as the structure of configurations and the de-
tails of the subject language. However, the MRSC Toolkit is a framework for
implementing small-step supercompilers, while our model in Agda [2] formalizes
big-step supercompilation. Besides, the MRSC Toolkit is implemented in Scala,
for which reason it currently provides no means for neither formulating nor prov-
ing theorems about supercompilers implemented with the MRSC Toolkit.



23

Krustev was the first to formally verify a simple supercompiler by means of a
proof assistant [26]. Unlike the MRSC Toolkit and our model of supercompilation,
Krustev deals with a specific supercompiler for a concrete subject language. (Note,
however, that also the subject language is simple, it is still Turing complete.)

In another paper Krustev presents a framework for building formally verifiable
supercompilers [27]. It is similar to the MRSC in that it abstracts away some
details of supercompilation, such as the subject language and the structure of
configurations, providing, unlike the MRSC Toolkit, means for formulating and
proving theorems about supercompilers.

However, in both cases Krustev deals with single-result supercompilation,
while the primary goal of our model of supercompilation is to formalize and in-
vestigate some subtle aspects of multi-result supercompilation.

8 Conclusions
When using supercompilation for problem solving, it seems natural to produce
a collection of residual graphs of configurations by multi-result supercompilation
and then to filter this collection according to some criteria. Unfortunately, this
may lead to combinatorial explosion.

We have suggested the following solution.

∙ Instead of generating and filtering a collection of residual graphs of con-
figurations, we can produce a compact representation for the collection of
graphs (a "lazy graph"), and then analyze this representation.

∙ This compact representation can be derived from a (big-step) multi-result
supercompiler in a systematic way by (manually) staging this supercompiler
to represent it as a composition of two stages. At the first stage, some graph-
building operations are delayed to be later performed at the second stage.

∙ The result produced by the first stage is a "lazy graph", which is, essentially,
a program to be interpreted at the second stage, to actually generate a
collection of residual graphs.

∙ The key point of our approach is that a number of problems can be solved
by directly analyzing the lazy graphs, rather than by actually generating
and analyzing the collections of graphs they represent.

∙ In some cases of practical importance, the analysis of a lazy graph can be
performed in linear time.

Acknowledgements
The authors express their gratitude to the participants of the Refal seminar at
Keldysh Institute for useful comments and fruitful discussions.



24

References
[1] Staged multi-result supercompilation: filtering before producing, 2013.

https://github.com/sergei-romanenko/staged-mrsc-agda.

[2] The Agda Wiki, 2013.
http://wiki.portal.chalmers.se/agda/.

[3] D. Bjørner, M. Broy, and I. V. Pottosin, editors. Perspectives of Sys-
tems Informatics, Second International Andrei Ershov Memorial Conference,
Akademgorodok, Novosibirsk, Russia, June 25–28, 1996, volume 1181 of Lec-
ture Notes in Computer Science. Springer, 1996.

[4] M. Bolingbroke and S. Peyton Jones. Supercompilation by evaluation. In
Proceedings of the third ACM Haskell symposium on Haskell, Haskell ’10,
pages 135–146, New York, NY, USA, 2010. ACM.

[5] E. Clarke, I. Virbitskaite, and A. Voronkov, editors. Perspectives of Systems
Informatics, 8th Andrei Ershov Informatics Conference, PSI 2011, Akadem-
gorodok, Novosibirsk, Russia, June 27 – July 01, 2011, volume 7162 of Lec-
ture Notes in Computer Science. Springer, 2012.

[6] T. Coquand. About Brouwer’s fan theorem. Revue internationale de philoso-
phie, 230:483–489, 2003.

[7] S. A. Grechanik. Overgraph representation for multi-result supercompilation.
In Klimov and Romanenko [18], pages 48–65.

[8] S. A. Grechanik. Supercompilation by hypergraph transformation. Keldysh
Institute Preprints, (26), 2013.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2013-26.

[9] A. V. Klimov. An approach to supercompilation for object-oriented lan-
guages: the Java Supercompiler case study. In Nemytykh [34], pages 43–53.

[10] A. V. Klimov. JVer project: Verification of Java programs by the Java
Supercompiler. http://pat.keldysh.ru/jver/, 2008.

[11] A. V. Klimov. A program specialization relation based on supercompilation
and its properties. In Nemytykh [34], pages 54–77.

[12] A. V. Klimov. A Java Supercompiler and its application to verification of
cache-coherence protocols. In Pnueli et al. [36], pages 185–192.

[13] A. V. Klimov. Multi-result supercompilation in action: Solving coverability
problem for monotonic counter systems by gradual specialization. In In-
ternational Workshop on Program Understanding, PU 2011, Novososedovo,
Russia, July 2–5, 2011, pages 25–32. Ershov Institute of Informatics Systems,
Novosibirsk, 2011.

https://github.com/sergei-romanenko/staged-mrsc-agda
http://wiki.portal.chalmers.se/agda/
http://library.keldysh.ru/preprint.asp?lg=e&id=2013-26
http://pat.keldysh.ru/jver/


25

[14] A. V. Klimov. Yet another algorithm for solving coverability problem for
monotonic counter systems. In V. Nepomnyaschy and V. Sokolov, editors,
PSSV, pages 59–67. Yaroslavl State University, 2011.

[15] A. V. Klimov. Solving coverability problem for monotonic counter systems
by supercompilation. In Clarke et al. [5], pages 193–209.

[16] A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Automatic verifi-
cation of counter systems via domain-specific multi-result supercompilation.
Keldysh Institute Preprints, (19), 2012.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19.

[17] A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Implementing a
domain-specific multi-result supercompiler by means of the MRSC toolkit.
Keldysh Institute Preprints, (24), 2012.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24.

[18] A. V. Klimov and S. A. Romanenko, editors. Third International Valentin
Turchin Workshop on Metacomputation, Pereslavl-Zalessky, Russia, July 5–
9, 2012. Ailamazyan University of Pereslavl, Pereslavl-Zalessky, 2012.

[19] I. G. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Keldysh
Institute Preprints, (63), 2009.
URL: http://library.keldysh.ru/preprint.asp?id=2009-63.

[20] I. G. Klyuchnikov. Supercompiler HOSC: proof of correctness. Keldysh In-
stitute Preprints, (31), 2010.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2010-31.

[21] I. G. Klyuchnikov and S. A. Romanenko. SPSC: a simple supercompiler in
scala. In PU’09 (International Workshop on Program Understanding), 2009.

[22] I. G. Klyuchnikov and S. A. Romanenko. Proving the equivalence of higher-
order terms by means of supercompilation. In Pnueli et al. [36], pages 193–
205.

[23] I. G. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building multi-
result supercompilers. Keldysh Institute Preprints, (77), 2011.
URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77.

[24] I. G. Klyuchnikov and S. A. Romanenko. Formalizing and implementing
multi-result supercompilation. In Klimov and Romanenko [18], pages 142–
164.

[25] I. G. Klyuchnikov and S. A. Romanenko. Multi-result supercompilation as
branching growth of the penultimate level in metasystem transitions. In
Clarke et al. [5], pages 210–226.

http://library.keldysh.ru/preprint.asp?lg=e&id=2012-19
http://library.keldysh.ru/preprint.asp?lg=e&id=2012-24
http://library.keldysh.ru/preprint.asp?id=2009-63
http://library.keldysh.ru/preprint.asp?lg=e&id=2010-31
http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77


26

[26] D. N. Krustev. A simple supercompiler formally verified in Coq. In A. P. Ne-
mytykh, editor, META, pages 102–127. Ailamazyan University of Pereslavl,
Pereslavl-Zalessky, 2010.

[27] D. N. Krustev. Towards a framework for building formally verified super-
compilers in Coq. In H.-W. Loidl and R. Peña, editors, Trends in Functional
Programming, volume 7829 of Lecture Notes in Computer Science, pages
133–148. Springer, 2012.

[28] A. P. Lisitsa and A. P. Nemytykh. SCP4: Verification of protocols. http:
//refal.botik.ru/protocols/.

[29] A. P. Lisitsa and A. P. Nemytykh. Verification of MESI cache coherence
protocol. http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html.

[30] A. P. Lisitsa and A. P. Nemytykh. Towards verification via supercompilation.
In COMPSAC, pages 9–10. IEEE Computer Society, 2005.

[31] A. P. Lisitsa and A. P. Nemytykh. Verification as a parameterized testing
(experiments with the SCP4 supercompiler). Programming and Computer
Software, 33(1):14–23, 2007.

[32] A. P. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via
supercompilation. Int. J. Found. Comput. Sci., 19(4):953–969, 2008.

[33] A. P. Nemytykh. The supercompiler SCP4: General structure. In M. Broy
and A. V. Zamulin, editors, PSI, volume 2890 of Lecture Notes in Computer
Science, pages 162–170. Springer, 2003.

[34] A. P. Nemytykh, editor. First International Workshop on Metacomputation
in Russia, Pereslavl-Zalessky, Russia, July 2–5, 2008. Ailamazyan University
of Pereslavl, Pereslavl-Zalessky, 2008.

[35] A. P. Nemytykh and V. A. Pinchuk. Program transformation with meta-
system transitions: Experiments with a supercompiler. In Bjørner et al. [3],
pages 249–260.

[36] A. Pnueli, I. Virbitskaite, and A. Voronkov, editors. Perspectives of Sys-
tems Informatics, 7th International Andrei Ershov Memorial Conference,
PSI 2009, Akademgorodok, Novosibirsk, Russia, June 15-19, 2009. Revised
Papers, volume 5947 of Lecture Notes in Computer Science. Springer, 2010.

[37] M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory
of positive information propagation. Master’s thesis, Dept. of Computer
Science, University of Copenhagen, 1994.

[38] M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal
of Functional Programming, 6(6):811–838, 1996.

http://refal.botik.ru/protocols/
http://refal.botik.ru/protocols/
http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html


27

[39] W. Taha. A gentle introduction to multi-stage programming. In C. Lengauer,
D. S. Batory, C. Consel, and M. Odersky, editors, Domain-Specific Program
Generation, volume 3016 of Lecture Notes in Computer Science, pages 30–50.
Springer, 2003.

[40] W. Taha. A gentle introduction to multi-stage programming, part II. In
R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE, volume 5235 of Lecture
Notes in Computer Science, pages 260–290. Springer, 2007.

[41] V. F. Turchin. A supercompiler system based on the language Refal. ACM
SIGPLAN Not., 14(2):46–54, 1979.

[42] V. F. Turchin. The language Refal: The theory of compilation and meta-
system analysis. Technical Report 20, Courant Institute of Mathematical
Sciences, New York University, 1980.

[43] V. F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

[44] V. F. Turchin. Supercompilation: Techniques and results. In Bjørner et al.
[3], pages 227–248.

[45] V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with
a supercompiler. In LFP ’82: Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming, August 15-18, 1982, Pittsburgh, PA,
USA, pages 47–55. ACM, 1982.



28

Contents
1 Introduction 3

2 Filtering before producing. . . How? 3
2.1 Multi-result supercompilation and filtering . . . . . . . . . . . . . . 3
2.2 Fusion of supercompilation and filtering . . . . . . . . . . . . . . . 3
2.3 Staged supercompilation: multiple results seen as a residual program 4
2.4 Typical cleaners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 What are the advantages? . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Codata and corecursion: decomposing lazy-mrsc . . . . . . . . . . 6
2.7 Cleaning before whistling . . . . . . . . . . . . . . . . . . . . . . . 6

3 A model of big-step multi-result supercompilation 7
3.1 Graphs of configurations . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 “Worlds” of supercompilation . . . . . . . . . . . . . . . . . . . . . 8
3.3 A relational specification of big-step non-deterministic supercom-

pilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 A relational specification of big-step multi-result supercompilation 10
3.5 Bar whistles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 A function for computing Cartesian products . . . . . . . . . . . . 12
3.7 A functional specification of big-step multi-result supercompilation 13
3.8 Why naive-mrsc′ always terminates? . . . . . . . . . . . . . . . . 14

4 Staging big-step multi-result supercompilation 14
4.1 Lazy graphs of configurations . . . . . . . . . . . . . . . . . . . . . 15
4.2 A functional specification of lazy multi-result supercompilation . . 16
4.3 Correctness of lazy-mrsc and ⟨⟨_⟩⟩ . . . . . . . . . . . . . . . . . . 16

5 Cleaning lazy graphs 17
5.1 Filter fl-bad-conf and cleaner cl-bad-conf . . . . . . . . . . . . 17
5.2 Cleaner cl-empty . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Cleaner cl-min-size . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Codata and corecursion: cleaning before whistling 19
6.1 Lazy cographs of configurations . . . . . . . . . . . . . . . . . . . . 19
6.2 Building lazy cographs . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Pruning lazy cographs . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Promoting some cleaners over the whistle . . . . . . . . . . . . . . 21

7 Related work 22

8 Conclusions 23

References 24


	Untitled.pdf
	prep2013_70_eng
	Introduction
	Filtering before producing…How?
	Multi-result supercompilation and filtering
	Fusion of supercompilation and filtering
	Staged supercompilation: multiple results seen as a residual program
	Typical cleaners
	What are the advantages?
	Codata and corecursion: decomposing lazy-mrsc
	Cleaning before whistling

	A model of big-step multi-result supercompilation
	Graphs of configurations
	``Worlds'' of supercompilation
	A relational specification of big-step non-deterministic supercompilation
	A relational specification of big-step multi-result supercompilation
	Bar whistles
	A function for computing Cartesian products
	A functional specification of big-step multi-result supercompilation
	Why naive-mrsc′ always terminates?

	Staging big-step multi-result supercompilation
	Lazy graphs of configurations
	A functional specification of lazy multi-result supercompilation
	Correctness of lazy-mrsc and ⟪_⟫

	Cleaning lazy graphs
	Filter fl-bad-conf and cleaner cl-bad-conf
	Cleaner cl-empty
	Cleaner cl-min-size

	Codata and corecursion: cleaning before whistling
	Lazy cographs of configurations
	Building lazy cographs
	Pruning lazy cographs
	Promoting some cleaners over the whistle

	Related work
	Conclusions
	References


